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Abstract
With the rapid development of the internet, sharing
photos through Social Network Platforms (SNPs)
has become a new way for people to social-
ize, which poses serious threats to personal pri-
vacy. Recently, a thumbnail-preserving image pri-
vacy protection technique has emerged and gar-
nered widespread attention. However, the exist-
ing schemes based on this technique often intro-
duce noticeable noise into the protected image, re-
sulting in poor visual quality. Motivated by the
observation that a latent vector can be decoupled
into the detail and contour components, in this pa-
per, we propose HIPP, a thumbnail-preserving im-
age privacy protection scheme that decouples the
detail and contour information contained in the la-
tent vector corresponding to the original image and
reconstructs details by generation model. As a re-
sult, the generated protected image appears natu-
ral and has a thumbnail similar to the original one.
Moreover, the protected images can be restored to
versions that are indistinguishable from the original
images. Experiments on CelebA, Helen, and LSUN
datasets show that the SSIM between the restored
and original images achieves 0.9899. Furthermore,
compared to the previous works, HIPP achieves the
lowest runtime and file expansion rate, with values
of 0.07 seconds and 1.1046, respectively.

1 Introduction
In recent years, with the rapid development of the internet,
more and more people tend to share various images about
their lives on Social Network Platforms (SNPs). In 2023,
there were 5.07 billion social media users worldwide [Pet-
rosyan, 2024], with approximately 2 billion users upload-
ing photos on Instagram monthly [Dixon, 2024] and around
243, 055 new photos being uploaded to Facebook every
minute [Kevin, 2024]. Although SNPs provide convenient
sharing and communication, bringing users closer together,
they have introduced a range of privacy issues as images often
contain users’ personal private information such as identity

∗Lina Wang and Run Wang are corresponding authors
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Figure 1: The overview of the difference between previous works
and HIPP. (a) Previous works. The protected image processed by
these schemes appears noisy and cannot be analyzed for valid data.
(b) HIPP. The generated protected image appears natural, misleading
malicious users into obtaining fake data during analyzing.

and location [Such and Criado, 2018; Morales et al., 2021;
Fan, 2019; Zeng et al., 2015; Li et al., 2024]. For one
thing, malicious users may analyze the content of images on
SNPs to obtain private information of users [Barnes, 2006;
Narayanan and Shmatikov, 2009]. For another, SNPs them-
selves may be curious about the user information contained
in the uploaded images [Isaak and Hanna, 2018; Mazzarolo
et al., 2021; Ra et al., 2013]. As traditional image encryption
ensures that all information in the original image is invisi-
ble, providing maximum privacy protection but limiting the
sharing experience of non-sensitive information [Singh and
Singh, 2022; Krishna et al., 2022; Deng et al., 2023]. Par-
tial image protection makes detected sensitive areas invisible
while keeping the resting unchanged for original visual ef-
fect preservation [Beugnon et al., 2019; Morris et al., 2023;
Zhang et al., 2023a; He et al., 2024a]. Unfortunately, the
sensitive areas in images are prone to omission, posing a risk
of privacy leakage. Another popular technology for privacy
protection is named face anonymization[Maxim et al., 2020;
Li et al., 2023; He et al., 2024b], which works by modifying
facial features to alter the appearance. However, this technol-
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ogy only focus on faces, ignoring that other content in shared
images may reveal sensitive personal information such as cur-
rent location and home address.

In view of this, a novel thumbnail-preserving image pri-
vacy protection technique has been proposed, which is usu-
ally categorized into two types: 1) complete thumbnail
preservation [Wright et al., 2015; Tajik et al., 2019; Chai
et al., 2022; Zhang et al., 2022c]; 2) approximate thumb-
nail preservation [Marohn et al., 2017; Zhang et al., 2022b;
Ye et al., 2023; Zhang et al., 2023b; Chowdhury et al., 2024;
Zhao et al., 2024]. On the one hand, the technique protects all
image details within thumbnail blocks by disturbing the spe-
cific pixel values to prevent malicious users from extracting
privacy information from the details of images displayed on
SNPs. On the other hand, it preserves the overall visual effect
of the original image for online browsing and management by
ensuring that the protected image has a same or approximate
thumbnail to the original one. As shown in Figure 1(a), the
uploading user, i.e., the image owner, processes the original
images locally and uploads the protected images into SNP.
The malicious user, who is curious about the privacy infor-
mation of other users, may collect a large number of images
displayed on SNP but cannot analyze the detail privacy infor-
mation within them. Although the existing works achieve the
goal of protecting image privacy while retaining overall vi-
sual effect, the generated protected image often contains a lot
of noise as shown in Figure 1(a), leading to poor visual per-
ception and poor sharing experience. Meanwhile, malicious
users can easily aware that the image is protected and target
it for attacks.

Motivated by the observation that the latent vector corre-
sponding to the image can be decoupled into the detail and
contour parts, in this paper, we propose HIPP, a reversible
scheme based on latent vector decoupling to achieve image
privacy protection for social images sharing. Unlike the ex-
isting schemes, our scheme applies a detail information ex-
tractor to decouple the vector into the detail and contour vec-
tors in the latent space instead of directly utilizing encryp-
tion or other obfuscation techniques in the image space. The
new vector is composed of the original contour vector and the
replaced detail vector, which can be utilized to generate the
protected image with high visual quality by generation mod-
els. Moreover, as protected images are indistinguishable from
the real images, the malicious user cannot aware that the pro-
tected images displayed in SNP are fake images and analyze
the fake privacy data. The main contributions of our scheme
proposed in this paper are as follows:

• We propose a novel reversible image privacy protection
scheme that generates naturally appealing protected im-
ages that are indistinguishable from real natural images,
improving visual quality for better sharing experience
and misleading malicious users into obtaining incorrect
personal private information.

• We design a detail information extractor that can de-
couple the detail and contour information contained in
the latent vector corresponding to the image. Mean-
while, generation models are applied to reconstructing
the protected images with different details, which pro-

vides a new perspective for future research in the area of
thumbnail-preserving image privacy protection.

• Experimental results demonstrate that the generated pro-
tected images appear natural without any visible noise.
Moreover, our scheme achieves the lowest runtime and
file expansion rate compared to existing methods, im-
proving its practical value.

2 Related Work
Image Privacy Protection for SNPs
As the earliest method for image privacy protection, tradi-
tional image encryption schemes [Singh and Singh, 2022]
encrypt the whole image into a snowflake-like ciphertext by
the delivered key, preserving no visual information related
to the original image and limiting content sharing. Conse-
quently, a partial image privacy protection approach, which
only protects areas related to privacy within the image, has
gained popularity. Initially, these areas are protected by sim-
ple techniques such as blurring (adding noise) [Neustaedter
and Greenberg, 2003; Neustaedter et al., 2006], pixelation
(replacing pixels in the same sub block with their average
value) [Lander et al., 2001; Zhou and Pun, 2021], masking
(covering all pixels by a specific value) [Park and Kim, 2020;
Yu et al., 2020], or object removal (filling with new con-
tent related to surrounding pixels) [Yi et al., 2020; Wang et
al., 2021], which do not take multiple privacy conflicts into
account. To address this, a hierarchical privacy protection
scheme for privacy image sharing was proposed, allowing the
reconstruction of the original version only when a sufficient
number of individuals consent [Beugnon et al., 2019]. In an-
other approach, Liu et al. designed a system to achieve au-
tomated facial protection by learning sensitive relationships
among users [Liu et al., 2022]. Subsequently, the issue of
privacy leakage caused by image forwarding still persisted,
which was later addressed by a cross-platform protection
scheme based on blockchain technology [Zhang et al., 2022a;
Zhang et al., 2023a]. A crucial aspect of partial image pro-
tection mentioned above is the detection of privacy-sensitive
areas within the image. However, no existing approach can
guarantee that all sensitive areas can be found.

Thumbnail-Preserving Image Privacy Protection
The objective of thumbnail-preserving image privacy protec-
tion is to make details within thumbnail blocks invisible while
preserving the whole image thumbnail unchanged, which was
first introduced by Wright et al. (2015). This scheme divides
each thumbnail block into several sub blocks, and then rear-
ranges pixels in every sub block, followed by rearranging sub
blocks in the same thumbnail block which is sample but ex-
poses the pixel lists of thumbnail blocks. Taijik et al. 2019
designed a sum-preserving encryption (SPE) algorithm to en-
crypt every two pixels while keeping their sum unchanged.
Therefore, the sum of each block after encryption is com-
pletely identical to the original one. Although the scheme
achieves nonce-respecting security, its time cost is quite high.
Hence, a scheme named TPE-GAN was proposed to improve
the efficiency by applying CycleGAN [Zhu et al., 2017] to
simulate randomized unary encoding [Chai et al., 2022]. At
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Figure 2: The overview of HIPP. Specifically, G and G−1 form the latent-to-image mapper, E represents the detail information extractor.
Rand and Perm are functions of random sequence generation and permutation, respectively. n denotes the number of images are processed at
once while K is the key owned by the uploading user.

the same time, F-TPE came up with a multi-pixel SPE algo-
rithm, achieving fast calculation on vector sets [Zhang et al.,
2022c].

Compared with completely thumbnail-preserving pri-
vacy protection schemes mentioned above, approximately
thumbnail-preserving schemes achieve high efficiency at the
expense of similarity between the protected and original
thumbnails. Morohn et al. (2017) proposed two schemes
named DRPE and LSB-TPE, which have possibility of de-
cryption failures or incomplete recovery. Therefore, HF-TPE
was proposed to ensure successful decryption, with the de-
crypted image being closer to the original one by construct-
ing a sum-preserving data embedding algorithm [Zhang et
al., 2022b]. Subsequently, Ye et al. (2023) and Zhang et
al. (2023b) proposed two completely reversible schemes to
confirm that the restored image is identical to the original one
by combining reversible data hiding with traditional encryp-
tion. To further reduce the running time, PwLMµ applies a
chatic system with enhanced dynamics by µ [Chowdhury et
al., 2024]. Zhao et al. proposed a usability enhanced scheme,
which utilizes SPE to encrypt the lowest seven bits while ad-
justing the protected thumbnail and storing extra information
in the most significant bit of each pixel. While the existing
works mentioned above perform well in preserving the orig-
inal thumbnail, they all generate the protected images with
noticeable noise.

3 Proposed Scheme
In HIPP, We aim to protect the privacy of image details from
both malicious users and their analysis models while retain-
ing the overall visual effect of the original image to ensure the
protected image remains natural. Here, image details means
any information within thumbnail blocks such as facial fea-

ture and building appearance. As images shared in SNP are
often displayed in thumbnail form for coarse-grained content
presentation, HIPP reconstructs image details for privacy pro-
tection, and preserves the thumbnail as unchanged as possible
for image contour preservation.

3.1 Overview
Figure 2 illustrates the overall framework of the proposed
HIPP, which consists of two primary modules: the latent-to-
image space mapper (G and G−1) and the detail information
extractor E. Specifically, the n original images are trans-
formed into the latent vectors {a1, · · · , an} by G−1. And
then, E divides the vector ai into two components: ath

i and
acot
i , encapsulating the detail and contour information of the

image xi, respectively. A random sequence {k1, · · · , kn} is
generated by K and utilized to permute acot

i , where ki ∈ [1, n]
and ki ̸= kj (i, j ∈ [1, n], i ̸= j). The permuted detail vec-
tor acot

ki
is combined with ath

i to form the new latent vectors
a′i. Finally, the protected image yi is obtained by applying
the generator G with a′i as input. The protected image yi has
a thumbnail similar to xi, but the details are different. The
backward section in Figure 2 represents the inverse process
of HIPP, where k′ki

= i, meaning the order of {a′1, · · · , a′n}
is exactly the same as that of {bk′

1
, · · · , bk′

n
}. The restored

image x′
i is basically consistent with the original image xi.

Additionally, maintaining the correct order of the protected
images is crucial for successful restoration. This order can be
securely encoded into image filenames or embedded within
the protected images themselves via data hiding methods.

3.2 Latent-to-Image Space Mapper
To extract detail information from images in the latent space,
a space mapper, consisting of an image generator G(·) : Z →
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I and its inverse G−1(·) : I → Z , is necessary to establish
a mapping between the latent and image spaces. The latent
vector corresponding to the original image x is obtained by

a = G−1(x), (1)

the reconstructed image x̃ is acquired by

x̃ = G(a) = G
(
G−1(x)

)
, (2)

and the latent vector corresponding to x̃ is derived by

ã = G−1(x̃) = G−1
(
G
(
G−1(x)

))
. (3)

Since the protected image y is expected to be restored to a
version as similar to the original image x as possible, it is
desirable to minimize the difference between a and ã as well
as between x and x̃.

In HIPP, we choose Glow [Kingma and Dhariwal, 2018]
and Generative Adversarial Network (GAN) for image gen-
eration, each with its own strengths. For Glow, the whole
processing procedure is completely reversible, enabling x and
x̃, as well as a and ã, to be perfectly consistent without any
loss. For GAN, we apply StyleGAN [Karras et al., 2019]
as G(·) and in-domain GAN inversion as G−1 [Zhu et al.,
2020], which cannot achieve full reversibility but is capable
of generating higher-quality protected images. The specific
comparison results between Glow and GAN are presented in
detail in the experimental section.

3.3 Detail Information Extractor
The detail information extractor E is crucial for both the gen-
eration of the protected image and the restoration of the orig-
inal image, which aims to decouple image detail information
from contour information within the latent vector a by

acot, ath = E(a). (4)

Here, acot is the detail vector and ath denotes the contour vec-
tor, both having the same dimensions as a. To specifically
demonstrate the role of E in HIPP, we assume that we have
the original images x1 and x2 now, with their corresponding
latent vectors a1 and a2, respectively. After inputting a1 and
a2 into E, we obtain acot

1 , ath
1 , acot

2 , and ath
2 . Then, two new

vectors are derived by{
a′1 = acot

2 + ath
1

a′2 = acot
1 + ath

2
, (5)

which are subsequently inputted into G to generate the pro-
tected images y1 and y2. a′1 contains contour information
from a1 and detail information from a2. Consequently, the
generated protected image y1 has a contour similar to x1, but
different details. In the backward process, we only need to
perform a decoupling operation on the corresponding latent
vector b1 of y1, which is identical to a′1 under Glow or ap-
proximately equal to a′1 under GAN:

bcot
1 , bth

2 = E(b1). (6)

Here, bcot
1 and bth

1 are basically the same as acot
2 and ath

1 , re-
spectively. Therefore, we can obtain b′1 (which is essentially
consistent with a1) by

b′1 = bcot
2 + bth

1 (7)
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Figure 3: The architecture of the detail information extractor. w, h,
and c represent the width, height, and channel number of the original
image x, respectively. {z1, · · · , zl} form the latent vector a corre-
sponding to x, where l is the scale of flow in Glow.

and get the restored image x′
1 by

x′
1 = G(b′1). (8)

As a, the latent vector mapped from x by Glow, is com-
posed of multiple sub-vectors [z1, · · · , zl] (l denotes the scale
of flow in Glow) of different dimensions, it is necessary to
perform detail information extraction operations on each sub-
vector separately as illustrated in Figure 3. First, z1 with size
of wi × hi ××ci is reshaped into z′1 of size wihi × ci. z′′i is
generated by

z′′i = Linear(z′i), (9)

where Linear(·) represents a full connected layer with iden-
tical input and output dimensions. zcot

i is obtained through
reshaping z′′i , and then, zth

i is derived through

zth
i = zi − zcot

i . (10)

For GAN, the vector a has size of 2 log2
h
2×512 and reshaped

into size of 1024 log2
h
2 before Linear(·) operation. Overall,

E aims to decouple a into acot and ath without changing the
dimensions.

3.4 Loss Function
The ultimate goal of the proposed scheme is to train the detail
information extractor E to decouple the detail and contour
information within a as much as possible under frozen space
mapper. The specific targets are: 1) the generated protected
image y is expected to have a contour similar to the original
image x; 2) y has details different from x; 3) the restored
version of the protected image x′ is as close to x as possible.
Therefore, the optimization objectives of HIPP are

min
E

Dif
(
Thumb(x, b),Thumb(y, b)

)
max

E
Dif(x, y)

min
E

Dif(x, x′)

. (11)

Here, Thumb(x, b) sets the thumbnail block size to b× b and
returns a thumbnail tx of x with the same size. More pre-
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Figure 4: The visual performance of images processed by HIPP under different mappers. The five rows display the original images, the
protected images, the original thumbnails, the protected thumbnails, and the restored images, respectively.

cisely, each pixel in the thumbnail is calculated by

tx(i, j, p) =

∑α+b−1
s=α

(∑β+b−1
q=β x(s, q, p)

)
b× b

, (12)

where i ∈ [1, w], j ∈ [1, h], p ∈ [1, c], α = ⌈ i
b⌉ + 1, and

β = ⌈ j
b⌉+ 1. And Dif(x, y) is utilized to evaluate the differ-

ence between x and y. A smaller Dif value indicates greater
similarity and less difference between the two inputted im-
ages. However, E cannot be directly trained with the above
optimization objectives since it operates in the latent space Z .
The objectives must be transformed into loss functions related
to the latent vectors. During training, a Gaussian-sampled
vector r with the same dimension as a is used, and the loss
functions shown in Figure 2 are introduced as follows.

1) Detail and Contour Loss: To achieve the first and sec-
ond objectives, it is necessary to extract as much detail infor-
mation from the vector as possible without including contour
information. As x and its corresponding thumbnail share the
same contour information, we minimize

Lth = MSE(ath, ath
th) (13)

to ensure that ath contains as little detail information as pos-
sible, where a = G−1(x) and ath = G−1 (Thumb(x)). Here,
MSE(x, y) returns the Mean Squared Error (MSE) of the in-
puts, which measures the difference between them. The for-
mula for MSE is

MSE(x, y) =
1

whc

c∑
p=1

w∑
i=1

h∑
j=1

(x(i, j, p)− y(i, j, p))
2
.

(14)
Additionally, Ldis, calculated by

Ldis = MSE(a′, a), (15)
is minimized to ensure that ath contains sufficient contour in-
formation. Here, a′ = rcot + ath. Overall, acot is expected to
retain as much detail information as possible while reducing
the likelihood of containing contour information by simulta-
neously minimizing losses Lth and Ldis.

2) Reconstruction Loss: For the third objective, it is nec-
essary to make the contour and detail vectors as independent
of each other as possible so that E is able to extract the same
detail vector from a and r′ = acot + rth. Therefore, the loss

Lrec = MES(a′cot, rcot) + MSE(r′cot, acot) (16)

is minimized to enhance the reconstruction ability, ensuring
that a′cot and r′cot extracted during the backward process are
as close as possible to rcot and acot during the forward pro-
cess, respectively. To this end,

ã = a′
th
+ r′

cot (17)

is basically the same as a, making x as similar to x′ as possi-
ble.

Finally, the whole loss function is calculated by

L = Lth + λ1Ldis + λ2Lrec, (18)

where λ1 and λ2 are hyperparameters used to adjust the rela-
tive weights of the loss terms Ldis and Lrec in the overall loss
function L. The optimization objective of HIPP is to mini-
mize the whole loss function L.

4 Experiments
4.1 Experimental Setup
Datasets. In the experiments, 50000 images are randomly
sampled from CelebA [Liu et al., 2015], Helen [Le et al.,
2012], and LSUN[Yu et al., 2015] datasets and resized to
128 × 128 and 256 × 256 to form the training set. Addi-
tionally, we select 2000 images from the remaining images to
form a testing set.

Figure 5: Euclidean distance and face recognition accuracy between
different images. x, y, x′ represent the original, protected, and re-
stored images, respectively.
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Block Size 8× 8 16× 16 32× 32 64× 64

TP-JPEG 1.0 1.0 1.0 1.0
ATPE 0.6812 0.6437 0.5604 0.4147
BIPU 1.0 1.0 1.0 1.0

TPE-GAN 0.7796 0.5117 0.2942 0.1993
F-TPE 1.0 1.0 1.0 1.0

HF-TPE 0.9311 0.8647 0.8582 0.6954
UE-JPEG 0.7106 0.7106 0.7106 0.7106

FVPP 0.9635 0.9657 0.9727 0.9824
PwLMµ 0.9554 0.9348 0.9127 0.8653

HIPP-Glow 0.7542 0.8295 0.8932 0.9444
HIPP-GAN 0.8425 0.9318 0.9739 0.9868

Table 1: The SSIM value between thumbnails of the protected and
original images under different schemes.We mark the top-2 results
by bold and underlying.

Implementation Details. During the training procedure of
E, we directly apply the pretrained G and G−1 models, keep-
ing their parameters frozen. Meanwhile, an Adam optimizer
with β1 = 0, β2 = 0.99, ϵ = 10−8 is applied, the learning
rate and iteration are set to 10−5 and 200000, respectively.
As for hyperparameters λ1 and λ2, they are set to 10 and 200,
respectively, when applying Glow as G. If utilizing Style-
GAN as G and in-domain GAN inversion as G−1, the values
of λ1 and λ2 are changed into 10 and 1000, respectively. In
addition, when n is set to 1, a random sampled latent vector
r is utilized to assist in transforming a into a′ as described in
the loss function section. When n > 1, the specific process is
illustrated in Figure 2.

Evaluation Metrics. There are three indicators utilized in
experiments to assess the performance of HIPP: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [Wang et al., 2004], and Learned Perceptual Image
Patch Similarity (LPIPS) [C.-V.Yang et al., 2014]. Specif-
ically, PSNR quantifies the difference in intensity between
the two images from a pixel-wise perspective. The higher
the PSNR value, the smaller the difference between images.
SSIM and LPIPS are both perceptual metrics that quantify the
similarity between the two images. The SSIM value ranges
from 0 to 1, with higher values indicating greater similar-
ity. Conversely, the LPIPS value operates oppositely, where
lower values signify higher similarity between the images.

Baselines. To comprehensively evaluate the performance
of the proposed scheme, we select ten baselines for com-
parison: TP-JPEG [Wright et al., 2015], ATPE [Marohn et
al., 2017], BIPU [Tajik et al., 2019], TPE-GAN [Chai et al.,
2022], F-TPE [Zhang et al., 2022c], HF-TPE [Zhang et al.,
2022b], FVPP [Zhang et al., 2023b], UE-JPEG [Ye et al.,
2023], PwLMµ [Chowdhury et al., 2024], and PR3 [Zhao et
al., 2024].

4.2 Experimental Results
Evaluation of Detail Privacy Protection
The privacy objective of HIPP is reconstructing details within
each thumbnail block to maximize the inconsistency between
the protected and original images. In the specific evaluation
experiments, we extract facial feature vectors from the two

(a) (b)

Figure 6: The values of SSIM and LPIPS between different images
under different mappers. (a) SSIM. (b) LPIPS values. (1) means
the results under Glow while (2) represents the results under GAN.
tx and ty represent the thumbnails of the original image x and the
protected image y, respectively, while x̃ = G

(
G−1(x)

)
.

images and then calculate the Euclidean distance between

these vectors by d(p, q) =
√∑

i (qi − pi)
2, where pi and

qi denote the coordinates of points p and q on the i-th di-
mension, respectively. As shown by the red section in Fig-
ure 5, the distance between face feature vectors of the im-
ages remains at a high level (the Eucldean distance between
two unrelated facial vectors is approximately 0.836) regard-
less of the value of n. Furthermore, we apply a tool named
face recognition1 to judge whether faces in the input images
belong to the same person. As shown by the blue section in
Figure 5, the facial recognition accuracy of the protected im-
ages is quite low, which means that the proposed HIPP suc-
cessfully reconstructs details in the original image. Mean-
while, as shown in Figure 6, the protected image y is not sim-
ilar to the original image x from a perceptual perspective, in-
dicating that unrelated details are successfully reconstructed
by our scheme.

Evaluation of Image Contour Preservation
Figure 4 provides a visual demonstration of HIPP. It is obvi-
ous that the protected images generated by HIPP shown in the
second row remains a natural version without visible noise.
Meanwhile, thumbnails of the original and protected images
are quite similar as displayed in the third and fourth rows. In
addition, we apply SSIM and LPIPS to evaluate the similarity
between thumbnails of the protected and original images, as
displayed in Figure 6 and Table 1. The SSIM value reaches
its peak when the block size is 64 × 64 under HIPP-GAN,
which is higher than that in other approximately thumbnail-
preserving works. Although the protected thumbnail under
HIPP cannot be made entirely identical to the original one, it
is sufficiently similar for users to associate it with the origi-
nal image during online browsing. Figure 6 indicates that the
similarity value reaches its highest when n = 1 and shows no
significant change as n increases. Overall, the protected im-
ages generated by HIPP not only preserve the general contour
of the original ones but also appear natural and are indistin-
guishable from realistic images.

1https://github.com/ageitgey/face recognition
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Loss HIPP-GAN HIPP-Glow
tx ↔ ty ↑ x ↔ y ↓ x ↔ x′ ↑ tx̃ ↔ ty ↑ x̃ ↔ y ↓ x̃ ↔ x′ ↑ tx ↔ ty ↑ x ↔ y ↓ x ↔ x′ ↑

Lth 0.08841 0.02931 0.73266 0.11478 0.03238 1 0.24896 0.10123 0.99972
Ldis 0.84648 0.80269 0.71271 1 0.99997 0.99991 0.99996 0.99978 0.99978
Lrec 0.55233 0.29279 0.70299 0.65819 0.46142 0.99526 0.75279 0.73096 0.9998

Lth + Ldis 0.57656 0.31004 0.09762 0.60235 0.40878 0.14392 0.4347 0.28993 0.44608
Lth + Lrec 0.07365 0.02286 0.75240 0.06179 0.01664 0.99225 0.28529 0.14202 0.99982
Ldis + Lrec 0.89701 0.86269 0.71269 0.99980 0.99915 0.99737 0.99995 0.99977 0.99977

Lth + Ldis + Lrec 0.73589 0.34157 0.76281 0.85804 0.5586 0.96253 0.82951 0.66583 0.98992

Table 2: The SSIM values of images under different training loss functions. tx̃ represent the thumbnails of x̃.

Scheme TP-JPEG ATPE BIPU F-TPE HF-TPE UE-JPEG FVPP PR3 PwLMµ HIPP-Glow HIPP-GAN

Size Expansion↓ 2.32 2.10 1.73 3.30 2.11 1.68 3.99 2.27 2.20 1.10 1.16

Run Time (s)↓ 1.26 2.04 92.6 43.3 107.9 3.46 17.5 110.6 6.08 0.07 0.88

Table 3: The size expansion rate of the protected image and the running time of the whole processing procedure.We mark the top-2 results by
bold and underlying.

Evaluation of Reversibility
Although HIPP cannot fully restore the protected images into
their original versions, the restored images exhibit a very high
similarity to the original ones as shown in Figure 4 and 6.
As in-domain GAN inversion cannot perfectly map the la-
tent vector to the image without any loss, we introduce a
new comparison object x̃ = G

(
G−1(x)

)
to isolate the im-

pact of the latent-to-image mapper on the evaluation of E.
Additionally, we evaluate the quality of the restored images
by face recognition with a threshold set to 0.3 as shown in
Figure 5. Even under stringent threshold, the probability of
identifying the original and restored images as belonging to
the same person remains very high. Moreover, as shown in
Table 4, the restored image under HIPP-Glow is almost iden-
tical to the original version. For HIPP-GAN, the results are
less satisfactory due to the inherent non-inevitability of GAN.
However, employing a more outstanding GAN inversion as
G−1 can improve the restoration quality.

Scheme TP-
JPEG ATPE TPE-

GAN
HF-
TPE

HIPP
-Glow

HIPP
-GAN

PSNR↑ 42.14 53.57 26.37 59.35 37.47 22.23
SSIM↑ 0.946 0.933 0.918 0.964 0.9899 0.7628

Table 4: The PSNR and SSIM value between the restored and orig-
inal images under different schemes. We mark the top-2 results by
bold and underlying.

Ablation Study
To analyze the indispensability of each component in L,
an ablation study is conducted by retraining E on differ-
ent loss functions as shown in Table 2. Here, the final
goal of training process is enlarging values of SSIM(tx, ty),
SSIM(x, x′), SSIM(tx̃, ty), and SSIM(x̃, x) while reducing
values of SSIM(x, y) and SSIM(x̃, y). Specifically, Lth be-
comes 0 when acot = a and ath = 0, Ldis = MSE(a′, a) =

MSE(acot + rth, acot + ath) turns to 0 whenacot = 0 and
ath = a, and Lrec changes to 0 when E(a) = a, 0 or
E(a) = 0, a. Results show in Table 2 indicate that HIPP
successfully achieves the training objectives if and only if the
loss function is set to L = Lth + Ldis + Lrec.

Efficiency Comparison
To evaluate the running time in detail, we process 1000 im-
ages at once and record the average running time per image
as shown in Table 3. Compared to previous works, HIPP
achieves a significant improvement in running time, sav-
ing processing time for users and enhancing its practicality.
Meanwhile, the size expansion rate is calculated by compar-
ing the file size of the protected image with that of the original
image. Due to the absence of visible noise in the protected
image, the images can be effectively compressed, resulting
in a much smaller file size compared to other works. This
not only improves the image uploading speed but also saves
storage space.

5 Conclusion
In this paper, we propose a reversible image privacy protec-
tion scheme by preserving thumbnails, named HIPP, which
can generate the protected image without any visible noise.
The scheme maps the original image to the corresponding la-
tent vector by the inversion of a generation model, decouples
the vector into detail and contour vectors, and replaces the
detail vector to reconstruct image details. Experimental re-
sults indicate that the generated protected image appears nat-
ural and has different details compared to the original version
while preserving the whole contour unchanged. Furthermore,
HIPP significantly reduces both runtime and file size of the
protected image, thereby decreasing the time required for lo-
cal processing and uploading, which enhances the practicabil-
ity. In future work, we will explore ways to further decouple
the image detail information from the contour information,
aiming to achieve a higher level of privacy protection.
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