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Abstract

Massive human-related data is collected to train
neural networks for computer vision tasks. A
major conflict is exposed relating to software
engineers between better developing Al systems
and distancing from the sensitive training data.
To reconcile this conflict, the paper proposes
an efficient privacy-preserving learning paradigm,
where images are encrypted to become “human-
imperceptible, machine-recognizable” via one of
the two encryption strategies: (1) random shuf-
fling equally-sized patches and (2) mixing-up sub-
patches. Then, minimal adaptations are made to
vision transformer to enable it to learn on the en-
crypted images for vision tasks, including image
classification and object detection. Extensive ex-
periments on ImageNet and COCO show that the
proposed paradigm achieves comparable accuracy
with the competitive methods. Decrypting the en-
crypted images requires solving an NP-hard jig-
saw puzzle or ill-posed inverse problem, which
is empirically shown intractable to be recovered
by various attackers, including the powerful vision
transformer-based attacker. We thus show that the
proposed paradigm can ensure the encrypted im-
ages have become human-imperceptible while pre-
serving machine-recognizable information.

1 Introduction

Relying on massive personal images, the industry has shown
promising capabilities for developing artificial intelligence
(AD) for many computer vision tasks, e.g., image classifica-
tion [He et al., 2016], action recognition [Moniruzzaman et
al., 2022], face recognition [Mi et al., 20241, etc. In this pro-
cess, a major conflict has been seen relating to software en-
gineers between better developing Al systems and distancing
from the sensitive training data. To reconcile this conflict, we
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raise a problem in this paper: Can we process images to be
human-imperceptible and machine-recognizable? In such a
way, software engineers can use the sensitive training data to
facilitate their developing Al systems, without accessing the
sensitive contents.

To process images to be “human-imperceptible, machine-
recognizable”, we develop two encryption strategies: random
shuffling (RS) and mixing-up (MI); see Figure 1. RS ran-
domly shuffles the patch order of an image, which destroys
the position configurations between patches and can thus be
applied to position-insensitive scenarios. Decrypting an im-
age encrypted by RS is to solve a jigsaw puzzle problem,
which can incur considerable computational overhead since
the problem to be solved is a NP-hard one [Demaine and
Demaine, 2007]. MI mixes up the sub-patches in a patch,
which preserves the position configurations between patches
and can thus be applied to position-sensitive scenarios. De-
crypting an image encrypted by MI is to solve an ill-posed
inverse problem, which could be hard to solve due to the dif-
ficulty in modeling the sub-patch distribution.

Then, we make minimal adaptations to vision transformer
(ViT) [Dosovitskiy et al., 2020] to enable it to learn on the
encrypted images; see Figure 2. By removing position en-
coding, ViT is made permutation-invariant and thus capa-
ble of learning on images encrypted by RS, resulting in PE-
ViT for the image classification task. Further, we develop
a reference-based positional encoding for PEViT, which can
retain the permutation-invariant property and thus boost the
performance by a noticeable margin. Since position informa-
tion plays a key role in the low-level object detection task,
MI is chosen to encrypt images for this task. By adapting
the way that image patches are embedded, YOLOS [Fang et
al., 2021], a vanilla ViT-based model, is able to learn on im-
ages encrypted by MI, resulting in PEYOLOS for the object
detection task.

We conduct extensive experiments on ImageNet [Deng
et al., 2009] and COCO [Lin et al., 2014]. Extensive at-
tack experiments show the security of our encryption strate-
gies. Comparison results on large-scale benchmarks show
that both PEViT and PEYOLOS achieve promising perfor-
mance with highly encrypted images as input. We thus
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Figure 1: Illustration of images encrypted by RS, MI, and their combination. The visual contents of encrypted images are near-completely

protected from recognizing by human eyes.

show that the proposed paradigm can ensure the encrypted
images have become human-imperceptible while preserving
machine-recognizable information. The main contributions
can be summarized as follows:

* We propose an efficient privacy-preserving learning
paradigm that can ensure the encrypted images have
become human-imperceptible while preserving machine-
recognizable information.

* RS is tailored for the standard image classification with
ViT. By substituting the reference-based positional encod-
ing for the original one, ViT is capable of learning on im-
ages encrypted by RS.

* By further designing MI, the privacy-preserving learning
paradigm is extensible to position-sensitive tasks, such as
object detection, for which we only need to adapt the way
image patches are embedded.

» Extensive experiments demonstrate the effectiveness of the
proposed privacy-preserving learning paradigm.

2 Related Work

Vision transformers. Self-attention based Trans-
former [Vaswani et al., 2017] has achieved great success in
natural language processing. To make Transformer suitable
for image classification, the pioneering work of ViT [Doso-
vitskiy er al., 2020] directly tokenizes and flattens 2D images
into a sequence of tokens. Since then, researchers have been
working on improving Vision Transformers and examples
include DeiT [Touvron et al., 20201, T2T-ViT [Yuan et al.,
2021], PVT [Wang et al., 20211, ViTAEvV2 [Zhang et al.,
2023], and Swin-Transformer [Liu et al., 2021]. In addition,
the intriguing properties of ViT are investigated in [Naseer et
al.,2021].

Jigsaw puzzle solver. The goal of a jigsaw puzzle solver is to
reconstruct an original image from its shuffled patches. Since
this problem is NP-hard [Demaine and Demaine, 20071, solv-
ing jigsaw puzzles of non-trivial size is impossible. Most of
the existing works in computer vision focus on the jigsaw
puzzle problem composed of equally-sized image patches
and examples include the greedy algorithm proposed in [Cho
et al., 2010], the particle filter-based algorithm proposed
in [Yang er al., 2011], the fully-automatic solver proposed
in [Pomeranz et al., 2011], and the genetic-based solver pro-
posed in [Sholomon et al., 2013].

Privacy-preserving machine learning. The aim of
privacy-preserving machine learning is to integrate privacy-
preserving techniques into the machine learning pipeline. Ac-
cording to the phases of privacy integration, existing methods
can be basically divided into four categories: data prepara-
tion, model training and evaluation, model deployment, and
model inference [Xu er al., 2021]. Federated learning allows
multiple participants to jointly train a machine learning model
while preserving their private data from being exposed [Liu et
al., 2022]. However, the leakage of gradients [Hatamizadeh
et al., 2022] or confidence information [Fredrikson et al.,
2015] can be utilized to recover original images such as hu-
man faces. From the perspective of data, encrypting data
and then learning and inferencing on encrypted data can pro-
vide a strong privacy guarantee, called confidential-level pri-
vacy, which receives increasing attention recently. Manually
anonymizing large-scale datasets faces the challenge of inef-
ficiency and the need to develop specialized techniques [Ma
et al., 2023], and thus the automatic encryption approaches
such as homomorphic encryption and functional encryption
have been employed to encrypt data due to their nature of
allowing computation over encrypted data [Xu et al., 2019;
Karthik et al., 2019]. However, scaling them to deep net-
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Figure 2: Images encrypted by RS and MI are still machine-learnable, by further designing architectures PEViT and PEYOLOS, based on

ViT and YOLOS.

works and large datasets still faces extreme difficulties due to
the high computational complexity involved for encryption.
The block-wise pixel shuffling encryption strategy [Tanaka,
2018; Madono et al., 2020] and the pixel-based image en-
cryption strategy [Sirichotedumrong ef al., 2019] have low
computational complexity for encryption, but they are vulner-
able to reconstruction attacks because of the limited dimen-
sion of the key space [Sirichotedumrong ef al., 2019] or suffer
from large performance degradation [Madono et al., 2020].
In contrast, our encryption strategies are simple, efficient and
easy to implement, and can be applied to position-sensitive
tasks. Moreover, hardware-based deidentification methods
has also been explored to improve vulnerability [Lopez et al.,
2024].

Differential privacy. Differential privacy is defined
in terms of the application-specific concept of adjacent
datasets [Abadi et al., 2016], which bounds the disclosure
risk of any individual participating in a dataset to guarantee
data privacy. Then, researchers have been working on ex-
panding its application scope. For example, Ferdinando et al.
propose a differential-privacy mechanism for releasing hier-
archical counts of individuals [Fioretto et al., 2021]. Liu et al.
study the interpretation robustness problem from the perspec-
tive of Rényi differential privacy. We aim to process images
to be “human-imperceptible, machine-recognizable”, which
is different from differential privacy that limits the informa-
tion that attackers can learn about datasets. Similar idea is
also mentioned in [Huang et al., 2020] but the scheme has
proved to be not private in [Carlini ef al., 2021].

Positions in transformers. Recent studies in the natu-
ral language processing field suggest that higher-order co-
occurrence statistics of words play a major role in masked
language models like BERT [Sinha er al., 2021]. It has been
shown that the word order contains surprisingly little infor-
mation compared to that contained in the bag of words, since
the understanding of syntax and the compressed world knowl-
edge held by large models (e.g. BERT and GPT-2) are ca-
pable to infer the word order [Malkin ef al., 2021]. Due to
the property of attention operation, when removing positional
encoding, ViT is permutation-invariant w.r.t. its attentive to-
kens. As evaluated by our experiments, removing the posi-

tional embedding from ViT only leads to a moderate perfor-
mance drop (3.1%, please see Table 1). Such a phenomenon
inspires us to explore the permutation-based encryption strat-
egy. Moreover, masked jigsaw puzzle [Ren et al., 2023] has
been explored to find a balance among accuracy, privacy, and
consistency.

3 Method

In this section, we propose an efficient privacy-preserving
learning paradigm that can ensure the encrypted images have
become human-imperceptible while preserving machine-
recognizable information. We first provide the encryption
strategies and then detail the building blocks of ViT. Next,
we describe how to learn on the encrypted images with min-
imal modifications to ViT. Finally, we discuss the encryption
strategies in the context of cryptography.

3.1 Human-Imperceptible Images

We first consider typical vision tasks which are not quite
position-sensitive, such as image classification that predicts
the global category. Here, Random Shuffling (RS) images
to a set of equally-sized image patches can destroy human-
recognizable contents. This shuffle-encrypted process is sim-
ple, easy to implement, and is decoupled from the network
optimization. Under the circumstance, decrypting an image
is solving a jigsaw puzzle problem, which can incur a large
computational overhead since the problem to be solved is an
NP-hard one [Demaine and Demaine, 2007]. In particular,
the dimension of the key space when applying the shuffle-
encrypted strategy is the number of puzzle permutations. For
an image with N patches, the dimension of the key space is
given by,

Kg = N!. (1)

For example, a 7 x 7 puzzle has 49! ~ 6 x 10%? possible
permutations. Based on this, it is easy to further increase
the complexity of decrypting an image, by reducing the patch
size of puzzles or increasing the resolution of the image. Be-
sides, the complexity of decrypting an image can be further
increased by dropping some image patches, as experimentally
evaluated in Figure 6 and Figure 5.
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Figure 3: Architecture overview of PEViT with RPE.

However, always shuffling image patches is prone to un-
derestimating the position information. To further make
our paradigm applicable to position-sensitive tasks like ob-
ject detection, where precise positions of bounding boxes
are predicted, we design another encryption strategy named
Mixing (MI). Specifically, MI mixes sub-patches of image
patches to destroy human-recognizable contents while pre-
serving the position information, so that the encrypted data
can be learned by networks that need position information.
Let x? denote an image patch. The mixing-encrypted strat-
egy can be formulated as follows,

1M
P _ p
X = o Z’_l s, )
where sf denotes the ¢-th sub-patch of x”, M denotes the

number of sub-patches, and Xg is the encrypted version of

xP. It is to be noted that x has the same size as s,
which is smaller than that of xP. Since the sum func-
tion is permutation-invariant, MI makes an encrypted image
permutation-invariant to its sub-patches. With the MI encryp-
tion process, decrypting a patch is solving the following ill-
posed inverse problem,

M
argmin || x% — Zsf 12 . 3)
1o shy i=1

Both modeling the sub-patch distribution and restoring the
sub-patch order make decrypting an patch a great challenge.
Decrypting an image of N patches magnifies this challenge
by a factor of N.

3.2 Building Blocks of ViT

In this part, we analyze how the change of input permutation
affects each component of ViT.

Self-attention. The attention mechanism is a function that
outputs the weighted sum of a set of k value vectors (packed

into V€ R¥*4). The k weights are obtained by calculat-
ing the similarity between a query vector ¢ € R? and a set
of k key vectors (packed into K € R¥*?) using inner prod-
ucts, which are then scaled and normalized with a softmax
function. For a sequence of N query vectors (packed into
Q € RN*9) the output matrix O (of size N x d) can be
computed by,

O = Attention(Q, K, V) = Softmax(QK " /Vd)V, (4)

where the Softmax function is applied to the input matrix by
rows.

In self-attention, query, key, and value matrices are com-

puted from the same sequence of N input vectors (packed
into X € RV*9) using linear transformations: Q = XWX,
K = XWX,V = XWV. Since the order of Q, K, and V
is co-variant with that of X, the permutation of the input of
self-attention permutes the output.
Multi-head self-attention. Multi-head Self-Attention
(MSA) [Vaswani er al., 2017] consists of h self-attention lay-
ers, each of which outputs a matrix of size N x d. These h
output matrices are then rearranged into a N X dh matrix that
is reprojected by a linear layer into NV X d,

MSA = Concat(heady, - - - , head;,)W©, (5)

where head, = Attention(Q;, K;,V;), Q; = XWiQ, K; =
XWiK, V: = XWiV, and WO e R4h>*d  The order of
each head is co-variant with that of X. Considering that the
Concat operation only concatenates the vectors from differ-
ent heads at the same position, MSA is co-variant to the order
of X. Therefore, we conclude that the permutation of the
input of MSA permutes the output.

Layer normalization. The mean and standard deviation are
calculated over the features of all positions in Layer normal-
ization [Ba et al., 2016]. Then, they are used to transform
features in a position-wise way. Therefore, we conclude that
the permutation of the input of layer normalization permutes
the output.
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Figure 4: Architecture overview of PEYOLOS.

Residual connection. The residual connection [He et al.,
2016] can be formulated as F(X) + X. If the order of
the nonlinear mapping F(-) is co-variant with that of X, the
residual connection is co-variant with that of X. Therefore,
we conclude that the permutation of the input of residual con-
nection permutes the output.

Feed-forward network. Feed-Forward Network (FFN) con-
sists of two linear layers separated by a GELU activa-
tion [Hendrycks and Gimpel, 2016]. The first linear layer
expands the dimension from d to 4d, while the second layer
reduces the dimension from 4d back to d. Considering that
FFN is applied in a position-wise way, we conclude that the
permutation of the input of FFN permutes the output.

Positional encoding. To retain the positional information,
position embeddings are usually added to the patch embed-
dings. Since there is little to no difference between different
ways of encoding positional information, learnable 1D posi-
tion embeddings are used in ViT [Dosovitskiy et al., 2020]. It
is to be noted that the positional encoding is unaware of input
permutation.

3.3 Classification on Encrypted Images

As a standard method to handle images in ViT, the fixed-size
input image of H x W x C'is decomposed into a batch of N
patches of a fixed resolution of P x P, resulting in a sequence
of flattened 2D patches XP € RV*(P*O)_ For example, the
sequence length N = HW/P? of ViT could be 196 for im-
age classification on the ImageNet dataset. To destroy the
human-recognizable contents, we choose RS as the encryp-
tion strategy to encrypt images. The reason is two-fold: (1)
The key space of an image encrypted by RS is big enough
and (2) The drop in performance is insignificant. To learn on
the images encrypted by RS, we design permutation-invariant

ViT (PEVIiT), defined as follows,

Shufﬂmg>

{X17X2"" N} {XZQ)’X]J?V"" 7X11)} (6)
20 = [Xelass; X5E; XN E; -+ xJE], E € R(P*-C)xD

(7N

Z/e = MSA(LN(ngl)) +2zp_1, L=1...L ()

z¢ = FEN(LN(z/y)) + 2y, £=1... L ©)]

y = LN(z?). (10)

where E denotes the linear projection that maps each vector-
ized image patch to the model dimension D, and Xj,ss de-
notes the class token (z8 = Xclass)» Whose state at the output
of the visual transformer (z) ) serves as the image representa-
tion y.

The differences between PEViT and vanilla ViT are two-
fold: (1) Our model takes shuffled patch embeddings as input
and (2) The learned positional encodings are removed. Since
the permutation of the input of all the building blocks per-
mutes the output, the order of zy, is co-variant with that of z.
It is worth noting that the class token is fixed in zJ. Therefore,
z9 corresponds to the image representation y that is invariant
to the order of patch embeddings or image patches.

When directly introducing positional encoding, the
permutation-invariant property of PEVIiT is destroyed. In-
spired by relative encoding [Shaw er al., 2018], we propose
a reference-based positional embedding approach that can re-
tain the permutation-invariant property,

Epos (x7) =

where x™ € R? denotes the learnable reference embed-
ding and RPE denotes the reference-based positional encod-
ing network that consists of two linear layers separated by
a GELU activation [Hendrycks and Gimpel, 2016], followed

RPE(x? — x™), (11
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Method Image size | #Param. | FLOPs | Throughput (img/s) | Top-1 acc.
DeiT-B [Touvron e al., 2020] 2242 86M 17.5G 292.3 81.8
ViT-B/16 [Dosovitskiy et al., 2020] 3842 86M 55.4G 85.9 71.9
ViT-L/16 [Dosovitskiy et al., 2020] 3842 307M | 190.7G 27.3 76.5
DeiT-B on images encrypted by MI 2242 86M 17.5G 291.5 78.0
DeiT-B on images encrypted by RS 2242 86M 17.5G 291.6 4.5
DeiT-B on images encrypted by RS + MI 2242 86M 17.6G 291.1 1.7
PEViT-B on images encrypted by MI 2242 86M 17.5G 291.5 77.9
PEVIT-B on images encrypted by RS 2242 86M 17.5G 291.5 78.7
PEViT-B on images encrypted by RS + MI 2242 86M 17.5G 291.1 69.5
PEVIT-B with RPE on images encrypted by RS 2242 8™ 17.6G 290.8 79.7

Table 1: Image classification on ImageNet-1K. The throughput is measured as the number of images processed per second on a V100 GPU.

Method Backbone Image size | AP | #Params. | FLOPs (G) | FPS
YOLOS-Ti [Fang ef al., 2021] | DeiT-Ti 512 x x 28.7 6.5M 18.8 60
PEYOLOS DeiT-Ti 512 x x 25.3 7.1M 19.0 58
DETR [Carion et al., 2020] ResNet-18-DC5 | 800 x 36.9 20M 129 7.4
YOLOS-S [Fang et al., 2021] | DeiT-S 800 x * 36.1 31M 194 5.7
PEYOLOS DeiT-S 800 x = 329 | 31.6M 194.9 5.6
DETR [Carion et al., 2020] ResNet-101-DC5 | 800 x 42.5 60M 253 5.3
YOLOS-B [Fang ef al., 2021] | DeiT-B 800 x x 42.0 127M 538 2.7
PEYOLOS DeiT-B 800 x * 39.5 | 128.2M 539.7 2.5

Table 2: Object detection on the COCO test2017 dataset. FPS is measured with batch size 1 on a single 1080Ti GPU.

by a sigmoid function. This reference-based positional em-
bedding relies only on the learnable reference embedding and
patch embeddings, and thus its order is co-variant with that of
input vectors. Accordingly, the input to PEViIT with RPE can
be defined as follows,

Zy = [Xclass§ XZQ)E + Epos (Xg); x?\[E"’_EPOS (X:?V); R
x/E + EpOS(Xll))],
(12)

where the permutation-invariant property of PEVIiT is re-
tained. An architecture overview of PEViT with RPE is de-
picted in Figure 3.

Through the reference-based positional encoding, we illus-
trate that introducing positional embedding while retaining
permutation-invariant property is feasible. Other better posi-
tional embedding approaches can also be designed, but it is
beyond the scope of this paper.

3.4 Object Detection on Encrypted Images

YOLOS [Fang et al., 2021] is an object detection model based
on the vanilla ViT. The change from a ViT to a YOLOS in-
volves two steps: (1) Dropping the class token and append-
ing 100 randomly initialized learnable detection tokens to the
input patch embeddings and (2) Replacing the image classifi-
cation loss with the bipartite matching loss to perform object
detection in a set prediction manner [Carion et al., 2020].
Since position information plays a key role in the low-
level object detection task, directly encrypting images with
RS disrupts the patch positions and thus leads to signif-
icant performance degradation. This brings a great chal-
lenge to destroy human-recognizable contents while preserv-
ing machine-learnable information for the object detection

task. We address this challenge by adapting the way image
patches are embedded. For an image patch (x) of a fixed res-
olution P x P, we further decompose the patch into a batch
of 4 sub-patches of a fixed resolution g X g. Then, these
sub-patches are encrypted with MI, resulting in the encrypted
patch x. Accordingly, the input to YOLOS is adapted as
follows,

ZO = [XlDET; ...

sxfon 5 H(xT ) H(x3); - ﬂ(x%)]hlgi
where H denotes a nonlinear mapping composed of two lin-
ear layers separated by a GELU activation [Hendrycks and
Gimpel, 2016] and P € R100+N) D qapptes the learnable
positional embeddings. This adaptation makes YOLOS par-
tially permutation-invariant to its sub-patches. With our PEY-
OLOS, we can destroy human-recognizable contents while
preserving machine-learnable information for the object de-
tection task.

The pipeline of PEYOLOS is shown in Figure 4. The input
image of H x W x C'is decomposed into a batch of IV patches
with a fixed resolution of P x P. Then, for an image patch,
we further decompose the patch into a batch of 4 sub-patches
with a fixed resolution g X g. Finally, these sub-patches
are encrypted with MI, resulting in a highly encryted image
that is not human-recognizable and is tough to be decrypted.
PEYOLOS takes as input the encrypted images and outputs

class and bounding box predictions for the original images.

3.5 Discussion

We would like to recall a framework termed substitution-
permutation network (SPN) in cryptography [Stinson and Pa-
terson, 2019]. SPN is a series of linked mathematical op-
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Figure 5: Reconstructed images by the jigsaw puzzle solver proposed in [Paikin and Tal, 2015]. Here, the effect of image size on image

reconstruction quality and classification performance is investigated.

erations used in block cipher algorithms such as AES and
DES [Stinson and Paterson, 2019]. Shannon suggests that
practical and secure ciphers may be constructed by employ-
ing a mixing transformation consisting of several rounds of
confusion and diffusion [C.E., 1949]; SPN is exactly an im-
plementation of this confusion and diffusion paradigm. Such
an implementation applies several alternating rounds of sub-
stitution boxes (S-boxes) and permutation boxes (P-boxes) to
produce the ciphertext. An S-box substitutes a small block
of bits (the input of the S-box) by another block of bits (the
output of the S-box). A P-box is a permutation of bit blocks
(or bits). Although a single typical S-box or a single P-box
alone does not have sufficient cryptographic strength, a well-
designed SPN with several alternating rounds of S-boxes and
P-boxes already has a very strong proven security [Yevgeniy
etal.,2017].

Our encryption scheme adheres to SPN, while the basic
unit of our encryption scheme is pixels instead of bits. In
particular, MI can be seen as an implementation of S-box.
RS can be seen as an implementation of P-box. Although
both MI and RS alone does not have sufficient cryptographic
strength, alternating several rounds of MI and RS can enhance
the cryptographic strength to a large extent; see Figure 1. We
would like to stress out that the performance on encrypted im-
ages is also a major concern of our work. Although alternat-
ing several rounds of MI and RS can enhance cryptographic
strength, it also decreases the performance by a significant
margin. In practice, there is a tradeoff between performance
and cryptographic strength.

4 Experiments

In this section, we first provide the experimental settings,
and then contrast the performance on image classification
and object detection tasks. Finally, we investigate the attack-
ers. More results and ablation studies are provided in the ap-
pendix.

4.1 Experimental Settings

Datasets. For the image classification task, we benchmark
the proposed PEViT on ImageNet-1K [Deng et al., 2009],
which contains ~1.28M training images and 50K validation
images. For the object detection task, we benchmark the pro-
posed PEYOLOS on COCO [Lin et al., 2014], which con-
tains 118K training, SK validation and 20K test images.

Implementation details. The pseudocodes of RS and MI in
a PyTorch-like style are shown in the appendix. We imple-
ment the proposed PEVIT based on the Timm library [Wight-
man, 2019]. We adopt the default hyper-parameters of the
DeiT training scheme [Touvron et al., 2020] except setting
the batch size to 192 per GPU, where 8 NVIDIA A100 GPUs
are used for training. It is worth noting PEViT (w.o RPE)
is equivalent to removing positional embeddings from DeiT.
We implement the proposed PEYOLOS based on the publicly
released code in [Fang et al., 2021] and adapt the way image
patches are embedded.

Baseline. We propose an efficient privacy-preserving learn-
ing paradigm with the aim of destroying human-recognizable
contents while preserving machine-learnable information.
The proposed PEVIiT and PEYOLOS are inherited from
DeiT [Touvron et al., 2020] and YOLOS [Fang et al., 2021]
respectively, which are thus selected as baselines. It is worth
noting that both PEViT and PEYOLOS are not designed to
be high-performance models that beats state-of-the-art im-
age classification and object detection models, but to unveil
that destroying human-recognizable contents while preserv-
ing machine-learnable information is feasible.
Measurement of privacy protection. As shown in Figure 1,
the visual contents of encrypted images are nearly-completely
protected from recognizing by human eyes. To measure the
strength of privacy protection, we try to restore the origi-
nal images with various attack algorithms, including puzzle
solver attacker and gradient leakage attacker. Then, the qual-
ity of restored images can reflect the strength of privacy pro-
tection.
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Patch size: 16
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Top 1: 78.7%

NF= *
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Patch size: 16
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Figure 6: Reconstructed images by the jigsaw puzzle solver proposed in [Paikin and Tal, 2015], where the default image size is 224 X
224. Here, the effect of patch size, patch interval, and patch drop ratio on image reconstruction quality and classification performance is

investigated.

4.2 Comparison Results

ImageNet-1K classification. The summary of the image
classification results is shown in Table 1. Our PEViT-B works
well on images encrypted by MI, RS and RS + MI, while
DeiT-B does not. It is worth noting that although the per-
formance of PEVIiT-B is not state-of-the-art, it is applied on
encrypted images where the visual contents of images cannot
be recognized by human eyes, while the comparison methods
cannot. Moreover, RS and MI can be combined to further im-
prove data security but at the expense of performance. There-
fore, we conclude that PEViT-B achieves a trade-off between
performance and visual content protection. Moreover, it is
worth noting that the extra computation cost incurred by our
encryption strategies is negligible.

COCO object detection. The summary of the object detec-
tion results is shown in Table 2. PEYOLOS maintains the
same efficiency as YOLOS and the performance drop is only
~3.0. Although PEYOLOS does not outperform YOLOS, it
is currently the unique model to achieve a trade-off between
performance and visual content protection for object detec-
tion. It is worth noting that MI is not limited to YOLOS.
With minimal adaptations, other object detection frameworks
based on plain ViT can also be adapted to work on images
encrypted by MI. Recently, it has been shown that, with ViT
backbones pre-trained as Masked Autoencoders, ViTDet [Li
et al., 2022] can compete with the previous leading methods
that were all based on hierarchical backbones. By adapting
the way the image patches are mapped like PEYOLOS, PE-
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Figure 7: Impact of gradient leakage on the security of our method.
Left: original images. Middle: images encrypted by RS. Right: re-
covered images.

ViTDet can be readily obtained, achieving an AP of 41.2.
4.3 Attackers

Puzzle solver attacker. Jigsaw puzzle solver, i.e., recon-
structing the image from the set of shuffled patches, can be
used to attack the images encrypted with MS. Since this prob-
lem is NP-hard [Demaine and Demaine, 20071, solving jig-
saw puzzles of non-trivial size is impossible. Most of the
existing works in computer vision focus on the jigsaw puz-
zle problem composed of equally-sized image patches [Cho
et al., 2010; Pomeranz et al., 2011; Sholomon et al., 2013;
Paikin and Tal, 2015], in which only pixels that are no more
than two pixels away from the boundary of a piece are uti-
lized. We choose the solver proposed in [Paikin and Tal,
2015] to inveterate the effect of attacks. The reason is two-
fold: (1) Itis a fast, fully-automatic, and general solver, which
assumes no prior knowledge about the original image and (2)
It can handle puzzles with missing pieces.

The number of patches is the core factor determining the
security level of our paradigm, i.e., the smaller the size, the
more quantity, the safer. Also, there are other ways to en-
hance security such as adapting the way images are decom-
posed. Figure 5 and Figure 6 show that dropping some
patches, reducing the patch size or interval, or increasing the
image size can enhance the security at the cost of slight per-
formance degradation. In particular, even if 10% of the im-
age patches are dropped, the performance is only reduced by
1.6%, which allows users to drop patches containing sensitive
information. It is to be noted that no extra computation cost is
incurred by dropping some patches and reducing the interval.

Moreover, our paradigm can benefit from advances in
transformers. Pixel Transformer [Nguyen ef al., 2024] treats
an image as a set of pixels and shows the permutation-
invariant property. This may facilitate pixel-level shuffling
and mixing-up, further enhancing the security.

Gradient leakage attacker. It has been shown that the train-
ing set will be leaked by gradient sharing [Zhu ef al., 2019].
To evaluate the impact of gradient leakage on the security of
our method, we use the gradient leakage attacker to recover

Figure 8: Reconstruction attack on MI. Left: original images. Mid-
dle: images encrypted by MI. Right: reconstructed images.

the images encrypted by RS. The results are shown in Fig-
ure 7. It can be observed that (1) Gradient leakage attacker
can restore images and (2) the restored images are encrypted.
Therefore, we conclude that our paradigm does not prevent
gradient leakage attacks, but can make the attacked images
useless, thus protecting privacy.

Reconstruction attacker We use a recently proposed pow-
erful Transformer-based framework, MAE [He et al., 2022]
(tiny), to recover the original clean images from the images
encrypted by MI. We adapt MAE with two modifications: (1)
Patches are not dropped and (2) The linear patch embedding
is replaced by a nonlinear patch embedding, which is consis-
tent with the patch embedding used in PEYOLOS. Here the
nonlinear patch embedding is composed of two linear layers
separated by a GELU activation. Corresponding results are
shown in Figure 8. We observe that: (1) The style of recon-
structed images is very different from original images and (2)
Privacy-sensitive patches such as faces and texts are blurred,
and thus the reconstruction with MAE still cannot reveal the
original identity of faces or the contents of texts. These ob-
servations indicate that recovering the original clean natural
images from images encrypted by MI is a great challenge,
demonstrating the effectiveness of MI regarding privacy pre-
serving.

5 Conclusion

In this paper, we propose an efficient privacy-preserving
learning paradigm that can destroy human-recognizable con-
tents while preserving machine-learnable information. The
key insight of our paradigm is to decouple the encryption
algorithm from the network optimization via permutation-
invariance. Two encryption strategies are proposed to en-
crypt images: random shuffling to a set of equally-sized im-
age patches and mixing image patches that are permutation-
invariant. By adapting ViT and YOLOS with minimal adapta-
tions, they can be made (partially) permutation-invariant and
are able to handle encrypted images. Extensive experiments
on ImageNet and COCO show that the proposed paradigm
achieves comparable accuracy with the competitive methods,
meanwhile destroying human-recognizable contents.
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