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Abstract

Western music is an innately hierarchical system
of interacting levels of structure, from fine-grained
melody to high-level form. In order to analyze mu-
sic compositions holistically and at multiple gran-
ularities, we propose a unified, hierarchical meta-
representation of musical structure called the struc-
tural temporal graph (STG). For a single piece, the
STG is a data structure that defines a hierarchy of
progressively finer structural musical features and
the temporal relationships between them. We use
the STG to enable a novel approach for deriving a
representative structural summary of a music cor-
pus, which we formalize as a nested NP-hard com-
binatorial optimization problem extending the Gen-
eralized Median Graph problem. Our approach first
applies simulated annealing to develop a measure
of structural distance between two music pieces
rooted in graph isomorphism. Our approach then
combines the formal guarantees of SMT solvers
with nested simulated annealing over structural dis-
tances to produce a structurally sound, represen-
tative centroid STG for an entire corpus of STGs
from individual pieces. To evaluate our approach,
we conduct experiments verifying that structural
distance accurately differentiates between music
pieces, and that derived centroids accurately struc-
turally characterize their corpora.

1 Introduction

A prevailing theory among Western music theorists and mu-
sicologists states that Western classical music exhibits an im-
plicitly hierarchical structure [Simonetta et al., 2018]. While
several different theoretical systems have been proposed to
formalize this structural hierarchy [Marsden et al., 2013],
a widely accepted modern interpretation of the hierarchy
states that melodies form the bottom, followed by harmonic
contour, rhythmic patterns, disjoint and possibly overlap-
ping motifs, and finally contiguous sections [Nieto, 2015;
Mount, 2020; Dai et al., 2024]. Together, this composite hi-
erarchy encapsulates the overall structure of a piece.

To analyze musical structure computationally, many auto-
matic approaches have been developed for extracting struc-

ture at single levels of the structural hierarchy [Hsiao et al.,
2023; Levé et al., 2011; Chen and Su, 2021; Salamon et al.,
2014], including methods to analyze sub-hierarchies within
a single level [McFee et al., 2017]. However, music percep-
tion researchers have shown that the levels are not perceptu-
ally independent: they relate to one another in both “vertical”
(structural) and “horizontal” (temporal) directions [Narmour,
1983], interactions that have more recently been proven com-
putationally [Dai et al., 2024]. A comprehensive analysis of
a piece thus must integrate these inter- and intra-level interac-
tions into a unified model. Furthermore, while attempts have
been made to generate structured music [Young et al., 2022;
Huang er al., 2023; Wang et al., 2024], to our knowledge,
no existing research has examined generating music adhering
to a complete, musically representative structural hierarchy,
since no mechanism to computationally derive a complete
structural specification from a desired music corpus currently
exists. Such an encapsulation of music structure could also
play a critical role in the generation of well-formed music by
serving as a system of constraints on generative models.

Despite prior attempts at such an integrated, computa-
tional model of musical form, two challenges remain. First,
prior approaches do not completely encapsulate the ver-
tical and horizontal relationships of the structural hierar-
chy, cannot handle polyphonic music, or are not fully au-
tomatic [Hamanaka et al., 2016; Simonetta et al., 2018;
Mokbel et al., 2009; Carvalho and Bernardes, 2020]. Sec-
ond, to our knowledge, existing methodologies focus only on
individual pieces with no attempt to summarize the hierarchy
over a music corpus to synthesize its overall structure and ob-
tain a holistic representation of the entirety of the corpus.

To address these challenges, we introduce the structural
temporal graph (STG) as a unified model of complete musi-
cal structure. The STG is a k-partite directed acyclic graph
whose levels form the structural hierarchy, and edges encode
temporal relationships between adjacent levels. We use sim-
ulated annealing to develop a measure of structural distance
between two STGs based on graph isomorphism, and to ob-
tain the overarching structure of a corpus of pieces, we de-
velop an approach to derive a representative centroid graph
from a corpus of STGs. We formalize centroid derivation
as a nested NP-hard combinatorial optimization problem ex-
tending the Generalized Median Graph problem [Jiang erf al.,
2001], and propose a solution combining nested simulated an-
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nealing with the formal guarantees of SMT solvers to produce
a structurally sound result. Our experiments show that struc-
tural distance accurately differentiates pieces, with its perfor-
mance reliant on the complete hierarchy, and that derived cen-
troids accurately structurally characterize their corpora.'

In summary, the contributions of this paper are as follows:

1. We propose the structural temporal graph, a meta-
representation of musical form unifying the entire struc-
tural hierarchy, and develop a structural distance mea-
sure between two STGs rooted in graph isomorphism.

2. We formalize the music summarization problem as a
nested NP-hard combinatorial optimization problem,
and contribute a novel solution using both stochastic and
SMT-based techniques.

3. We conduct experiments verifying structural distance
accurately differentiate pieces, and music corpora are ac-
curately characterized by their derived centroids.

2 Related Work

Single-Level Analyses. Many existing algorithms extract
structure at single levels of the music structural hierarchy. To
extract segmentation, The Music Structure Analysis Frame-
work (MSAF) toolkit [Nieto, 2015] features factorization-
based techniques, including ordinal linear discriminant analy-
sis [McFee and Ellis, 2014b], convex nonnegative matrix fac-
torization [Nieto and Jehan, ], checkerboard [Foote, 2000],
spectral clustering [McFee and Ellis, 2014a], the Structural
Features algorithm [Serra et al., 2014], 2D-Fourier Magni-
tude Coefficients [Nieto and Bello, 2014], and the Variable
Markov Oracle [Wang and Mysore, 2016]. Motif discovery
algorithms search for disjoint, repeating, and possibly over-
lapping patterns in a piece. String-based approaches [Wang
et al., 2015] represent music as a chromagram and detect
patterns with sub-string matching, and geometry-based ap-
proaches [Hsiao et al., 2023] represent music as multidi-
mensional point sets, and translatable subsets identify pat-
terns. Recent approaches in harmony identification are cen-
tered around neural networks, such as using transformers
to incorporate chord segmentation into the recognition pro-
cess [Chen and Su, 2019; Chen and Su, 2021]. Until very
recently, the Melodia algorithm was the state of the art in
melody extraction, but recent approaches have shifted to neu-
ral networks [Kosta et al., 2022; Chou et al., 2021].

Integrated Models of Structure. Music theorists have at-
tempted to unify the structural hierarchy with frameworks
such as Schenkerian theory [Marsden, 2010] and the Gen-
erative Theory of Tonal Music (GTTM) [Lerdahl and Jack-
endoff, 2020]. Schenkerian analysis applies a series of reduc-
tions that progressively simplify a musical piece by removing
layers of structure. Attempts to automatically derive Scherk-
erian analyses are intractable for all but very short pieces,
and have low accuracy [Marsden, 2010]. GTTM generates
four different structural hierarchies (grouping structure, met-
rical structure, time-span tree, and prolongational tree) for a
piece of music, to model human cognition [Hamanaka et al.,

"Paper code: https://github.com/ilanashapiro/stg_optimization

2016]. Computational implementations GTTM (e.g. the Au-
tomatic Timespan Tree Analyser [Hamanaka er al., 2016])
cannot handle polyphonic music, and are not fully automatic.
Improved results with these theories are unlikely, as neither
gives the precision required for complete computational im-
plementation [Marsden et al., 2013].

Such theoretical limitations led to a modern interpreta-
tion of the structural hierarchy: segmentation, motifs (dis-
joint/repeating patterns), thythm, harmony, and melody [Ni-
eto, 2015; Mount, 2020; Dai et al., 2024]. Many ap-
proaches partially encode the hierarchy in graphs: topo-
graphic mappings for melodic progressions [Mokbel er al.,
20091, graphs for interactions between sections, melody, har-
mony and rhythm [Dai et al., 2020], multi-edge graphs for
bar-level relations [Bhandari and Colton, 2024], and undi-
rected graphs for melodies and their reductions [Orio and
Roda, 2009]. The prototype graph [Young et al., 2022] is
a bipartite network relating prototype elements to the music
they represent. Attempts to model the structural hierarchy
with formal grammars [Sidorov et al., 2014; Finkensiep et
al., ] are limited to segmentation and motifs.

None of these approaches encapsulate the entire hierarchy,
and to our knowledge, there have also been no attempts to
synthesize representative structure from a music corpus.

3 Structural Temporal Graph

To address the lack of a fully automatic complete encapsula-
tion of polyphonic musical structure, we introduce the struc-
tural temporal graph (STG), a unified meta-representation
of musical structure that captures the levels of the music
structural hierarchy and the temporal relationships between
them. The STG is a k-partite directed acyclic graph (DAG),
where each of the k layers encodes a level in the music
structural hierarchy.? Following the modern music theoretic
interpretation of the hierarchy [Nieto, 2015; Mount, 2020;
Dai et al., 2024], from top to bottom we denote the lev-
els to be contiguous segmentation, motifs (both disjoint and
overlapping), thythmic contour, relative keys, functional har-
monic chords, and melodic contour. The STGs we build in-
clude every level in the hierarchy except rhythmic contour,
for which we were unable to access an analysis algorithm.
We run individual analysis algorithms to generate each level
of the hierarchy, which is elucidated in Section 6. Before
formally defining the STG, we build intuition by walking
through the derivation of an STG from an annotated piece.

Building the Graph. We walk through the derivation of an
STG from Beethoven’s Biamonti Sketch No. 461 that uni-
fies contiguous segmentation; disjoint, overlapping motifs;
relative keys; functional harmonic chords; and melodic con-
tour. First, we manually analyze the piece by annotating its
score with computer-generated hierarchical structure analy-
ses in Figure 1. Each colored annotation corresponds to one
level of the structural hierarchy. In purple, we see that this
piece has one large contiguous segment, labeled 0. Next, dis-
joint motifs are in red. Motif O appears twice, at the begin-
ning of bars 1 and 2. The gray filler bar indicates no more

’Individual levels themselves can form sub-hierarchies of in-
creasing granularity, which the STG supports
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Figure 1: Computer generated analysis of Beethoven’s Biamonti
Sketch No. 461.
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Figure 2: Spatial Visualization of Figure 1

motifs appear in the latter half. In orange, we see this piece
is in a single key, Eb Major. We label this key symbolically
as OM to indicate this is relative key number O (i.e. the first
key) in M for major. Subsequent keys would be numbered by
their positive interval difference from the previous key within
the 12-tone scale. We next see functional harmonic chords in
green annotated with Roman numeral chord symbols, and fi-
nally melodic contour intervals in blue. Notably, such gener-
ated analyses may be slightly inaccurate (e.g. the third green I
chord should correspond to the previous beat). Since the STG
is a fully automatic meta-representation of musical structure,
it is only as accurate as the analysis algorithms it uses.

We then equivalently represent the ground-truth annota-
tions in Figure 1 as the stacked rectangles in Figure 2 to elu-
cidate how each level of the structural hierarchy relates to the
next. Finally, we transition to the STG in Figure 3. There
is a surjection between Figures 1, 2, and 3. The edges and
nodes of the STG, respectively, correspond to the vertical and
horizontal alignments of the rectangles in Figure 2. All motif
nodes, including the gray filler node indicating no motifs for
that interval, fall into the time interval of purple segmentation
node 0. The orange key node OM starts in the first red motif
node 0, and ends in the last gray motif filler node (i.e. the key
spans the entire piece). All the green chord nodes fall in the
orange key node’s interval. Finally, we see how blue melodic
contour nodes relate to green chord nodes. For instance, the
first melody interval -2 begins and ends in the first chord node
I, and the penultimate melody interval -1 begins in the fourth
V7 chord node and ends in the fifth I chord node.

Formally, the nodes of an STG encode labeled musical sec-
tions along with their associated time intervals generated by
the relevant analysis algorithm. Nodes are sorted within each
level based on start time, and edges encode temporal relation-
ships between nodes of adjacent levels. Specifically, for node
n at level 7, n must have either one or two parents in level
1 — 1 directly above it: one if its associated time interval is a
total subset of its parent’s, and two if its time interval begins
in one parent’s, and ends in the other’s.

Figure 3: STG for Beethoven’s Biamonti Sketch No. 461

4 Structural Distance

At a high level, the distance between two STGs is the mini-
mum number of edit operations (deletion, insertion, and sub-
stitution of nodes/edges) required to transform one graph to
the other, also known as graph edit distance (GED) [Ser-
ratosa, 2021]. However, GED measures isomorphic similar-
ity between two graphs, i.e. it evaluates how closely graph
structures match independent of labeling. We cannot cur-
rently leverage STG isomorphism because STGs are “com-
pressed,” with structure encoded in node ids. Specifically,
structure is encoded in the defining features of each node id,
and in the intra-level linear temporal orderings for each anal-
ysis (i.e. the horizontal order of each level in the graph, cur-
rently determined by node index). Thus, in order to reason
about STGs isomorphically, we must augment them to encode
all structural attributes directly within the graph’s topology.
To encode element labels, recall that each node id encodes
a defining feature set. All nodes can thus be alternatively en-
coded as instances of their feature prototypes. We create a
prototype node for each feature and assign it as a parent of
the corresponding instance node(s) with that feature. For in-
stance, segmentation nodes encode a single feature: the sec-
tion number they correspond to. Finally, to encode intra-level
linear temporal relationships, we form a linear chain with
edges between pairs of horizontally adjacent nodes. This re-
sults in a structurally complete STG we can reason about iso-
morphically. Figure 4 shows the first two levels of the STG
from Figure 3, with yellow prototype nodes on the left for
each instance feature (section number for segmentation nodes
S, and pattern number and filler for motif/pattern nodes P),
red edges connecting prototype features to instance nodes,
and green edges for the pattern layer intra-level linear chain.

4.1 Graph Alignment Annealing

GED is a NP-hard combinatorial optimization problem [Ser-
ratosa, 2021], intractable for most STGs. Most GED approx-
imation algorithms are slow and of dubious accuracy, and
more generalized than we require [Abu-Aisheh et al., 2015].
We thus introduce a new measure of structural distance com-
puted with simulated annealing (SA), a stochastic optimiza-
tion technique that estimates the global optimum of a discrete
cost function. It comprises an objective “energy” function to
minimize and a “move” function for generating a new solu-
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Figure 4: Augmenting the first two levels of the Beethoven STG.
Yellow prototype nodes have the format feature_name:feature_value

Algorithm 1 Alignment Annealer Move Function

1: function MOVE

2: Choose random index ¢ in P

3: Choose random index j from the same partition to
which i belongs

4: Swap rows ¢ and j in P

5: end function

tion from the current state. An annealer begins at a high tem-
perature indicating the likelihood of accepting worse solu-
tions to explore the solution space, and ends at a low temper-
ature to refine near-optimal solutions [Guilmeau et al., 2021].

To use SA, we convert the augmented STGs to adja-
cency matrices, and pad each matrix with zero-arity “dummy
nodes” so they have identical dimensions. Given such matri-
ces Ag, and Ag,, their distance is given in Equation 1, where
||.|| » denotes the Frobenius norm. When Ag, and A, are

optimally aligned, DIST(A¢, , Ag,) is simply v GED.
DIST(AGNAGz) = ||AG1 - AGz ||F 6]

Finding permutation matrix P optimally aligning Ag, to Ag,
to minimize Equation 1 is NP-hard, so we use SA. The align-
ment annealer’s energy function is given in Equation 2. Given
optimal P, Equation 2 computes the structural distance be-
tween Ag, and Ag,.

ENERGY(Ag,, Ag,, P) = DisT(Aq,, P Aq,P)  (2)

The move function for modifying P at each step of SA is
given in Algorithm 1. A partition is either the set of instance
nodes at a single level in the STG (e.g. the set of functional
harmonic key nodes), or the set of prototype nodes for a given
feature (e.g. chord quality). Permuting only within valid par-
titions leverages the STG’s inherent structure to avoid invalid
moves globally detrimental to Equation 2.

We set the alignment annealer’s initial state to P = I, the
identity matrix. By running the annealer for sufficiently many
steps, we obtain optimal P.

5 Centroid Derivation

Centroid STG derivation is a constrained version of the Gen-
eralized Median Graph (GMG) problem, which, given a set of
graphs, seeks to construct a prototype graph minimizing the
distances over the input set graphs [Blumenthal ez al., 2021].
Formally, given a corpus of graphs C, the GMG g is:

g =argmin »_ d(g,G) 3)
Y gec

No self-loops

. No instance-prototype or prototype-prototype edges

3. No edges from a prototype to an instance whose fea-
ture set does not include the proto feature (e.g. melody
interval sign proto-segmentation instance)

4. No edges from lower to higher level instance levels
(must respect the hierarchy)

5. No edges between non-adjacent instance levels (must

respect k-partite structure)

DN —

Table 1: Global Constraints

where d is the distance measure. GMGs have wide appli-
cations in representation-based learning, particularly in bi-
ological settings [Mukherjee e al., 2009]. Prior attempts
at the GMG use genetic search [Jiang er al., 2001], linear
programming[Mukherjee er al., 2009], block coordinate up-
dates [Blumenthal ez al., 2021], and median graph shift clus-
tering [Jouili et al., 2010]. To our knowledge, GMGs have
never been applied to the music domain. Centroid STG
derivation also operates in a significantly more constrained
search space than the canonical GMG, since the centroid must
be a well-formed STG. We thus propose a new approach com-
bining nested simulated annealing with SMT solving.

5.1 Bi-Level Simulated Annealing

Given padded adjacency matrix A, for an augmented cen-
troid STG and its associated corpus of matrices C' = {A¢}
that are optimally aligned to A,, we seek to minimize LOSS
in Equation 4, where DIST is as in Equation 1.
1
L0ss(A,,C) = — Y DIsT(4,, Ag) (4)
C
AgeC

The centroid annealer’s energy function is given in Equation
5, where Ciigneq is the corpus aligned to the current centroid
Ay, a process itself requiring SA as in Section 4.1 to obtain
the optimal alignments. Finding the centroid A, minimizing
Equation 4 is thus a nested NP-hard problem (GED and min-
imizing over these distances) requiring nested SA.

ENERGY(Ag,, Ag,, P) = LOSS(Ay, Ciigned) (5)

As the centroid annealer’s temperature cools, the loss con-
verges as the centroid is increasingly closely aligned to its
corpus. Thus, as the centroid annealer’s temperature cools,
we scale down the number of steps and max temperature of
the nested alignment annealer.

The centroid annealer’s move function for modifying the
centroid A, at each step of SA is given in Algorithm 2. To
move strategically, we build the score matrix S revealing
which edge(s) in A, contribute most to the loss. We add or
remove the edge at a highest score coordinate meeting the
criterion in Algorithm 2. In particular, a globally structurally
invalid move induces a terminally invalid structure in the cen-
troid by violating one of the rules in Table 1. Some locally
invalid moves, however, such as removing an edge in an intra-
level linear chain, must be allowed as intermediate steps to a

3See Appendix A on arXiv (https://arxiv.org/abs/2502.15849) for
precise cooling schedule
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Algorithm 2 Centroid Annealer Move Function

1: function MOVE

2: Calculate the list of absolute difference matrices
DL = HAg - AG1| for AGi € Oaligned]
3: Calculate the element-wise sum-of-distances score

matrix. Higher score at coord (i, j) means that coord has
a higher impact on the loss

4: Flatten X and sort in descending score order

5: Partition Xj,, by unique score, and shuffle each par-
tition randomly (increases variability of moves)

6: Iterate through the indices (i,7) of the sorted,
partition-shuffled Xp,. Stop at the first (highest score)
(4, 7) such that flipping the (¢, j) edge in A, is not:

* a globally structurally invalid move

* a move undoing the most recently accepted move
(avoid oscillating states)

* a move the annealer has already locally rejected
since the last accept (avoid getting stuck)

7: Execute move: A,[i,j] =1 — Agy[i, j]

8: end function

more optimal structurally valid state. Importantly, the STGs
being compared must have the same number of levels; other-
wise, edges spanning multiple levels must be allowed as they
can be intermediate states towards the deletion of an entire
level. Based on our experiments, this would be unacceptably
detrimental to the performance of the annealer.

We set the centroid annealer’s initial state A, to the cor-
pus STG in the corpus with the min loss over the rest of the
corpus. Running the annealer for sufficient steps gives an ap-
proximate centroid that may contain locally invalid states.

5.2 Graph Repair with SMT Solving

In order to obtain a structurally sound centroid, we must “re
pair” the approximate centroid A, by projecting it to the near-
est valid STG. We achieve this by encoding the STG’s struc-
ture as constraints in quantifier-free first-order logic formulae
in the SMT (satisfiable modulo theory) solver Z3 [De Moura
and Bjgrner, 20081, which gives us formal guarantees on the
soundness of the centroid. We use Z3’s optimizer to minimize
an objective over the constraints. Given approximate centroid
Ay and valid centroid A7, our objective is Equation 6.

ZZ |A‘7’J o ‘JLJ

Our constraints include the global rules in Table 1, as well
as additional constraints for instance nodes in Table 2, and
finally prototype nodes in Table 3. We model relationships
between nodes with uninterpreted functions.

Z3’s optimizer supports integration with large neigh-
borhood search (LNS) and can return intermediate semi-
optimized solutions after a timeout. We run the optimizer
with LNS, with initial soft constraints set to the approximate
centroid A, to guide the optimizer. Even so, naively running

OBJ(Ag, A7)

(6)

4Segmentation, keys, chords, and melody, but not motifs
>Segmentation, keys, and chords only

1. Every instance node must have 1 or 2 instance parents
in the level above

2. The instances nodes at level [ must form a linear
chain/total ordering via intra-level edges

3. The start and end nodes of the linear chain must have
the previous level linear chain’s start and end nodes,
respectively, as parents.

4. Ininstance levels with non-overlapping nodes,”* the first
parent of a node at linear chain index ¢ > 0, must not
come before node ¢ — 1’s last parent in the previous
instance level’s linear chain

5. The first parent of an instance node at linear chain index
¢ > 0, must not come before node ¢ — 1’s first parent in
the previous level’s linear chain

Table 2: Instance Constraints

1. Every instance node must have exactly one prototype
parent per feature

2. For levels that require it,’ no two linearly adjacent in-
stance nodes can have identical prototype parent sets

Table 3: Prototype Constraints

the optimizer on a full STG is generally intractable due to
combinatorial explosion, so we partition A, into subsets we
can apply the constraints to incrementally.

We first partition A, into pairs of consecutive instance lev-
els without their prototypes (e.g. a segmentation/motif pair
of instance levels), and optimize the instance constraints in
Table 2 and relevant global constraints in Table 1 over each
partition incrementally. We combine the results of each par-
tition until we build a valid centroid subgraph of instance
nodes. Then, we partition A, into single levels, each contain-
ing the instance nodes of that level and all prototype nodes for
each instance feature at that level (e.g. segmentation instance
nodes + section number prototype nodes). The instance con-
straints are already optimized; we need only optimize the pro-
totype constraints in Table 2 and relevant global constraints in
Table 1 over the possible prototypes. This gives us the com-
plete, structurally sound centroid qu we seek.®

6 Experiments

We conduct experiments to verify that: (1) structural dis-
tance accurately differentiates individual pieces, with its per-
formance reliant on the complete hierarchy, and (2) the cen-
troid encapsulates the overarching structure of its corpus.

To evaluate our approach, we create a dataset of poly-
phonic, symbolic MIDI piano music from the Kunstderfuge
and Classical Piano MIDI datasets.Since some single-level
analyses we use to generate STGs require the data to be in au-
dio and CSV format, we convert MIDI to CSV (with a manual
script) and to MP3 (with Fluidsynth).

We then generate an STG for each piece. For segmenta-
tion, we use the flat Structural Features algorithm [Serra et al.,
2014] for segment boundaries and 2D-Fourier Magnitude Co-

®See Appendix B on arXiv for centroid derivation visualization
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Figure 5: Relative Error: Computed vs Ground-Truth Structural Dist

efficients [Nieto and Bello, 2014] for segment labels, both of
which are provided by the Music Structure Analysis Frame-
work [Nieto, 2015]. For motifs, we use the BPS-motif discov-
ery algorithm [Hsiao ef al., 2023], and for relative keys and
functional harmonic chords we use the pretrained Harmony
Transformer V2 [Chen and Su, 2021]. Finally, for melodic
contour, we use the Melodia algorithm [Salamon et al., 2014].

6.1 Structural Distance Evaluation

Mathematical Verification. Given two STGs GG, G5 recall
that under optimal alignment, DIST(Aq,, Ag,) is VGED.
To evaluate our alignment annealer, we set G; with |F|
edges as the “base graph.” From (G;, we generate a series
of STGs G by randomly adding [|E| - p] valid edits to Gy
(add/remove edge, verified with Section 5.2 Z3 solver), where
p € {0.1,0.2,...,3} (i.e. pranges from 10-300% edits in the
size of |E'1|). We evaluate structural distance as a function of
p for five base STGs G; by computing the relative error from
experimental DIST(Ag,, Ag,) to ground truth structural dis-

tance /[|E1| - p] (Figure 5). Relative error is close to O (per-
fect alignment) for p < 1.8, and only deteriorates, at worst,
to 10.33% at p = 3 for the Beethoven 461 base graph.

Musical Evaluation. To verify structural distance accurately
differentiates pieces, we construct 210 STG sets from 32
pieces by J.S. Bach (21), Mozart (2), Beethoven (3), Schu-
bert (2), and Chopin (4). Each set is a unique combination of
5 pieces, one from each composer, such that a piece’s duration
is within 7 seconds of any other piece in the set, since struc-
tural distance between disparate length pieces could be due
to STG size differences rather than the local structural varia-
tions we aim to distinguish.” We compute pairwise structural
distances between the STGs in each set with our Section 4
graph alignment annealer (2000 iterations, max and min tem-
perature of 2 and 0.01) on 8 Nvidia RTX 2080 GPUs with
11GB RAM. This results in 210 structural distance matrices,
which we average to a single mean distance matrix.

We evaluate structural distance against three baselines over
the same 210 piece combinations. Baseline 1 is the mean dis-
tance matrix obtained by taking the cosine similarity between
feature vectors extracted from each MIDI file using Music21.
Baseline 2 is the mean distance matrix over pairwise Stent
weighted audio similarities (SWAS) for each piece’s paired
MP3 file. SWAS is a composite audio similarity metric com-
prising zero-crossing rate, rhythm, chroma, spectral contrast,

"See Appendix C on arXiv for input pieces/sets details

Metric | s p-value
Ours: SD 0.8207 0.0130
Baseline 1: MIDI Features 0.4681 0.3150
Baseline 2: SWAS 0.5775  0.1690
Baseline 3: WL Kernel (+NH base) | -0.8389 0.0110

Table 4: Mantel Test with Spearman’s rank correlation coefficient
for normalized mean distance matrices

Metric | ps p-value
SD - complete STG (5 levels) | 0.8207 0.0130
SD - 4 levels 0.7842  0.0390
SD - 3 levels 0.7173  0.0680
SD - 2 levels 0.6930 0.1150
SD - 1 level -0.4377 0.2810

Table 5: Mantel Test with Spearman’s rank correlation coefficient
for normalized mean distance matrices with STG level ablations
(first row is same as Table 4)

and perceptual similarity metrics, which we weigh equally.
To demonstrate existing graph comparison metrics are insuf-
ficient, Baseline 3 is the Weisfeiler-Lehman (WL) Kernel ap-
plied pairwise to the STGs in each set, with five iterations and
Neighborhood Hash (NH) as the base kernel. The WL Kernel
iteratively refines node labels based on their neighbors, and
uses a base kernel (in this case, NH, which efficiently cap-
tures local graph structure by distinguishing neighborhood
configurations) to compare them [Shervashidze et al., 2011].
Our ground-truth is the stylistic similarity indices between
composers using human annotations and metadata from “The
Classical Music Navigator” [Smith and Georges, 2014].

We normalize all matrices to [0, 1] range and apply the
Mantel test with Spearman’s rank correlation coefficient pg to
evaluate our results against the ground-truth similarity from
the Classical Music Navigator (Table 4). p; is highest (with
p < 0.05) for structural distance (SD in Table 4), verify-
ing that structural distance accurately differentiates between
pieces and captures human conception of musical similarity.

Finally, to verify the importance of the full hierarchy, we
repeat this experiment with bottom-up level ablations of the
STG (Table 5). The structural distance algorithm’s perfor-
mance incrementally declines each time a layer of the STG is
removed, confirming the necessity of the complete hierarchy.

6.2 Centroid Evaluation

Mathematical Verification. As a correctness check, we eval-
uate derived centroids against constructed ground truth cen-
troids. Given base STG ¢ with | E| edges, we create a syn-

thetic corpus C}, of k STGs by randomly adding (@] valid
edits to g, k times, as in Section 6.1. By construction, g must
be a true centroid with min possible loss over C (Equation
4).8 We derive candidate centroid gq from CY, and compare
to g. We evaluate g4 against the naive centroid g,, i.e., the
STG already in C' with min loss over the rest of C.

8Proof in Appendix D on arXiv
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Figure 6: Relative Error in Loss ([0,1] range): Derived and Naive
Centroids vs Ground-Truth Centroid

We choose our base STG g to be Beethoven’s Biamonti
Sketch No. 461, which, when augmented, has |E| = 97
edges. Thus, we add [9771 = 49 edits to g, k times, to gener-
ate a synthetic corpus CY, of size k with g as its true centroid.
49 edits is structural distance of 7.0, since structural distance
between optimally aligned graphs is vV GED (Equation 1).

We repeat this process for k € [3, 14]. For each corpus Cy,
we use the same GPU infrastructure as Section 6.1 to gen-
erate approximate centroids with the centroid annealer (1000
iterations, max and min temperature of 2.5 and 0.05). At each
iteration, we run the nested graph alignment annealer, start-
ing at 500 steps, max and min temperature of 1 and 0.01, and
ending at 5 steps, max and min temperature of 0.05 and 0.01,
as the outer centroid annealer’s loss converges (see Section
5.1). We run our Z3 optimizer to generate each final, repaired
centroid g4, using 24 Intel Xeon cores and 32GB RAM.

There may be multiple non-isomorphic true centroids with
the same minimal loss over Cj. Evaluating the relative er-
ror between optimal loss from g and experimental loss from
gq thus gives a more rigorous assessment of g, than directly
comparing g4 to g. Figure 6 shows the relative error in loss
EY between g and g, for k € [3,14] in red, compared to
the relative error in loss £ between g and gy, in blue. We

observe EY is consistently small, with max EJ = 2.99%
at k = 5, and min EJ = 0 (i.e. gq is a true centroid) at
k =10,11. g4 also greatly outperforms g,,: for nonzero £ ,

EY¢ is on average 17.23 times worse than EY .

Musical Evaluation. This experiment requires pieces with
more length (and STG size) variation than Section 6.1, as cen-
troids derived from very similar input graphs may be trivial
by construction and fail to generalize to more diverse corpora.
We thus relax the Section 6.1 relative duration restriction to
80 seconds, and generate centroid STGs for four corpora with
pieces by Alkan (11), Chopin (8), Haydn (12), and Mozart
(14) with the same architecture as before.

To verify each derived centroid g musically characterizes
its corpus C, we use rustworkx [Treinish ez al., 2022] to enu-
merate the set of all 5-node subgraphs ({S5}) common to ev-
ery STG in C, thus extracting the most structurally salient
musical relationships in C' 10 Foreach C, we evaluate the per-
centage of the graphs in { S5} that are also subgraphs of g; i.e.

°See Appendix C on arXiv for input pieces details

1%L arger subgraphs encode more robust relationships, but mining
k-node subgraphs for k& > 5 was intractable, and approximate sub-
graph mining tools were too imprecise for meaningful conclusions

Composer | Size of {S5} | % in Derived Centroid

Alkan 1804 76.67%
Chopin 2111 70.06%
Haydn 2504 63.90%
Mozart 1900 70.68%

Table 6: Analysis of Common 5-Node Subgraphs {55}

q ..." Q
@ ©

Figure 7: Example Common 5-Node Subgraph of Mozart Corpus

we evaluate how well g captures the most structurally salient
musical relationships in C' (Table 6). On average, 70.33% of
each {S5} aligns perfectly with g, confirming each centroid
captures the musically essential information of its corpus. To
visualize these essential musical substructures, consider a 5-
node subgraph common to the Mozart corpus and captured
in its centroid (Figure 7). This reveals that a characterizing
feature of the Mozart corpus is two consecutive major chords
in the same major key, which in turn falls in a motif/pattern.

7 Conclusion and Future Work

We presented the structural temporal graph (STG) to encap-
sulate complete, hierarchical musical structure; a measure of
structural distance between STGs; and an algorithm to derive
a centroid STG structurally representing a music corpus. We
showed structural distance and derived centroids both mathe-
matically approximate ground truth; structural distance accu-
rately differentiates music pieces; and derived centroids cap-
ture the essential structural relationships of their corpora.

The STG and derived centroids lay the groundwork for
structured, controllable sequence data generation. For ex-
ample, users could modify the STG of a generated music
piece to update constraints on a generative model. Beyond
music, the STG can model structural hierarchies for any se-
quence data given algorithms for analyses at each level. For
instance, an STG could encode a poetry hierarchy—uverses,
stanzas, lines—with its centroid structurally summarizing the
poetry corpus. Such applications enable human refinement of
machine-generated data to meet desired structural specifica-
tions across fields.
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