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Abstract

Graph anomaly detection (GAD), which aims to
identify patterns that deviate significantly from nor-
mal nodes in attributed networks, is widely used in
financial fraud, cybersecurity, and bioinformatics.
The paradigms of jointly optimizing contrastive
learning and reconstruction learning have shown
significant potential in this field. However, when
using GNNs as an encoder, it still faces the prob-
lem of over-smoothing, and it is difficult to effec-
tively capture the fine-grain topology information
of the graph. In this paper, we introduce an innova-
tive approach: Dual Encoder Contrastive Learning
with Augmented Views for Graph Anomaly Detec-
tion, named DECLARE. Specifically, the dual en-
coder integrates the strengths of GNNs and Graph
Transformers to learn graph representation from
multiple perspectives comprehensively. Although
contrastive learning enhances the model’s ability
to learn discriminative features, it cannot directly
identify anomalous patterns. To address this, the
reconstruction module independently reconstructs
graph structures and attributes, helping the model
focus on learning the normal patterns of both struc-
ture and attributes. Extensive experimental results
demonstrate that DECLARE outperforms state-of-
the-art baselines across six benchmark datasets.

1 Introduction

An attribute network is a graph structure in which both nodes
and edges encapsulate topological information and incorpo-
rate rich attribute data, enhancing the depth and context of the
graph mining and analysis. Such networks are prevalent in a
variety of domains, including social networks [Latah, 2020;
Zhang et al., 2019], financial networks [Motie and Raa-
hemi, 2024], and recommendation systems [Ying et al., 2018;
Yu er al., 2022]. A critical aspect of analyzing these networks
is anomaly detection, which aims to identify instances that
significantly deviate from the majority of the network’s ele-
ments. Graph anomaly detection (GAD) plays a crucial role
in numerous applications, including fraud detection and so-
cial spam detection [Ding et al., 2019; Ma et al., 2021].

The shallow anomaly detection methods, such as AMEN
[Perozzi and Akoglu, 2016] and Radar [Li et al., 2017],
have been widely used in various applications, particularly
for tasks where domain expertise can aid in crafting effective
features. However, these approaches have notable limitations,
especially when applied to complex and high-dimensional
data. This challenge has led to a shift towards deep learn-
ing techniques that automatically extract meaningful patterns
and representations. [Ding et al., 2019] introduced an un-
supervised autoencoder-based method that effectively detects
abnormal patterns by leveraging reconstruction errors. Build-
ing on this, [Liu er al., 2021] pioneered a contrastive learning
framework for graph anomaly detection, which effectively
utilizes local contextual information as supervision. Further
advancements have been made by those who employed patch-
level and context-level contrastive learning using two GNN-
based models. Currently, models for graph anomaly detec-
tion ([Zheng et al., 2021; Zhang et al., 2022al), which com-
bine both reconstruction-based and contrastive-based learn-
ing techniques, have attracted significant attention due to their
effectiveness in identifying anomalies.

However, this joint paradigm also has some limitations.
The contrastive learning approach relies on fixed-size sub-
graph sampling, primarily focusing on local information
while neglecting the global structure. This results in in-
complete subgraph capture and the potential for abnormal
nodes to undermine the reliability of neighborhood informa-
tion. Additionally, the current paradigm mainly emphasizes
attribute reconstruction while disregarding topological infor-
mation, weakening the detection capability for topological
anomalies and failing to capture the complex global relation-
ships within the graph structure effectively. Although Graph
Convolutional Networks (GCNs) [Kipf and Welling, 2016]
can model both attribute features and structural information
effectively, the learned representations are not always well-
suited for anomaly detection. Furthermore, the lack of ef-
fective dependency modeling between distant nodes remains
a significant gap in existing graph contrastive learning meth-
ods, limiting their ability to capture long-range interactions.

To address these limitations, we propose a novel method
for graph anomaly detection called DECLARE (Dual
Encoder Contrastive Learning with Augmented Views for
Graph Anomaly Detection). DECLARE integrates a dual
encoder framework with multi-view contrastive learning to
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detect anomalies in attributed networks. Specifically, our
approach leverages a dual encoder architecture comprising
a Graph Neural Network (GNN) and a Graph Transformer
(GT). This dual encoder framework enables us to learn more
expressive representations of both structural and attribute in-
formation within the graph. The GNN encoder focuses on
learning node-level features by capturing local neighborhood
information, while the Graph Transformer encoder models
long-range dependencies and captures global interactions us-
ing self-attention mechanisms. This complementary encod-
ing allows for a holistic representation of the graph that in-
corporates both local and global structural insights. In con-
trast to previous joint learning paradigms that focus solely on
attribute reconstruction, our method introduces a reconstruc-
tion module that simultaneously reconstructs both structural
and attribute information. This dual reconstruction process
enhances the model’s ability to detect a wide range of anoma-
lies, including those related to graph structure and node at-
tributes. Finally, an anomaly score is computed for each node
based on the learned representations, facilitating the iden-
tification of anomalous nodes in the graph. Through this
approach, DECLARE effectively addresses the challenges
posed by previous methods, providing a more comprehensive
and accurate solution for anomaly detection in attributed net-
works. In summary, the key contributions of this work are:

¢ We introduce DECLARE, a novel framework that com-
bines a dual encoder architecture using GNN and Graph
Transformer to learn expressive and informative repre-
sentations of graph data, which has not been thoroughly
explored in the field of Graph Contrastive Learning.

Design a novel dual reconstruction approach that si-
multaneously reconstructs both graph structures and
attribute information, thereby enhancing the model’s
anomaly detection capabilities and overall performance.

* We demonstrate the effectiveness of DECLARE through
extensive experiments on benchmark datasets, showing
significant improvements over state-of-the-art methods
in detecting various types of graph anomalies.

2 Related Work

2.1 Graph Anomaly Detection

[Perozzi and Akoglu, 2016] proposes normality, a measure
combining structure and attributes to evaluate neighborhood
consistency and separability, and introduces AMEN, which
outperforms traditional methods in anomaly detection on at-
tributed graphs. [Li er al., 2017] addresses anomaly detection
in attributed networks by proposing a framework that mod-
els residuals of attribute coherence with network structure,
effectively identifying anomalies without prior knowledge.
Recently, with advancements in deep learning, Graph Neu-
ral Networks (GNNs) have been widely adopted for anomaly
detection on graphs, often coupled with diverse learning
paradigms to enhance their effectiveness. [Ding et al., 2019]
introduced a framework leveraging GCNs and autoencoders
to detect anomalies by jointly evaluating reconstruction errors
in the adjacency and attribute matrices, offering a solution to
challenges like network sparsity and data nonlinearity.

Contrastive learning approaches often utilize the similar-
ity between target nodes and their surrounding context for
model pre-training. Building on this idea, [Liu et al., 2021]
developed a contrastive self-supervised learning framework
specifically designed for graph anomaly detection. This
framework effectively models the interactions between nodes
and their subgraphs to identify anomalies. [Hu et al.,
2023] introduced a method for detecting anomalous nodes
through subgraph-aligned contrastive learning across multi-
ple graph views. Similarly, [Duan et al., 2023a] leveraged
contrastive learning to compute anomaly scores by explor-
ing multi-scale relationships, including node-to-node, node-
to-subgraph, and subgraph-to-subgraph interactions, between
the original graph and its augmented version.

2.2 Graph Augmentation

Existing graph augmentation techniques encompass a vari-
ety of strategies. [You et al., 2020] propose a node-dropping
strategy for graph augmentation, while [Qiu ez al., 2020] and
[Zhang et al., 2023] focus on edge perturbation techniques.
[Zhu et al., 2021a] and [Zhang et al., 2022b] suggest at-
tribute masking approaches, and [Hassani and Khasahmadi,
2020] advocate for subgraph extraction. [Zhu et al., 2020]
introduce GRACE, which employs random edge perturbation
and node feature masking to generate two augmented graph
views. Subsequently, [Zhu et al., 2021b] extend this idea with
GCA, an adaptive augmentation strategy that combines struc-
tural and attribute information. [Wei er al., 2023] develop
GCS, which further integrates structural and semantic data
for adaptive graph augmentation. [Tan et al., 2024] propose
CI-GCL, a framework designed to preserve graph community
structures during augmentation. Despite their success, these
methods often disrupt semantic relationships, potentially in-
troducing biases into the learning process.

3 Preliminaries

In this section, we present the notations, formal definitions,
and the problem statement that form the conceptual and math-
ematical foundation of our work.

Notaions. (Attributed Network) Let G = (V, £, X) denote
an attributed network, where V = {vy,va, ..., v, } represents
the set of nodes and £ is the set of edges. Here, n = |V
denotes the number of the nodes in the G. Each node v; € V
is associated with a feature vector z; € R™(i = 1,2,...,n),
where m is the dimensionality of the feature space. The at-
tribute matrix X € R™*™ contains the feature vectors of all
nodes. Additionally, the adjacency matrix A € R™*" is used
to represent the graph structure, where A;; = 1 if there is an
edge between nodes v; and v;, otherwise A;; = 0.

Definition 1. (Encoders) To effectively capture the com-
plex structural and semantic patterns in G, we utilize two
complementary encoders: a Graph Neural Network (GNN)
Encoder and a Graph Transformer (GTR) Encoder. The
GNN encoder, denoted as GNN(-) € R™*4, is used for
localized aggregation, while the Graph Transformer encoder
GTR(-) € R"* captures long-range dependencies, where d
represents the dimensionality of the hidden embeddings.
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Figure 1: The proposed model consists of four key modules.
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The Graph Enhancement Module generates two views—base and aug-

mented—through graph diffusion, enriching the graph’s structural information. The Graph Contrastive Learning Module creates positive
and negative pairs from these views, learning discriminative node representations using contrastive loss. The Graph Reconstruction Module
reconstructs node attributes and graph structures, using reconstruction errors to identify anomalies. Finally, the Anomaly Scoring Module
calculates anomaly scores based on reconstruction errors and contrastive learning outcomes, effectively detecting nodes that deviate from
expected patterns. These modules work together to identify anomalies in graph-based data.

Problem Definition (Graph Anomaly Detection) Given
an attributed network G with adjacency matrix A, the goal
is to learn an anomaly score function f(-) to measure the de-
gree of the abnormality for each node in G.

4 Methodology

In this section, we outline the overall framework of the pro-
posed DECLARE method, as illustrated in Figure 1. DE-
CLARE comprises four main modules: a graph enhancement
module, a graph contrastive learning module, a graph re-
construction module, and an anomaly scoring module. The
original graph is treated as the base view, while a second
view is generated via graph diffusion. For each view, both
the GNN and Graph Transformer (GTR) encoders process
the sampled subgraph and the target node to learn informa-
tive hidden representations. The contrastive learning module
identifies anomalies by distinguishing positive and negative
pairs from multiple perspectives. Meanwhile, the reconstruc-
tion module independently reconstructs graph attributes and
structures, with anomalies detected based on their respective
reconstruction errors in both attribute and structural spaces.

4.1 Dual Encoders

The issue of smoothing in GCNs has been discussed in pre-
vious works [Chen et al., 2020], highlighting the need for

effective solutions. To obtain a more comprehensive graph
representation, we employ dual encoders: GCN and Graph
Transformer. The layer of the GCN encoder are designed to
capture local graph structures, while the Graph Transformer
encoder enhances the model’s ability to capture long-range
dependencies and intricate relationships. By combining these
two encoders, we aim to overcome the smoothing problem
and improve the overall graph representation. The formula-
tion of each graph convolutional layer is given as follows:

HD — U(GNN(H(D7A’W(I))) (1)

where H®) and H(tD are the input and output node fea-
ture matrices at layer I, W) is the learnable weight matrix,
A=D:AD Zisthe symmetrically normalized adjacency
matrix with self-loops A, and o(-) is a nonlinear activation.

Simultaneously, we use NodeFormer [Wu e al., 2022] as
the Transformer encoder, which can be represented as:

paen) o A/ T S0l € Tk, [VT) - V)
1 3(u, /VT)T ey €90/ (ko [\/T)
where ¢(-) denotes a kernel function, the kernel function

is approximated using Random Features, making the kernel
mapping in Eq. 2 a random feature map from R to R™. We

2
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adopt widely used Positive Random Features for this map-

ex [1x113
ping: ¢(x) = P [eap(wlx,

Ao, = Wg) hg,li), ky; = Wl((l)hglj) and v,

.exp(wlx)]. And
= W),

4.2 Contrastive Learning with Augmented Views

Building on the effective embeddings obtained earlier, we
further enhance the graph’s structural representation for con-
trastive learning by employing graph diffusion to generate
augmented views, providing a global perspective of the struc-
ture [Hassani and Khasahmadi, 2020]. The graph diffusion
process is defined as:

= > 0, T, 3)
k=0

where S is the diffused adjacency matrix, {6y }x>0 are non-
negative weighting coefficients satisfying y ;- ;0 = 1, and
T € R™*"™ is the row-normalized transition matrix. To power
the graph diffusion process, we utilize Personalized PageR-
ank (PPR) [Page er al., 1999]. The diffusion matrix S can be
reformulated as:

S=pI-(1

where p denotes the teleport probability in the random walk
process. The resulting matrix S represents a globally diffused
view of the original graph structure.

The contrastive learning framework is applied across two
views—base and augmented. For each node v;, we sample a
local subgraph P; of size ¢ from the original graph using ran-
dom walk with restart (RWR) [Tong et al., 2006]. From this
base view, we construct its positive pair. The augmented-view
subgraph is then derived by applying the same procedure to
sample a subgraph. The subgraph of v; in both the base and
augmented views serves as the positive pair, while the sub-
graph of another node becomes the negative pair.

To enhance the discriminative power of node representa-
tions, we mask the target node’s attributes within the sampled
subgraph before feeding it into both branches of the dual en-
coder, consisting of a shared Graph Convolutional Network
(GNN(+)) and a Graph Transformer GT R(-). These repre-
sentations serve as the foundation for downstream contrastive
and reconstruction tasks. To illustrate, the two encoders com-
pute low-dimensional node representations as follows:

GNN(P;),HSTE = GTR(P,) 6)

Since the target node is masked, its representation is mapped
into a shared embedding space using the GCN weights. The
output is then given by:

bl = o (bW ©

where ¢ represents an activation function such as ReLU,
and héfl is the previous layer representation (either from
GNN(-) or GTR(-). These steps yield the node represen-
tations H; and H;; for the local and global subgraphs, respec-
tively, and h; for the target node v;.

To ensure consistency between the node and its subgraph
representation, we apply an average pooling function as the

p)D~/2AD1/2)~1 “4)

HGNN

readout module to generate the subgraph-level embedding
vector. For simplicity, we use GN N(+) as an example, where
the subgraph-level embedding vector is computed by averag-
ing the node representations:

t;
1

GNN GNN) GNNy

zZ; = Readout(Hj; 71§ E_ (H; 7

where ¢; is the number of nodes in the subgraph P;. The
discriminative score for the positive pair is then computed as:

Sding = o(BFYNWT(27NY)) (®)

where Wy is a learnable matrix and T’ represents the trans-
pose operation. A similar score 3G/ is calculated for the

dis,i
negative pair. The base-view contrastive loss for the pair
v;, Gy, Gy) is:

EGNN( )

base

1
2 (log(eGY) + log(1 = 3G ©

A similar loss CaGlf\g’N is computed for the augmented view.
The combined intra-view contrastive learning objective is:

Gy = zNz (£6X () + LEYM(w))  (10)

Next, we define the inter-view contrastive loss to align the
representations across the two views. The inter-view loss is

GNN _ ||gGNN _ (GNN|:2 GNN
calculated as ‘Cmter || Spase,i — Saug,i HF where Spase,i
and Sgﬁ ™ are the discriminative score vectors for the positive

pairs in the base and augmented views, respectively. For the
GNN encoder, the contrastive learning loss with augmented
views is defined as:

GNN
[’con

GNN | pGNN
‘Cznter LGtra (1 1)
Similarly, the GTR encoder uses the same formulation for its
contrastive learning loss.

4.3 Graph Reconstruction Module

Using the embeddings obtained from the aforementioned
Dual Encoder, we perform separate reconstructions for both
the structure and attributes. The structure decoder aims to
reconstruct the structural information and detects structural
anomalies by measuring the reconstruction error between the
output and the input structure. We employ a GCN-based de-
coder, which can be formulated as follows:

HOYY = GON(P; WETY),
AGNN _ gENNp(HENN) (12)

where HEVN WGdN N denote the potential node embedding
matrix after the decoder and the weight matrix of the topology
decoder. AGNN denotes the reconstructed adjacency matrix
obtained from the inner product of HEVY

The attribute reconstruction decoder plays a critical role in
regressing node attributes and is an effective tool for detect-
ing contextual anomalies in graphs. A GCN-based decoder
is used for this purpose. Nodes whose attributes are well-
approximated by the decoder are considered less likely to
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be anomalous, whereas significant reconstruction errors sug-
gest that a node’s attributes deviate from the patterns typical
of normal nodes. The attribute reconstruction process is ex-
pressed as:

XGN N

GNN
raw = GON(P; WE ™) 13)
where XGNN g the reconstructed attribute matrix, and
WGN N represents the decoder’s weight matrix. The graph
reconstruction module encompasses two essential tasks:
topology and attribute regression. Reconstruction errors from
these tasks are combined to form the objective function,
which is defined as:
1-B3)||ACVN —AGVN| 2B X NN =X ENV |13

raw raw

L™ = (
where [ is a balancing parameter that adjusts the relative im-
portance of topology and attribute reconstruction. This ap-
proach ensures a comprehensive understanding of both struc-
tural and attribute-level inconsistencies, aiding in anomaly
detection on graphs.

4.4 Graph Anomaly Score Module

Anomaly detection combines scores from the graph recon-
struction and discrimination modules. For node v;, the recon-
struction score is calculated as:

Bllai — a3 + Bz (15)

where 8 € [0,1] balances topology and attribute errors.

Higher scores indicate greater anomaly likelihood. To com-

plement this we compute two discriminative scores, s$;Y "

Srec,i = (1 - y ‘%1||§

and 5§ dzs +» derived from the contrastive learning objectives
under the dual encoders. And the final composite anomaly
score combines all three components, formulated as:

GTR
Sdisi T Srec,i

ai =0 sgol +(1-a) (16)
where o« € [0,1] balances the contributions of the two
discriminative scores, and v controls the influence of the
reconstruction-based anomaly signal. To ensure robustness
against stochastic variations such as subgraph sampling and
training noise, we repeat the entire scoring process over R
independent runs. The final anomaly score for each node is
then computed by combining the average and variability of

its per-round scores:

1 R
S DI

a7

S Experiment
5.1 Datasets

To evaluate our model, we use six widely recognized bench-
mark datasets commonly employed in graph anomaly detec-
tion. These datasets are categorized into two types: citation
network datasets and social network datasets [Liu et al., 2021;

Dataset | Nodes | Edges | Attributes | Anomalies | Ratio
Cora 2,708 | 5,429 1,433 150 5.5%
Citeseer | 3,327 | 4,723 3,703 150 4.5%
ACM 16,484 | 71,980 8,337 600 3.6%
Pubmed |19,717| 44,338 500 600 3.0%
BlogCatalog | 5,196 |171,743| 8,189 300 5.8%
Flickr 7,575 239,738 | 12,407 450 5.9%

Table 1: The statistics of the datasets.

Zheng et al., 2021]. The citation network datasets include
Cora, Citeseer, ACM, and Pubmed, while the social network
datasets consist of BlogCatalog and Flickr. Since ground
truth anomalies are not available, we adopt the anomaly in-
jection method proposed by [Ding et al., 2019; Liu et al.,
2021] to simulate realistic anomalous behaviors. This ap-
proach ensures a controlled and consistent evaluation envi-
ronment across all datasets. The detailed statistics of these
datasets are provided in Table 1.

5.2 Experimental Setup

Baselines And Evaluation Metrics

In our experiments, we compare our model with seven deep
learning-based anomaly detection methods. DOMINANT
[Ding et al.,, 2019] employs a deep graph autoencoder to
detect anomalous nodes by utilizing both graph structure
and features. CoLA [Liu er al., 2021] leverages a GNN-
based contrastive learning approach at the node-subgraph
level to compute anomaly scores for nodes based on pos-
itive and negative instance pairs. ANEMONE [Jin er al.,
2021] utilizes multi-scale patch and context-level contrastive
learning with GNNss to identify anomalous nodes. SL-GAD
[Zheng et al., 2021] is a self-supervised method that inte-
grates generative and structural spaces. Sub-CR [Zhang et
al., 2022a] is a contrastive learning-based anomaly detection
framework that uses graph diffusion to augment the origi-
nal graph for both inner and outer views. GRADATE [Duan
et al., 2023a] applies multi-view contrastive learning across
node-node, node-subgraph and subgraph-subgraph relations
to detect anomalies. Lastly, NLGAD [Duan er al., 2023b]
is a multi-scale contrastive learning network that incorpo-
rates high-confidence nodes into the normality pool, achiev-
ing superior results through training based on these nodes.
All methods are comprehensively evaluated using the AUC
metric to ensure a fair and reliable comparison.

Hyperparameter Settings

In this study, we set the subgraph size to 4. The GNN encoder
and the attribute decoder each consist of two layers of GNN,
while the structure decoder uses a single-layer GCN. The hid-
den layer embedding dimension is fixed to 64. We optimize
the model using the Adam optimizer, with a batch size of 300
across all datasets. For the Cora, Citeseer, Pubmed, and ACM
datasets, the learning rate is set to 0.001, whereas for Blog-
Catalog, the learning rate is 0.003, and for Flickr, it is Se-4.
The model is trained for a total of 300 epochs.
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Model \ Cora Citeseer ACM Pubmed Flickr BlogCatalog
DOMINANT 0.8538 0.8938 0.7853 0.7911 0.7330 0.7653
CoLA 0.8941 0.8864 0.8224 0.8984 0.7449 0.7421
ANEMONE 0.9057 0.9268 0.8037 0.9536 0.6772 0.7151
SL-GAD 0.9001 0.8986 0.8120 0.9575 0.7859 0.8039
Sub-CR 0.8969 0.9295 0.8131 0.9606 0.7968 0.8078
GRADATE 0.8517 0.8282 0.8438 0.9525 0.6978 0.6106
NLGAD 0.9075 0.9140 0.8741 0.9228 0.7021 0.6848
DECLARE | 0.9433 0.9772 0.9292 0.9901 0.7933 0.8189

Table 2: The area under the ROC curve (AUC) for anomalous node detection is reported on six benchmark datasets for DECLARE and
competing methods. Boldface highlights the top-performing results, while underlining marks the runner-up scores.
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Figure 2: Roc curve evaluation of anomalous node detection for DECLARE and baselines.

5.3 Result And Analysis

0.9001), the improvement is around 4.8%.

On the Cite-

As shown in the Table 2, DECLARE performs exception-
ally well across all datasets, especially on more common
datasets like Cora, Citeseer, and Pubmed, where it achieves
high scores, particularly in Citeseer and Pubmed, with scores
of 0.9772 and 0.9901, respectively. This indicates that DE-
CLARE excels in these specific tasks. In contrast, DE-
CLARE performs slightly worse on the Flickr and Blog-
Catalog datasets but still maintains stable performance, with
scores of 0.7933 and 0.8189. Considering that these datasets
usually contain more noise and complex multimodal infor-
mation, DECLARE’s performance remains acceptable. Cora
and Citeseer are traditional citation network datasets, where
DECLARE shows a clear advantage over other methods. For
instance, on the Cora dataset, compared to CoLA (score
0.8941), DECLARE’s score of 0.9433 represents an im-
provement of about 5.5%, and compared to SL-GAD (score

seer dataset, DECLARE scores 0.9772, which is an improve-
ment of around 10.3% compared to CoLA (score 0.8864),
and about 5.4% compared to ANEMONE (score 0.9268).
On these datasets, DECLARE’s performance improvement
ranges from 5% to 10%, showing a significant advantage. On
the Pubmed dataset, DECLARE also demonstrates substan-
tial improvement, with a score of 0.9901, significantly outper-
forming other methods. Compared to CoLA (score 0.8984),
DECLARE shows an improvement of around 10.2%, and
compared to SL-GAD (score 0.9575), the improvement is
about 3.4%, further highlighting its strong performance.

Although DECLARE’s scores are relatively lower on the
Flickr and BlogCatalog datasets, it still demonstrates sta-
ble performance with notable improvements. On the Flickr
dataset, DECLARE scores 0.7933, which reflects an im-
provement of about 6.5% compared to CoLA (score 0.7449)
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| Cora Citeseer ACM Pubmed Flickr BlogCatalog

DECLAREG N n|0.9347 0.9546 0.9038 0.9510 0.7741  0.8016
DECLAREGTR|0.8804 0.9281 0.8714 0.7003 0.7356  0.7207
DECLARER.. [0.8950 0.8833 0.8624 0.9417 0.7334  0.7531
DECLAREc.n [0.9122 0.9301 0.8809 0.9603 0.7566  0.7719

DECLARE  [0.9424 0.9768 0.9292 0.9901 0.7933  0.8189

Table 3: AUC Values from the Ablation Study.
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Figure 3: Subgraph size ¢ vs. AUC across datasets.

and around 13.0% compared to NLGAD (score 0.7021). On
the BlogCatalog dataset, DECLARE scores 0.8189, show-
ing an improvement of about 10.3% compared to CoLA
(score 0.7421) and around 1.9% compared to SL-GAD (score
0.8039). While the improvements on these datasets are
smaller, DECLARE still exhibits significant gains, with im-
provements ranging from 6% to 13%. However, DECLARE
performs relatively weaker on complex multimodal datasets
like Flickr and BlogCatalog. This is likely due to the intricate
relationships between graph structures and textual features in
these datasets, which DECLARE may not handle as effec-
tively as models specifically designed for these tasks, such as
NLGAD or GRADATE. Additionally, the smaller improve-
ments observed in some datasets suggest that DECLARE’s
generalization ability could benefit from further targeted op-
timization in specific challenging scenarios.

5.4 Ablation and Analysis

The ablation experiments, summarized in Table 3, analyze
the contributions of key components in DECLARE. Specif-
ically, we conducted an ablation study on the reconstruc-
tion and contrastive learning modules, as well as on the use
of GCNs and Transformers for modeling local and global
structures. The results demonstrate that combining GCNs
and Transformers yields better performance than using ei-
ther alone. Furthermore, the results show that both the re-
construction and contrastive learning modules are essential
for improving performance. Removing the reconstruction
module (DECLARER..) causes performance drops across all
datasets, with the largest declines on BlogCatalog (9.7%) and
Flickr (10.5%). Similarly, removing the contrastive learning
module (DECLARE,,,) reduces performance, especially on
Cora (3.3%) and Citeseer (4.7%). These findings underscore
the critical role of each component and motivate further stud-
ies to refine and optimize the framework.

(b) Citeseer

(a) Cora

Figure 4: o and 3 parameter effects on AUC across datasets.
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Figure 5: Trade-off parameter v w.r.t. AUC across all datasets.

5.5 Sensitivity analysis

Subgraph Size. As shown in Figure 3, the AUC rises from
t =1tot =4, peaks at t = 4, and then stabilizes or slightly
decreases from ¢ = 5 to ¢ = 10, indicating that ¢ = 4 is the
optimal subgraph size across datasets.

Balance Parameter. We further analyzed the impact of the
balance parameters «, (3, and 7 on performance. As shown
in Figure 4, increasing « and (3 generally improves per-
formance, with notable gains when «, 3 € [0.5,0.9]. In
practice, we set = [0.9,0.9,0.6,0.8,0.9,0.9] and 8 =
[0.9,0.4,0.7,0.8,0.8,0.8] for Cora, Citeseer, ACM, Pubmed,
Flickr, and BlogCatalog, respectively. Similarly, as shown
in Figure 5, performance generally improves with higher +,
with optimal values typically in the range [0.6,0.9]. We ob-
serve that v = 0.7 works best for Cora, Citeseer, ACM, and
Pubmed, while v = 0.9 yields the best results on the more
complex Flickr and BlogCatalog datasets.

6 Conclusion

In this paper, we propose the DECLARE framework as a
comprehensive and robust solution for graph anomaly detec-
tion. It seamlessly integrates four key modules—graph aug-
mentation, contrastive learning, reconstruction, and anomaly
scoring—that work synergistically to improve detection accu-
racy. By generating multiple complementary views through
graph diffusion and utilizing both GNN and Graph Trans-
former encoders, DECLARE effectively captures rich and in-
formative embeddings of the graph’s structure and attributes.
The contrastive module enhances detection by distinguishing
positive and negative pairs, while the reconstruction module
identifies outliers via structural and attribute reconstruction
errors. Experimental results demonstrate the superior effec-
tiveness of DECLARE across various challenging datasets.
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