Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Towards Generalizable Neural Simulators: Addressing Distribution Shifts
Induced by Environmental and Temporal Variations

Jiaqi Liu'2, Jiaxu Cui’?*, Shiang Sun'?, Yizhu Zhao'? and Bo Yang'**

'Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, China
2College of Computer Science and Technology, Jilin University, China

liujq21 @mails.jlu.edu.cn, cjx@jlu.edu.cn, {sunsa24,yizhu23} @mails.jlu.edu.cn, ybo@jlu.edu.cn

Abstract

With advancements in deep learning, neural simu-
lators have become increasingly important for im-
proving the efficiency and effectiveness of simulat-
ing complex dynamical systems in various scien-
tific and technological fields. This paper presents
a novel neural simulator called Context-informed
Polymorphic Neural ODE Processes (CoPoNDP),
aimed at addressing the challenges of modeling
dynamical systems encountering concurrent envi-
ronmental and temporal distribution shifts, which
are common in real-world scenarios. CoPoNDP
employs a context-driven neural stochastic process
governed by a combination of basic differential
equations in a time-sensitive manner to adaptively
modulate the evolution of system states. This al-
lows for flexible adaptation to changing temporal
dynamics and generalization across different envi-
ronments. Extensive experiments conducted on dy-
namical systems from ecology, chemistry, physics,
and energy demonstrate that by effectively utiliz-
ing contextual information, CoPoNDP outperforms
the state-of-the-art models in handling joint distri-
bution shifts. It also shows robustness in sparse
and noisy settings, making it a promising approach
for modeling dynamical systems in complex real-
world applications.

1 Introduction

The growing complexity of dynamical systems has driven
the demand for accurate and efficient simulation methods
[Kumar et al., 2020; Cui et al., 2024]. However, tradi-
tional experience-driven numerical simulators are too ideal
and computationally intensive, making it difficult to effi-
ciently simulate complex scenarios. Due to the outstanding
function approximation power from neural networks, neural
simulators have successfully emerged, demonstrating excel-
lent computability and accuracy in simulating various artifi-
cial and natural systems, such as the climate system influ-
enced by human activities [Min ez al., 20111, energy manage-
ment system [R. Singh et al., 2024], and so on. By identify-
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Figure 1: (a) Distribution shift induced by environmental variations,
where electricity demand differs significantly across cities due to
variations in industrial activity, climate, or population density. (b)
Distribution shift induced by temporal variations, where the patterns
of use of electricity fluctuate throughout the day. (c) These two types
of distribution shifts often occur together in practical applications.
This dual presence of variations complicates to generalize across
both environmental and temporal dimensions, necessitating a solu-
tion that adapt to both variations simultaneously.

ing key patterns in seemingly unpredictable evolutions, these
simulators offer valuable insights into system behavior and
long-term tendencies [Zhou et al., 2022] and facilitating more
informed decision-making [Nouinou et al., 2023].

The current neural simulators are mainly based on re-
current neural networks (RNN) [Rajalingham et al., 2022;
Barbulescu et al., 2023], neural differential equations [Chen
et al., 2022; Laurie and Lu, 2023], and their combinations
[Li et al., 2022]. These methods benefit from the strengths of
neural networks in learning complex patterns and the continu-
ity of differential equations in modeling dynamics to address
concerns on complex temporal dependencies, irregular sam-
pling, and high computational costs. However, most of them
operate under the assumption that the data is independently
and identically distributed (i.i.d.), where the observation of
system state from distinct time steps and sequences is gener-
ated from a consistent distribution [Bai et al., 2023]. This
assumption, while theoretically convenient, rarely holds in
practical scenarios, which are inherently influenced by exter-
nal factors beyond system boundary, including environmental
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and temporal variations, causing the tough distribution shift
problem in the observed system, making the i.i.d. neural sim-
ulators ineffective.

Distribution shifts induced by environmental variations
[Koh et al., 2021; Cui et al., 2024] arise when the observed
sequences are derived from distinct environmental condi-
tions. A clear example, as shown in Fig.1(a), is the power
grid system, where electricity demand differs significantly
across cities due to variations in industrial activity, climate,
or population density. In industrialized cities, commercial
electricity demand dominates, while in residential regions,
household electricity demand plays a greater role [Yan et al.,
2024]. Environmental variations challenge the neural simu-
lators’ ability to generalize across data distributions, limiting
the capacity to inherit predictive accuracy when applied to
system dynamics governed by different environmental con-
ditions. To tackle this, several approaches strive to attempt
to learn dynamical systems across diverse environments by
using a shared component for common behaviors and an
environment-specific component for unique variations, such
as LEADS [Yin er al., 20211, CoDA [Kirchmeyer et al.,
2022], and CoNDP [Liu et al., 2024].

On the other hand, when the observed system states
evolve with time-sensitive external conditions, distribution
shifts induced by temporal variations may occur [Koh er al.,
2021], even under a consistent environmental setting. In the
power grid system, the patterns of use of electricity fluc-
tuate throughout the day: during daytime, commercial de-
mand peaks as businesses operate, whereas at night, resi-
dential demand rises as households consume more electric-
ity [Yan ez al., 2024],, as shown in Fig. 1(b). These temporal
shifts make it difficult for simulators to capture non-stationary
dynamics, reducing its capacity to maintain predictive per-
formance as the system’s behavior evolves over time. To
mitigate the impact of such shifts, recent neural simulators
have begun to consider parameter dynamics [Bai et al., 2023;
Liu et al., 2023; Cai et al., 2024], where the model parameters
are dynamically changing over time, to enhance adaptability
and efficiency.

Although existing advanced methods have made signifi-
cant strides in addressing distribution shifts induced by en-
vironmental [Yin er al., 2021; Kirchmeyer et al., 2022;
Liu er al., 2024] or temporal variations [Bai et al., 2023;
Liu et al., 2023; Cai et al., 2024], there is a lack of a so-
lution that can simultaneously consider addressing both as-
pects of distribution shifts. In practical applications, these
two types of distribution shifts often occur together. We still
take the common power system as an example: these shifts
occur concurrently—electricity demand fluctuates both due
to environmental factors (e.g., industrial v.s. residential ar-
eas) and temporal changes (e.g., day v.s. night).

To that end, we propose a novel neural simulator to model
both environmental and temporal distribution shifts in a holis-
tic framework. It innovatively represents the system’s evo-
Iution as a stochastic process governed by a time-sensitive
combination of basic differential equations, capturing both
temporal distribution shifts, influenced by time-evolving en-
vironments, and the multi-phase transitions, thereby general-
izing to new environments, sparsity, and noise.

The main contributions are summarized as follows:

* We propose a Context-informed Polymorphic Neural
ODE Processes (CoPoNDP) to effectively address en-
vironmental and temporal distribution shifts. To our
knowledge, this is the first work to tackle both shifts in
neural simulators within a unified framework.

The CoPoNDP can effectively handle sparsity and noise
in dynamical systems by leveraging context-driven net-
work modulation and uncertainty modeling, ensuring ro-
bustness even with incomplete or noisy data.

Comprehensive experiments are performed on represen-
tative complex dynamical systems from ecology, chem-
istry, physics, and energy, showcasing its effectiveness
with superior results compared to existing models.

2 Related Work and Problem Statement
2.1 Related Work

Neural Simulators under i.i.d. Assumption

Recent advancements in neural simulators have demonstrated
their versatility in modeling complex dynamical systems
across diverse fields, such as exploring the role of dynamic
reasoning in primate behavior by comparing mental simu-
lations with recurrent neural networks (RNN) [Rajalingham
et al., 2022], predicting ultrashort pulse propagation in op-
tical fibers through a long-short-term memory-based model
[Salmela et al., 2021], and successfully simulating the loco-
motion behavior of C. elegans [Barbulescu et al., 2023].

As a novel class of deep learning models, neural differ-
ential equations can model continuous dynamics by parame-
terizing the derivative of hidden states using neural networks
[Chen et al., 2018]. They have shown remarkable potential in
predicting metabolomic profiles from microbial composition
[Wang et al., 2023], forecasting outcomes in spintronic ex-
periments [Chen et al., 2022], and modeling tumor dynamics
for survival prediction [Laurie and Lu, 2023].

The current methods that combine RNN and neural differ-
ential equations enhance the ability to handle irregularly sam-
pled data and capture complex temporal dependencies [Li et
al., 2022]. Although the above studies emphasize the grow-
ing utility of neural simulators in capturing and predicting
system dynamics from biological processes to physical phe-
nomena, and their high computational efficiency compared to
traditional experience-driven approaches, they still struggle
with tasks that have non-i.i.d. characteristics and often ap-
pear in real world, resulting in good theoretical models but
limited practical effects.

Environmental Adaptive Neural Simulators

To handle non-i.i.d. scenarios, several studies have been start-
ing to explore learning dynamical systems across varying en-
vironments [Yin et al., 2021; Kirchmeyer et al., 2022; Liu
et al., 2024]. As a pioneer in addressing multi-environment
scenarios, LEADS models system dynamics with a shared
component and an environment-specific component, and then
freezes the shared component while tuning environment-
specific parameters for new environments [Yin ef al., 2021].
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CoDA employs a hypernetwork to generate environment-
specific parameters from learnable compact parameters, re-
ducing parameter tuning and mitigating overfitting [Kirch-
meyer et al., 2022]. In order to solve the problem of data spar-
sity caused by costly acquisition or sensor failures [Huang
et al., 2020], CoONDP goes beyond the deterministic mod-
els mentioned above and incorporates uncertainty modeling
in learning underlying dynamical systems [Liu ef al., 2024].
It uses a context-informed encoder to produce a conditional
distribution over environment representations and models dy-
namics with random control vectors, and this stochasticity en-
ables it to better capture system evolution under data scarcity,
improving generalization by learning from uncertainty in en-
vironmental factors [Liu et al., 2024].

Temporal Adaptive Neural Simulators

Temporal domain generalization (TDG) has emerged as a
promising way to address the temporal distribution shift
and non-stationary [Li et al., 2020a; Nasery ef al., 2021;
Qin et al., 2022; Bai et al., 2023; Yong et al., 2023; Zeng et
al., 2024]. Traditional TDG methods, such as S-MLDG [Li
et al., 2020a] and GI [Nasery et al., 2021], use discrete time
steps to model temporal shifts, which can be limiting in cap-
turing continuous dynamics. To enhance flexibility, DRAIN
introduces a Bayesian framework that models the joint dy-
namics of data and model parameters [Bai et al., 2023], lever-
aging recurrent graph-based networks with learning temporal
drift to predict future states. This approach provides theoret-
ical guarantees on generalization error and uncertainty [Bai
et al., 2023], though it is still constrained by its discrete-
time assumption. Koopa [Liu er al., 2023] and Koodos [Cai
et al., 2024] offer innovative solutions for continuous-time
dynamics modeling. Koopa introduces Koopman theory to
tackle non-stationary time series [Liu et al., 2023], which em-
ploys Fourier filters and Koopman predictors to disentangle
and model time-variant and time-invariant dynamics hierar-
chically, achieving competitive performance with improved
efficiency and interpretability. Koodos also uses Koopman
operators to linearize complex temporal dynamics and allows
for predictions at arbitrary time points, facilitating general-
ization over irregular intervals [Cai et al., 2024].

2.2 Problem Statement

In this work, we focus on handling complex dynamical sys-
tems evolving under a time-varying environmental factor,
whose evolution is governed by the following Ordinary Dif-
ferential Equation (ODE):

dagf

T;:f($§7uf7t)7 (1)
where, ¢ € R% represents the state of the system at time ¢
under a time-varying environment e and u{ = g°(t) € R%
corresponds to the time-varying environment e at time ¢, with
¢¢(t) sampled from a Banach space. The dimensions of the
system state and time-varying environmental factor are de-
noted by d,. and d,,, respectively. Note that the indices e and
t in ug characterize the impact of the environment and time
on the dynamical system, where changes in e can cause the
environmental distribution shift, while changes in ¢ result in
non-stationary dynamics with the temporal distribution shift.

Due to the wide and complex correlations, external fac-
tors are often difficult to accurately obtain [Kirchmeyer et
al., 2022; Liu et al., 2024], resulting in u§ not being dis-
closed. This requires the model to have the ability to rep-
resent and capture external changes and generalize learning
directly from avaliable observed data. Formally, we define
the observed system states within the environment e at cer-
tain time points, which are necessary information in predict-
ing future states, as the context C* = {xf : i € I}, where
1§ is the set of indexes of the time points. And, let the system
states at time points that we aim to predict denote the target
T¢ = {zf, : j € I}}, where I refers to the indexes of
the time points for which predictions are made. Our goal is to
learn a generalizable simulator S' that learns to map from con-
texts to targets, approximating the underlying f with various
time-varying environments, i.e.,

S {Ce}eEzl —A{T* f:lv (2)

where E is the number of time-varying environments. There-
fore, the learned S can predict the system states a:fj under a

time-varying unseen environment ¢’ at any time ¢ . _ ./, based
JEIT

on the context C¢, i.e., S (Ce/) — T¢. Note that the times-
tamps can exhibit non-uniform intervals and are allowed to
take continuous values.

3 CoPoNDP: Context-Informed Polymorphic
Neural ODE Processes

In this section, we introduce a context-informed polymorphic
neural ODE processes (CoPoNDP) that is designed to han-
dle both temporal and environmental distribution shifts in dy-
namical systems.

3.1 Model Overview

CoPoNDP is mainly implemented based on the sandwich
architecture of encoders-processors-decoder, as shown in
Fig. 2. Encoders generate several distributions based on
the context C¢ as starting points for subsequent process-
ing, including the distribution of initial latent states, i.e.,
p(I(to)|xg, ), distribution of initial time-varying combination
coefficients, i.e., p(a(to)|C?), and distribution of global con-
trol vector, i.e., p(d|C®). Processors are to evolve the la-
tent state I(¢) and combination coefficients a(t) respectively,
starting from the sampling of generated distributions, ac-
counting for both temporal dynamics and environmental vari-
ation. Decoder can restore the evolved latent state I(¢) to the
space of system states and output the predictive distribution
on environment e at any time ¢, i.e., p(x§|i(to), d, a(to))-

3.2 Encoders

Encoders are responsible for generating distributions of initial
latent states, combination coefficients, and control vector.
Initial State Encoder: Given the initial observation xj
at time ?o, the initial state encoder enc,, generates a Gaus-
sian distribution of the initial latent state, i.e., p(I(to)|zf,) =
N (pu,0?). The mean and variance of the distribution are ob-
tained from
pu, 0f = ency, (x5, 3)
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Figure 2: Overview of the CoPoNDP. Encoders generate several distributions based on contextual data C¢ as the starting points for subsequent
processing. Processors are to evolve the latent state [(¢) and the time-varying combination coefficients a(t) respectively, taking into account
both temporal dynamics and environmental context. The decoder is to restore the evolved latent state I(¢) to the space of system states
and obtain the predictive distribution. The introduction of multiple base neural differential equations (fi, ..., fx), control encoder, and
uncertainty modeling enhances the model’s ability to handle environmental distribution shift, while also improving robustness in handling
sparse and noisy data. The time-varying coefficients in the processors ensure adaptation to temporal distribution shift.

where ¢; denotes the learnable parameters that are updated
during the training phase. The initial latent state [(ty) de-
termines the starting point for dynamic evolution in hidden
space. Note that [;, is a random vector so that it can generate
diverse starting points in prediction.

Parameter Encoder: Given the context C¢, the pa-
rameter encoder enc,_, can produce a Gaussian distribu-
tion of the initial time-varying combination coefficients, i.e.,
p(a(t0)|C®) = N (e, 2), whose mean and variance are de-
termined by

oy 2 = ence,, (Ce), ()
where ¢, are the learnable parameters. The initial combina-
tion coefficients «(tp) can serve as an uncertain starting point
for the evolution of the time-varying «(t).

Control Encoder: Given the environmental context C¢,
a Gaussian distribution of the random control vector, i.e.,
p(d|C®) = N (g, 03), can be generated by

[td, 05 = ence, (C°), (%)

where enc,,, is the control encoder and ¢4 is its learnable
parameters. Note that the random control vector d encodes
the context-dependent information, capturing environmental
conditions and past system states, which directly affects how
the model evolves over time, ensuring that variations brought
about by environmental changes are effectively integrated.

3.3 Processors

Processors evolve the latent states [(¢) and the time-varying
combination coefficients «(t).

Evolution on the Latent State [(¢): We model a contin-
uous process to evolve the latent states. Specifically, we as-
sume that the continuous and complex evolution can be com-
posed of a weighted combination of K orthogonal differential

equations, i.e., f1, fa, ..., fx, which has flexible and sufficient
expressive power across environments. For these basic differ-
ential equations, we use neural ODEs [Chen et al., 2018] to
model separately. That is to say, I(t) = Zszl ag(t) x Ui (t),
where «(t) is the time-varying coefficients, whose evolution
will be introduced later, and each branch I (t) is evolved as

zmr«m+/nwan ®)

where I(to) ~ p(I(to)|xf, ).

Evolution on the Time-Varying Coefficients «(¢): The
evolution process of a(t) = [ay(t);...; ax (t)] € RE can be
formulated as

t
a(t) = alto) + [ gla(r).d)dr, a)
to

where a(tg) ~ p(a(to)|C®) and d ~ p(d|C®). g is a neural
ODE that can govern how the importance of different compo-
nents in the latent state changes over time. Before combining
ay(t) and I (t), it is necessary to perform a softmax opera-
tion to keep the sum of the combination coefficients at 1. It is
worth emphasizing here that the time-varying coefficients can
ensure adaptation to temporal distribution shift. In the coeffi-
cient evolution process, the control vector d also participates
as an input, which enables the model to adaptively control its
evolution based on context from different environments.

3.4 Decoder

Using the evolved latent states () and placing a Gaussian
distribution on system states, we can obtain the predictive
system states at any time ¢ by employing a decoder as

Mz 02 = dec‘Pm (l(t))v (8)
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where, dec,,, is the decoder, ¢4 is its learnable parameters,
and y,, and o2 are the mean and variance of the predictive

distribution, i.e., p(x§|l(to),d, a(to)) = N (pz,02), which
can accommodate system noise.

3.5 Training and Adapating

New, we introduce the overall training procedure of the Co-
PoNDP. We randomly generate E' time-varying environments
for a dynamical system by sampling g'(¢), g?(¢), ... from a
Banach space, and obtain sparse trajectories through irregu-
larly sampling observations under each environment. Then,
we divide these trajectories into two halves, where the first
half is contexts, i.e., {C© le, and the second half is targets,
i.e., {T¢}E |. Based on the contexts and targets, we jointly
train all parts in an end-to-end fashion to achieve a general-
izable simulator. Specifically, following [Liu ef al., 2024],
we use the variational inference to train the neural networks
in the model, i.e., ency,, ency,,, ency,, fi,..., fx, g, and
dec,,,, whose specific architectures can be found in supple-
mentary material.'. The variational lower bound to be maxi-
mized can be formulated as

T

Y Eay i, | 2 log (@ |1(t0), d, alto))
o i_<0| ) (a(to)|C®) <
p(d|C® pla(ty)|C
I 1
T8 T T palto) T |

where g, d.a,, = p(I(to)|xf, )p(d|C)p(a(to)|C®). When
adapting to a new time-varying environment ¢’, by inputting
the available observations Ce/, we can obtain the predictive
distribution at any time ¢, i.e., p(¢ |I(to), d, o(to)).

3.6 CoPoNDP as Stochastic Process

From a probabilistic perspective, our CoPoNDP can actually
be seen as a type of neural-network-parameterized stochastic
process for system states.

Proposition 1. CoPoNDP satisfies the exchangeability and
consistency conditions.

The detailed proof can be found in supplementary mate-
rial. According to the Kolmogorov Extension Theorem, we
know that exchangeability and consistency conditions are suf-
ficient to define a stochastic process [Oksendal, 2013]. That
is to say, the stochastic processes we have established exist,
and the CoPoNDP is its family of finite-dimensional distribu-
tions. As a stochastic process, it should theoretically have the
ability to represent dynamical systems with a wide range of
time-varying environments, and also can have excellent gen-
eralization power for sparse and noisy settings.

4 Experiment

We test the CoPoNDP? on four representative complex dy-
namical systems in various fields to answer the following

"https://github.com/ljqjlu/CoPoNDP/blob/main/supp-
material.pdf
20ur code is available at https://github.com/ljqjlu/CoPoNDP.

questions: 1) How well does our model generalize to si-
multaneous environmental and temporal distribution shifts by
learning from observed contexts? 2) What factors in our
model impact performance? 3) How does the level of spar-
sity and noise in the context affect the model’s adaptation to
distribution shifts? 4) Can our model adapt to distribution
shifts appearing in real-time streaming data?

4.1 Experiment Settings

We are here to introduce experiment settings, including dy-
namical systems, baselines, and task descriptions. For a de-
tailed introduction to dynamical systems and the experimen-
tal setup, please refer to the supplementary materials.

Dynamical Systems. We conducted a series of exper-
iments to thoroughly evaluate the model’s capabilities and
its applicability to real-world scenarios, focusing on a wide
range of systems affected by time-sensitive external condi-
tions, including the pendulum with external control forces
(PE) [Baker and Blackburn, 2008], the ecosystem with time-
varying birth and death rates (LV) [Wangersky, 1978], the
controlled vibration of a string fixed at both ends (ST) [Wang
and Wang, 2013], and the real-world datasets such as power
system demand forecasting (PW) [Zhou et al., 2021], ex-
change prediction (EX) [Lai et al., 2018], air quality (AQ)
[Zhang ef al., 2017] and weather forecasting (WT) [Han et
al., 2024].

Baselines. We compare our CoPoNDP against twelve
state-of-the-art neural simulators for dynamical systems,
which can be divided into four main groups. 1) Neural sim-
ulators under i.i.d. assumption include the discrete models,
i.e., GRU [Cho et al., 2014] and LSTM [Hochreiter, 1997],
and continuous models, i.e., Neural ODE [Chen et al., 2018]
and ODE-RNN [Chen er al., 2018]. 2) Environmental adap-
tive neural simulators contain the LEADS [Yin et al., 2021],
CoDA [Kirchmeyer er al., 2022], and CoNDP [Liu er al.,
2024]. 3) Temporal adaptive neural simulators contain the
DRAIN [Bai et al., 2023], Koopa [Liu et al., 2023], Koodos
[Cai et al., 2024], and Koopman-DG [Zeng et al., 2024]. 4)
We also compare recently emerging neural operators, includ-
ing the Fourier Neural Operator (FNO) [Li et al., 2020b], Fac-
torized Fourier Neural Operator (FENO) [Tran et al., 2021],
Geometry-Aware Fourier Neural Operator (Geo-FNO) [Li et
al., 2023], general neural operator transformer (GNOT) [Hao
et al., 2023] and the Deep Operator Network (DeepONet) [Lu
et al., 20211, to verify the simultaneous processing of two
types of distribution shifts. However, unlike our model, the
neural operators require a known time-varying environment
of the task to be processed as input.

Task Descriptions. We set up four testing tasks to eval-
uate the impact of varying degrees of distribution shifts on
model generalization. In-Distribution Test: w7 in Eq. 1 re-
mains identical and constant throughout training and testing,
unchanged by time or environment, indicating stable and con-
sistent conditions. Environmental Adaptation (Env. Ada.)
Test: wuf differs between training and testing but remains
constant over time, testing adaptability to new environments
without temporal shifts. Temporal Adaptation (Tem. Ada.)
Test: uy is the same for training and testing but varies over
time, focusing on adaptation to dynamic temporal changes.


https://github.com/ljq-jlu/CoNDP/blob/main/supp-material.pdf
https://github.com/ljq-jlu/CoNDP/blob/main/supp-material.pdf
https://github.com/ljq-jlu/CoPoNDP
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In-Distribution

Env. Ada. Test

Tem. Ada. Test

Joint-Distribution

Real-World Datasets

Models PE LV ST PE LV ST PE LV ST PE LV ST PW EX AQ WT
(x107%) (x107%) (x10™%) (x107%) (x10™%) (x10™%) (x107?) (x10™%) (x10™%) (x107%) (x10™%4) (x10™%) (x10%) (x10™%) (x10%) (x10°)

GRU 3.42 5.15 291 1.52 2.14 8.84 1.42 5.63 892 1123 1349 1381 11.2 203 15340 3.8l

< 4| LSTM 2.97 4.83 3.11 1.68 1.92 8.27 2.13 458 837 1134 1405 1493 125 214 142.64 439
= < | Neural ODE  4.08 6.20 3.55 133 1.58 8.43 3.47 6.19 904 1148 13.88 1313 133 220 12361 345
ODE-RNN  3.78 5.35 3.29 1.42 1.54 9.63 1.68 5.13 8.27 9.19 1322 1458 104 2.09 116.87 3.58

. 4| LEADS 2.59 421 311 0217 0241  3.39 1.29 456 6.84 835 10.13 952 1388 128 722 149
532 CoDA 2.32 483 359 0295 0223 401 1.72 5.11 7.03 9.46 9.98 929 1416 106 753 157
CoNDP 2.01 4.49 412 0203 0258 4.16 1.94 5.37 645 1159 1222 887 2372 110 647 134

. ;| DRAIN 1.79 3.92 2.87 .18 1.47 732 0.143 0408 322 11.09 925 924 0351 0318 525 0.333
53 Koopa 1.11 421 3.15 1.45 1.69 7.57 0.138 0443 294 1128 1037 9.63 0301 0323 497 0.330
Koodos 1.47 4.67 3.61 1.59 1.83 671 0206 0505 353 1032 1161 897 0333 0301 512 0327
Koopman-DG  1.38 4.19 3.02 1.04 131 649 0.142 0415 330 9.28 9.61 934 0333 0294 493 0315
CoPoNDP (Ours) 1.23  4.18  3.08 0.196 0.214 329 0.132 0377 3.14 0.176 0420 321 0277 0275 4.49 0.287

Table 1: Comparison of Mean Squared Error from the time-varying environment-agnostic models across four settings. The best results are

bolded, while the second-best results are underlined.

Ground truth

ODE-RNN
MSE: 1.21 x 107*

LEADS
MSE: 8.55 x 1075

Koodos
MSE: 8.15 x 10~°

CoPoNDP (Ours)
MSE: 1.35 x 107

Figure 3: Comparison of pendulum states in the PE system.

Joint-Distribution Test: u; varies both between training and
testing and over time, evaluating model generalization to si-
multaneous environmental and temporal shifts. Although the
PW is not modeled by differential equations, it still aligns
with the Joint-Distribution Test, because it is simultaneously
influenced by external environmental factors (cities, weather)
and temporal factors (periodic human activities). For each
task, we sample extensive time-varying environments for test-
ing and then compare the average performance.

4.2 Performance Evaluation

From Table 1, we see that under the In-Distribution Test, our
CoPoNDP has comparable performance, providing relatively
stable predictions and confirming its reliability under mini-
mum distribution shifts. Under the Environmental Adapta-
tion Test, compared to i.i.d. models and temporal adaptive
neural simulators, environmental adaptive models, such as
LEADS, CoDA, and CoNDP, perform well with a reduction
in error of almost an order of magnitude. The better perfor-
mance of the temporal adaptive models is under the Tempo-
ral Adaptation Test. And, our CoPoNDP achieves the best
performance in both settings mentioned above, demonstrat-
ing its effectiveness in handling unilateral distribution shifts.
In the Joint-Distribution Test, the CoPoNDP significantly
outperforms others, reducing error by order of magnitude for
the PE and LV systems. The pendulum visualizations of the

(@)
0.2 ODE-RNN | 0.2 Koopa
A EEAdDS \\ 38\ CoNDP ’«( 38
00dos, kol
301 / Koo /| 0.0 Z36|  overw 4 36
§ **”groundtrn‘\th/ 534 | - - - - groundtruth’ f \& l‘,fmc‘ :Li 34
200 | A [V L[\ o Snl AT Yo
g /\\ \ 530\ AN 30
2-0.1 J\ [-0.1 2 5g] | f"‘f"\i‘ LV b8
\ !
J 26| P! 26
0.2 02 \ "
00 08 16 24 32 40 0 20 40 60 80 100 120 140
time hour

Figure 4: (a) Comparison of pendulum swing angles in the PE sys-
tem. (b) Comparison of real-world power demand forecasting.

PE system are shown in Figs. 3 and 4(a). For the ST sys-
tem and real-world PW data, our CoPoNDP also achieves the
best results, showcasing the generalization of our model for
the simultaneous occurrence of environmental and temporal
distribution shifts. Please see Fig. 4(b) for the comparison of
the actual electricity demand forecast results.

We also compare our CoPoNDP with neural operators, as
shown in Table 2. Even though operator-based models are
highly effective, they require a known time-varying envi-
ronment as input, which restricts their practicality. In con-
trast, our CoPoNDP can learn system dynamics influenced
by distribution shifts from only observed system states. This
eliminates the need for environmental input and allows it to
achieve state-of-the-art results compared to other models with
the same level of information, while effectively generalizing
to practical applications.

4.3 Ablation Study and Sensitivity Analysis

To analyze the rationality behind our model, we conducted
two variants of the CoPoNDP. One variant involved our
model without the control encoder, denoted as w/o control
encoder, to verify the role of context in model evolution. The
other was our model without multiple basic neural differen-
tial equations, and only one differential equation was used
for modeling, i.e., w/o branches, to test the expressive power
of the combination of basic equations for distribution shifts.
From Fig. 5(a), we see that our model outperforms these vari-
ants across all systems under the existence of two distribution
shifts, showcasing the effectiveness of the model design. The
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w/ env. state w/o env. state
Models PE LV PE LV
(x107%) (x107°) (x107%) (x107?)

» FNO 0234  0.713 7.67 7.34
IS FFNO 0.187  0.695 6.30 541
g Geo-FNO 0249 0.3548 2.37 5.83
& GNOT 0.154  0.388 3.29 6.33

DeepONet  0.416  0.884 4.69 6.57

CoPoNDP (Ours) - - 1.76 4.20

Table 2: Comparison of Mean Squared Error with models, who
know the time-varying environments, on joint-distribution setting.
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Figure 5: Ablation study and sensitivity analysis. (a) Performance
comparison of our model and its variants without control encoder
and branches. (b) Impact of the number of branches on the results.

setting of the number of basic neural differential equations
(branches) seriously affects the model’s expressive power for
dealing with external time-varying environmental changes.
To analyze the impact of the number of branches, we tested
configurations ranging from 2 to 10 neural differential equa-
tions, as shown in Fig. 5(b). Initially, model performance im-
proved as the number of branches increased, reaching its peak
at 5 to 6 branches. Beyond this range, the performance ben-
efits plateaued, and in some instances, adding more branches
slightly decreased performance due to over-parameterization
and increased computational overhead. These findings sug-
gest a need for balance between model flexibility and effi-
ciency in selecting the number of equation branches.

4.4 Generalization to Sparse and Noisy Data

To assess the robustness of CoPoNDP, we expanded our anal-
ysis to include sparse and noisy conditions under joint dis-
tribution shifts on the PE system. This involved incorporat-
ing different levels of data sparsity, ranging from 0% to 90%,
as well as Gaussian noise levels from 0% to 10% in the ob-
served contexts. Fig. 6(a) shows that although the model pre-
diction error slightly increases with higher sparsity and noise
intensity, the decline in our model’s performance is limited
and negligible compared to an error of 83.5x 1075 from the
best baseline, i.e., LEADS, under 50% sparsity and noise-
free observations. This demonstrates our CoPoNDP’s re-
silience, even when the observed context is highly fragmented
or noisy. The above results also suggest that perfect contex-
tual knowledge is not a strict requirement for effective adap-
tation. Instead, CoPoNDP can capture sufficient uncertainty
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Figure 6: (a) Model performance under sparse and noisy settings.
(b) Contextual adaptation to streaming data on the PE system.

through its probabilistic structure, which integrates context
into both context encoding and latent process evolution.

4.5 Contextual Adaptation to Streaming Data

Since the principle behind our CoPoNDP is a stochastic pro-
cess, it not only brings more heightened tolerance for spar-
sity and noise but also inherits the data adaptation from the
stochastic process. As more input data are provided, the Co-
PoNDP can adaptively correct its predictions without retrain-
ing, essentially suitable for online processing of streaming
data. We test its predictive accuracy by gradually increasing
the amount of input data, as shown in Fig. 6(b). This setup
mirrors real-world conditions, where systems must adjust to
evolving data distributions without full context availability at
the outset. We can see that as the amount of contextual data
increases, the model adapts and adjusts to obtain predictions
that are closer to the true values, with decreasing uncertainty.
The initial increments, especially the addition of the first 3%
of context, led to the most substantial performance improve-
ments. As more context was added, accuracy continued to
increase, eventually reaching a saturation point at 5% data.
This demonstrates the system’s effectiveness in adapting to
partial, real-time data streams. The observation highlights its
adaptation to external changes, driven by progressively re-
fining its understanding as new context is provided, ensuring
reliable performance in time-varying dynamical systems.

5 Conclusion

We introduce CoPoNDP, a neural ODE framework that mod-
els dynamical systems under temporal and environmental dis-
tribution shifts by dynamically blending context-aware ODE
ensembles. Unlike existing simulators limited to static or
single-axis adaptation, CoPoNDP achieves robust generaliza-
tion across ecological, chemical and physical systems, out-
performing specialized baselines.

While demonstrating strong empirical performance, scal-
ing to real-world applications requires further advances in
automated architecture optimization and physics-aware effi-
ciency improvements. Our work establishes an important
step toward generalizable neural simulators that adapt to com-
plex, evolving dynamics while maintaining computational
tractability.
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