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Abstract

Recent years have witnessed an explosion of Multi-
view Subspace Classification (MSCla) and Multi-
view Subspace Clustering (MSClu) methods for
various applications. However, their theoretical
foundation have not been well explored and under-
stood. In this paper, we investigate the multi-view
subspace-preserving recovery theory, which is the
theoretical underpinnings for MSCla and MSClu
methods. Specifically, we derive novel geomet-
rically interpretable conditions for the success of
multi-view subspace-preserving recovery. Com-
pared with prior related works, we make the fol-
lowing innovations: First, our theory does not re-
quire the equality constraint, which is a common
requirement in prior theoretical works and may be
too restrictive in reality. Second, we provide both
Individual Theoretical Guarantee (ITG) and Uni-
versal Theoretical Guarantee (UTG) for multi-view
subspace-preserving recovery while prior works
only give the UTG. Third, we also apply the pro-
posed theory to establish theoretical guarantees for
MSCla and MSClu, respectively. Numerical re-
sults validate the proposed theory for multi-view
subspace-preserving recovery.

1 Introduction

High-dimensional data in multiple classes can often be mod-
eled as samples drawn from a union of low-dimensional sub-
spaces in many problems of machine learning [Wright et al.,
2009; Vidal, 2011]. For example, motion trajectories in a
video [Costeira and Kanade, 1998], movie ratings [Zhang
et al., 2012], and facial images under varying illumination
[Basri and Jacobs, 2003] can be approximately represented
by subspaces, with each subspace corresponding to a class.
Numerous methods of subspace classification [Wright et al.,
2009; Zhang et al., 2022] and subspace clustering [Elhamifar
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and Vidal, 2013; Li et al., 2017] have been developed to cap-
ture the low-dimensional structure of high-dimensional data
in recent years. Subspace based methods have also been em-
ployed in many applications such as face recognition [Zhang
et al., 2024], motion segmentation [Ma et al., 2008], and can-
cer subtype clustering [Li ef al., 20171, etc.

In spite of the effectiveness of these methods, they only in-
volve the single-view data. In many real-world applications,
data is often multi-view in nature. For example, data of web
pages usually contain hyperlinks, texts and visual informa-
tion. To better exploit the consensus and complementary in-
formation of multi-view data, several Multi-view Subspace
Classification (MSCla) [Shekhar et al., 2013; Yang er al.,
2024] and Multi-view Subspace Clustering (MSClu) [Zhang
et al., 2020; Chang et al., 2024] methods have been proposed
recently. For instance, [Wang et al., 2023] proposes a novel
multi-view sparse subspace clustering method based on the
joint sparse representation (JSR).

Despite the empirical success of the works above, their
theoretical foundations have not been well explored. For in-
stance, it is not fully understood under what conditions these
methods succeed in classification or clustering. To under-
stand the correctness of them, several theoretical advances
have been developed, which are committed to establishing
the Subspace-Preserving Recovery [You and Vidal, 2015].

1.1 Single-view Subspace-Preserving Recovery

Due to its fundamental role, subspace-preserving recovery
has attracted much attention in the theoretical analysis of sub-
space classification and clustering [You et al., 2016; Wang et
al., 2019]. Given a matrix D € R¥*¥ with its columns from
the union of multiple subspaces and a data point y € R? from
one of these subspaces, subspace-preserving recovery aims to
seek a subspace-preserving representation (SPR) ¢ € RV of
y by solving y = Dc. This SPR ensures that the nonzero
entries of ¢ conform with the columns of D that belong to the
same subspace as y [You and Vidal, 2015].

Many previous works study the theory of how to yield a
SPR in the subspace clustering and classification problems.
[Elhamifar and Vidal, 2009; Elhamifar and Vidal, 2010] es-
tablish the SPR guarantee for the Basis Pursuit (BP) model by
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assuming that the subspaces are independent and disjoint, re-
spectively. [Soltanolkotabi and Candés, 2012] broadens prior
results for the sparse subspace clustering when the subspaces
have nontrivial intersections. [You and Vidal, 2015] provides
SPR guarantees for both BP and OMP (Orthogonal Match-
ing Pursuit). Besides, [Wang et al., 2019] extends the SPR
theory to the atomic representation model for subspace clas-
sification. More prior works can be explored in [Wang and
Xu, 2016; Kaba et al., 2021; Thaker et al., 2022].

1.2 Multi-view Subspace-Preserving Recovery

Despite enhancing our comprehension, all the results above
are confined to single-view data and this limits their applica-
tions in real-world problems. To extend the SPR theory to
multi-view data, [Wang, 2024] considers the multi-view joint
sparse representation (MJSR) model

. v v F —

ol [Cll12, st y"=D"C(,v), v=1,---,V, (1)
where y¥ and D" denote the test sample and the data matrix
of the v-th view, respectively. Here, ||C|l12 = > i~ [|C(i,:
)||2 is the matrix ¢1 2 norm of the representation matrix C to
encourage row-sparse solutions and thus exploits the corre-
lation information among different views. [Wang, 2024] pro-
poses the atomic recovery property (ARP) and proves that the
solution of MJSR model is a Multi-view Subspace-Preserving
Representation (MSPR) when the ARP holds.

However, the work [Wang, 2024] is confined to the equality
constrained MJSR model, which may be too strict for practi-
cal use. The analysis of the multi-view subspace-preserving
recovery theory of regularized MJSR model is still missing in
the existing literature, which is more flexible in reality. More-
over, most existing theoretical results only provide the Uni-
versal Theoretical Guarantee (UTG), which require strong
assumptions for all samples in corresponding subspaces and
may break down when part of samples fail to satisfy these
assumptions. Thus, the theoretical analysis individually es-
tablished for a fixed data point is also missing. To fill these
gaps, in this paper we propose new theoretical conditions and
results with concise geometric characterizations.

1.3 Paper Contributions

In this work, we consider the Regularized Multi-view Joint
Sparse Representation (RMJSR) model

14
1 b v v . 2
C$13V||C||1,2+§;Ily ~DCEYE, @

where ~y denotes the regularization parameter. Let C*(y, f))
denote any optimal solution to problem (2) (The descriptions
of y and D can be seen in Tab. 1). Compared with MJSR,
RMISR does not require the equality constraints in Eq. (1),
which do not necessarily hold in reality. In this work, we
investigate theoretical conditions under which the solution of
the RMJSR model is a MSPR (See Definition 1). Specifically,
the contributions of this work can be summarized as follows.

1. Theoretical guarantee under milder assumptions. We
establish the theoretical guarantees of RMJSR for multi-
view subspace-preserving recovery. Our theory does not

require the equality constraint, which is a common re-
quirement in prior theoretical results and may be too re-
strictive in reality. To the best of the authors’ knowl-
edge, this is the first theoretical work of the multi-view
subspace-preserving recovery theory for RMJSR.

2. Theory for both individual and universal cases. We
provide both Individual Theoretical Guarantee (ITG)
and Universal Theoretical Guarantee (UTG) for MSPR
while the previous works only give the UTG. Specif-
ically, we derive theoretical conditions under which
RMISR succeeds in yielding MSPR for a specific indi-
vidual test sample and all samples, respectively.

3. Applications on MSCla and MSClu. Based on the pro-
posed theory, we derive novel theoretical guarantees for
multi-view subspace classification and multi-view sub-
space clustering, respectively.

2 Preliminaries

2.1 Notations

To improve the readability, we denote scalars, vectors, matri-
ces and sets as italic letters (e.g., a), boldface lowercase let-
ters (e.g., a), boldface capital letters (e.g., A) and calligraphic
capital letters (e.g., A), respectively. For any vector a € RY,
supp(a) denotes its support set, i.e., supp(a) = {i : a; # 0}.
Similarly, for any matrix A, rowsupp(A) denotes its row sup-
port set, i.e., the index set of nonzero rows of A.

To distinguish multi-view data from single-view data, a dot
is added on the above of the variable (e.g., &). Tab. 1 summa-
rizes the key notations and acronyms used in this paper.

2.2 Multi-view Subspace-Preserving Recovery

To extend the SPR theory to the multi-view data, [Wang,
2024] tackles the multi-view joint sparse representation
(MJSR) model in Eq. (1) and gives the definition of the multi-
view subspace-preserving representation (MSPR) as follows.

Definition 1. (Multi-view Subspace-Preserving Representa-
tion, MSPR) Given a multi-view sample y = {y"}V_, € Sy,
the representation matrix C is referred to as a Multi-view
Subspace-Preserving Representation of y such that (1) y¥ =
DVC(:,v), Yv € [V], (2) rowsupp(C) C Zy.

Despite establishing the first theory for MSPR, the work
[Wang, 2024] is confined to the equality constrained MJSR
model, which may be not suitable for practical use. For in-
stance, the equality constraint y? = DYC(:,v), Yo € [V] is
too restricted and hardly to hold even when the data contain
noise in only one single view or the sampling in the dictio-
nary D7 is not sufficient in only one single view such that
y¥ ¢ span(DV). To broaden the scope of applications of
MSPR, in this paper we consider the Regularized Multi-view
Joint Sparse Representation (RMJSR) model

of
Y v v 2
1,2+§ E ly" =D C(:,v)]]5 -

v=1

min ||C
CGRHXV
Remark 1. Note that the regularization parameter v > 0

should not be too small. Otherwise, the optimal solution
will be the zero matrix. So to avoid such trivial solution,
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[ Notations/Acronyms | Descriptions | Notations/Acronyms [ Descriptions
N number of samples Vv number of views
K number of classes d, data dimension of the v-th view
a,a, A, A scalar, vector, matrix, set a={a¥ },/: 1 A= {A'”}f,/:1 multi-view vector, matrix data
[N] set of integers from 1 to N A(i,:) and A(:, 5) i-th row and j-th column of matrix A
DY =[dY,---,d%] € R%“*N | data matrix of the v-th view D {D?, Vv € [V]}
Sp c R the k-th subspace in the v-th view Sk {8y, Vv e [V]}
T, C [N] index set of samples in the k-th class | Z_, C [N] index set of samples out of the k-th class
SPR Subspace-Preserving Representation | MSPR Multi-view SPR
ITG Individual Theoretical Guarantee UTG Universal Theoretical Guarantee
MSCla Multi-view Subspace Classification | MSClu Multi-view Subspace Clustering
lalls = />, a? {5 norm of vector a lallar,2 = max, |[|a’||2 multi-view {5 norm of &
(a,b) =>",a; - b; inner product of vectors a and b (&, DY = Zyzl (a¥,b") multi-view inner product of 4 and b
A2 = 3N [JAG, )]s 01 5 norm of A € RVXV |Allco.2 = max; [|A(i,:)|la | foo.2 normof A € RN*V
D} sub-matrix of D" containing samples from the subspace S}
DY, sub-matrix of D” excluding samples from the subspace Sy,
Dy, D_; {DY,%v € [V]} and {D" Vv € [V]}
dgk) the i-th multi-view sample in D,
Vv €Sk y" € S¢ holds for each view v € [V]

Table 1: Summary of key notations and acronyms utilized in this paper.

we should set v > t for some threshold. In fact, we set
v > 1/||DT * ¥||00,2 (see Definition 2 for the explanation) in
our theory. On the other hand, if v — oo, the RMJSR model
reduces to the MJSR model, which implies that the results in
[Wang, 2024] can be seen as special cases of our results in
UTG.

To understand the correctness and success of RMJSR for
MSCla and MSClu, we raise several interesting questions:

Q1. For a specific individual multi-view test sample, what
are the theoretical conditions for RMJSR (2) to produce
MSPR? We refer to such theoretical guarantee as Indi-
vidual Theoretical Guarantee (ITG).

For all multi-view test samples, what are the theoreti-
cal conditions for RMJSR (2) to yield MSPR? We refer
to such theoretical guarantee as Universal Theoretical
Guarantee (UTG).

How to apply the proposed theory for MSCla and
MSClu, respectively?

Q2.

Q3.

3 Main Results

In this section, we provide positive answers to the questions
posed in the last section. To this end, we first introduce some
useful concepts, such as multi-view matrix product, multi-
view oracle point, multi-view incoherence, etc.

3.1 Necessary Concepts

Definition 2. (Multi-view Matrix Product) Consider two
multi-view matrix data A = {A”g}le and B = {B"}Y_,
where AV € R’.”de and BY € R**". The multi-view ma-
trix product of A and B is defined as

v

AxB=[A'B',-.. ,AYBY] e R™ "V, 3)

Accordingly, when B reduces to a multi-view vector data
{b’}V_, where b® € R%, we have A x b =
Ce ’AVijI c RmMxV

b =
[A'b!,

Definition 3. (Multi-view Oracle Point) For any optimal so-
lution C* to the RMJSR model (2), we define the multi-view

oracle point 6*(y,D, C*) = {0**(y,D, C*)}V_, such that
0"(y,D,C") :=1(y" = D'C*(:,v)), Wwe [V]. @)
The optimal solutions C* to RMJSR and 0* to its dual

problem have the following relationship.

Lemma 1. For each fixed point y and the parameter =, the

dual point 0* = 0*(y, D) is unique and coincides with the

multi-view oracle point, i.e., 0* = 6*(y, D, C*).

Proof. The proof can be seen in the supplementary material

due to space limitation. [

Consider the RMJSR model with respect to (w.r.t.) the sub-
dictionary Dy, as

min

1%
g v v 2
omin [ICllz + 5 > [y" = DECG )5 )
Vgl

For ease of presentation, let C¥ = C*(y,D;,) denote any
optimal solution to problem (5).
The dual problem of (5) can be formulated as

v
1

_ max Z ((y”,u“) - (u“,u”>)

a={uv}y_, = 2’}/ (6)

st [[[h " (dF) uY] HOO,Q <1

Let u*(y,D;) denote the optimal solution to problem
(6), which is referred to as dual point of the multi-view

sample y. Note that Z}J/:l <<y”,u”> — o (u”,u”)) =

2y

-V, %Hu” —vy"[13 + %[ly"[3- The dual problem is
v
min [u® —7y"|3,
u={uv}y_, ; 7

<1.

00,2

" H [(D}ﬁ)TUl’ o (DX)T uv} H
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and the

Figure 1: Geometric illustration of Hu*(y,Dk)H
M,2

multi-view circumradius Ry (]f)k with D, = [d®, 4", a].
Left: large Hﬁ*(y, f)k)H and Rus ([’)k); Right: small
M,2
Hl’l* (y, Dk) H and Ry (Dk) Note that they all have small val-
M2

ues while the points in D, are well spread out.

Thus, the optimal solution u*(y,D},) is the closest point to
vy in the dual set {1’1: HDf*u‘ < 1}.
00,2

It can be proved that the primal and dual solutions satisfy

(v, D) == y(y’ — DYCL(:,0)), Yo € [V].  (8)

Ify e Sy, its dual point is also in Sk, ie., a*(y, Dk) € Sk
To measure the correlation among samples from various
classes, we give the definition of multi-view incoherence.

Definition 4. (Multi-view Incoherence [Wang, 2024]) The

multi-xiew incoherence be‘t/ween two multi-view datasets A =
{A"},_, and B = {B"}, _, is defined as

I | RO (R
— < S )
acAbes || L[al[l2]b]2 [a¥[l2[bY [|2 ] ||

where & = {a”}l‘)/:1 and b = {b”}XZl.
To characterize the distribution of the samples of D . in Sy,

we also introduce the multi-view circumradius R, (D k) .

Definition 5. (Multi-view Circumradius [Wang, 2024]) The
multi-view circumradius of the multi-view sub-dictionary

D, = {D};}le is defined as

Ry (Dk> = max ”ﬁ”M,?v S.t. HDZ * UH <1. (10)
uesy 00,2
The multi-view circumradius R (Dk> characterizes the

distribution of the samples of D, in the corresponding multi-
view subspace Sy.

3.2 Individual Theoretical Guarantee

With the concepts above, we are now ready to give the
first answer to the question (Q1) on the ITG for multi-view
subspace-preserving recovery.

Theorem 1. The s_olution to the RMJSR model (2) is a MSPR
for any fixed y € SK\{0}, k € [K] if

%Y (D—k,ﬁ*(}",f’k)) Hfl*(}",Dk)H <1, 1D

M,2

)

where Ci, = C*(y,D},) is the solution to the model (5), and
a*"(y,Dr) = 9(y" —~ DiC;(5v), Yo € [V].  (12)

Proof. The proof can be seen in the supplementary material
due to space limitation. O

Remark 2. Theorem 1 reveals important geometric in-
sights for the successful condition of RMJSR to achieve
MSPR. Recall that the inter-class multi-view coherence
54 (D_k,fl*(y,Dk)) is small if the samples in D_y
are away from ﬁ*(y,]jk), which is in Sy if y € Sp.
Hﬁ*(y,f)k) " is small if the samples in Dy are well
2
spread out. Therefore, Theorem I ensures that the solution
to RMJSR is a MSPR if the samples in other classes are not
too close to the dual point 0*(y,Dy) of the sample y and

meanwhile the samples in Dy, from the same class of y are
well spread out. We refer to the condition (11) as the Individ-
ual Multi-view Recovery Condition (IMRC).

To provide more intuitive geometric insights, we present
another answer to the question (Q1).
Theorem 2. The s_olution to the RMJSR model (2) is a MSPR
for any fixed y € SK\{0}, k € [K] if

[T sa @Dy | < |DE i@ Do a3

00,2

where 0* (y,Dy,) is defined in Theorem 1.

Proof. The proof can be seen in the supplementary material
due to space limitation. O

Remark 3. Theorem 2 asserts that the multi-view subspace-
preserving recovery of RMJSR is guaranteed to succeed if

the multi-view dual point 0*(y,Dy) of the test sample  is
closer to the sub-dictionary Dy, in the same class of y than
the sub-dictionary D_y, in other classes. For simplicity, we

refer to HDTk*u*(y,Dk)H and ‘Dg*u*(y,Dk)H
00,2 00,2

as the mismatched multi-view coherence and the matched
multi-view coherence, respectively. Thus, the multi-view co-
herence |||, , plays a role as a similarity metric. Compared
with Theorem 1, the theoretical condition in Theorem 2 is
more concise and geometrically intuitive.

Geometric Interpretation of ITG. The concise geometric
characterizations can help us better understand the theoret-

ical results of ITG. As shown in Fig. 1, ||1'1*(y,]'3k)||M,2
is small when the samples in D, are well spread out.
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On the other hand, the inter-class multi-view coherence
pun (Do, 0*(y,Dy)) is small if the samples in D_j, are
away from 0*(y,Dj). This geometrically characterizes
when the condition (11) in Theorem 1 satisfies.

Moreover, Theorem 2 has a more concise and intuitive ge-
ometrical characterization. As shown in Fig. 2, the condition
(13) holds if and only if 0, < 0_; = min{ay, as} (a1, a9
denote the included angles of * and the subspace Sy and S,
respectively). This illustrates that the multi-view dual point
u*(y,Dy,) of the test sample y should be closer to the sub-
dictionary D}, in the same class of y than the sub-dictionary
D_, in other classes to guarantee the MSPR.

3.3 Universal Theoretical Guarantee
The first Universal Theoretical Guarantee (UTG) of RMJSR
for MSPR is obtained by leveraging on Theorem 1 and

deriving the upper bounds of (]b_k,ﬁ*(y,l')k.)) and
Hu*(y,Dk)H , rtespectively. Let U, denote the set
M2

of the dual points of data samples in Sk, ie., L'{k =
{u"(y,Di)[Vy € Sp\{0}}.

With the definitions above, we have the following result.
Theorem 3. The solution to (2) is a MSPR for all k € [K]

and any multi-view sample y € Sk\{O} if
s (Dopsthe) Rag (Di) <1, k=1, K. (14)

Proof. The proof can be seen in the supplementary material
due to space limitation. U

Note from Eq. (8) that u*"(y, ]f)k) e S, fory € Sy, and
Dk C Sk Thus, I/{k C Sk. Then we have the next corollary.
Corollary 1. The solution to (2) is a MSPR for all k € [K]
and any multi-view sample y € Sk\{O} if

fins (D,k,s'k) R (Dk) <l k=1,---,K (15

Remark 4. The results in [Wang, 2024] can be seen as a spe-
cial case of Theorem 3 and Corollary 1 when the parameter
v — co. When ~ is large enough, the optimal solution of (2)
is also the optimal solution of the problem (1). For simplic-
ity, we refer to the condition (15) as the Universal Multi-view
Recovery Condition (UMRC).

Geometric Interpretation of UTG. The theoretical re-
sults of UTG can also be geometrically characterized in a
concise manner. As shown in Fig. 1, the multi-view cir-

cumradius RM(Dk) is small when the samples in D, =
[flgk),aék),c'lgk) are well spread out. Besides, when the

samples in D_; are away from the subspace Sk the class
coherence s (].D,;C7 Sk) is small. Thus, this geometric in-
terpretation implies the condition (15) in Corollary 1 under
which the solution of RMJSR is a MSPR. The samples in
other classes D _ & should be not too close to the subspace Sk
which the sample y is drawn from. Meanwhile, the samples
in Dy, from the same class of ¥ should be well spread out.
These geometrical insights provide a better comprehension
for the theoretical results in UTG.

Figure 2: Geometric interpretations of subspace-preserving con-
ditions in Theorem 1 and 2. Left: the samples dgw,c'lék),(.igk)
from Dy, lying on the unit circle of a 2-dimensional subspace So
and the dual point *(y,Dy) of a fixed ¥y € So\{0}; Right:
small pns (]f)_k, u*(y, Dk)> while the samples a@, d<12) are
away from the dual point 1*, which come from other subspaces
(1-dimensional S; and Sz) in D_, lying on the unit sphere in the
ambient space R®. Another concise interpretation is that the angle
0 < 0_j = min{ai, s} when the samples d{", d!* are away
from the dual point @*. Then the Eq. (15) holds and the solution to
RMISR is a MSPR for any fixed y.

3.4 Discussion and Comparison with Other Works

To further highlight the novelty of this work, we provide an
in-depth discussion on the relationship between our results
with other works on SPR. Note that most prior works require
that the equality constraint strictly satisfies, and they only
provide the UTG. Tab. 2 summarizes the main differences
between prior works and this work.

Comparison to [Kaba et al, 2021]1. [Kaba et al.,
2021] derives another condition for SPR, termed as subspace
nullspace property (SNSP), which is defined as follows.

Definition 6. Given A as a partition of the index set
{1,-++ , N} and Null(D) as the nullspace of D, a subset of
Null(D) w.r.t. (with respect to) A is denoted as

Null(D, A) := {¢ € Null(D) : supp(D) ¢ P, VA € A}.

Let A€ be the complement set of A. For any € € Null(D, A)
and A € A, the dictionary matrix D satisfies SNSP such that

1. (16)

epin  lzlh <llga
Compared with SNSP, our conditions have concise and in-
tuitive geometric characterizations with both UTG and ITG.
Besides, their result is limited to single-view data while our
results can be directly used for multi-view data. Finally, their
result holds only if the equality constraint satisfies while our
results can hold without such strong assumption.
Comparison to [Thaker ef al., 2022]. In [Thaker et al.,
2022], the authors consider the application of block sparse
recovery model for the reverse engineering adversarial at-
tacks. There are several key differences between our work
and the work [Thaker et al., 2022]. Firstly, our theory is
devised for multi-view data while [Thaker et al., 2022] is
for single-view data, which can not be directly applied for
multi-view data. Secondly, the main results in Theorem 1
and 3 in our paper both include the UTG and ITG for multi-
view subspace-preserving recovery while the core results in
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| Theory | References | Year | Model [ UTG | ITG | w/o equality constraint
[Soltanolkotabi and Candés, 2012] | 2012 BP v X X
[Dyer et al., 2013] 2013 OMP v X X
[You and Vidal, 2015] 2015 | BP&OMP Ve X X
Single-view SPR [You et al., 2016] 2016 OMP v X X
[Wang et al., 2019] 2019 AR v X X
[Kaba et al., 2021] 2021 BP v X X
[Thaker et al., 2022] 2022 BSP Ve X X
. . [Wang, 2024] 2024 MISR v X X
Multi-view SE&S This paper 2005 RMISR | v | v 7

Table 2: Comparison of theoretical works of Subspace-Preserving Recovery (SPR). Here “UTG” and “ITG” mean whether the works provide
universal and individual theoretical guarantee for SPR, respectively. “w/o equality constraint” means whether the results hold without the
equality constraint, which is too strict in practical use. Specifically, conditions and results of UTG are for all samples in corresponding
subspaces. Instead, ITG individually devises conditions and guarantee for a fixed data sample, which is more flexible in practical use.

[Thaker et al., 2022] only consider the UTG for single-view
subspace-preserving recovery. Thirdly, the results in [Thaker
et al., 2022] requires both the label information of data in an-
ticipation and the equality constraint, while our results do not
depend on these conditions.

More representative works of SPR theory can be found
in [You and Vidal, 2015; Soltanolkotabi and Candés, 2012;
You et al., 2016; Robinson et al., 2019; Wang et al., 2019;
You et al., 2019]. Although advancing our understanding,
all these works are confined to single-view data and cannot
be directly applied to multi-view data. Besides, their results
hold only if the equality constraint strictly satisfies while our
results do not rely on this strong assumption.

Comparison to [Wang, 2024]. The work [Wang, 2024]
devotes to extending the SPR theory to multi-view data
and establishing the Atomic Recovery Property (ARP) under
which the multi-view joint sparse representation model can
obtain a multi-view subspace-preserving representation.

To our best knowledge, [Wang, 2024] is the only existing
theoretical guarantee for multi-view SPR. However, its results
are confined to the equality constrained MJSR model, which
may be not suitable for practical use. For instance, the equal-
ity constraint y¥ = DVC(:,v), Yv € [V] is too restricted
and hardly to hold even when the data contain noise in only
one single view or the sampling in the dictionary D" is not
sufficient in only one single view such that y¥ ¢ span(D?).
Compared with [Wang, 2024], our theory does not rely on
this strong assumption and is more flexible in real-world ap-
plications. Moreover, [Wang, 2024] only provides the univer-
sal theoretical guarantee (UTG). As demonstrated before, the
analysis of UTG requires all samples in the sub-matrices D},
and D¥ ,, v € [V] to satisfy the UMRC condition. This is too
strict, especially for one fixed multi-view sample y. Thus, we
provide both UTG and ITG in this paper.

4 Application to Multi-view Subspace
Classification and Clustering

For any new multi-view test sample ¥ € S;,\{0}, Regular-
ized Multi-view Subspace Classification (RMSCla) method,
a variant of [Shekhar er al., 2013], calculates the representa-

tion matrix of y by solving the following model

1%
. Y 2
C — v - DC(:, , Yo € [V],
clin [ICllz + 2;:1 ly (o), Vv e [V]
where D = {D¥}Y_, denotes the multi-view training data.
The reconstruction residual of each class is calculated as

%
re(¥) =D Iy" = D6k(C(; )2y k=1,-- K (17)
v=1

where 6;(C(:,v)) € RY denotes the vector containing the
entries associated with the k-th class and changing the re-
maining entries as zeros.

Theorem 4. The RMSCla method is guaranteed to succeed to
classify any new multi-view test sample y € Sp\{0} for any
class k if the multi-view training data D satisfies the UMRC.

Proof. The proof is in the supplementary material. O

Consider the Regularized Multi-view Subspace Clustering
(RMSClu) model, which is a variant of Multi-view Sparse
Subspace Clustering in [Wang et al., 2023]

CiERNXV

%4
. Y 2
m C; - Y —-YYC;(:, ,
i €+ 5 Xy GOl g

s.t. C;(i,:) =0, vel[V],
where Y = {Y“}V_,,Y" = (y¥,---,y%) denotes the
multi-view data which requires clustering. Let C; be the op-

timal solution of (18) for ¢ € [N]. We first construct the
common representation matrix C* € RV* such that

C (1) = [IC; (L)l ICT (N, )], (19)

for i € [N]. Then we compute the similarity matrix Z =
(|C*| + |C*T|)/2. Finally, we apply the spectral clustering
algorithm to the similarity matrix and obtain the final cluster-
ing results. A desirable similarity matrix Z should satisfy the
following subspace-preserving property: Z;; 7 0 only if the
1-th sample and the j-th sample are from the same cluster.
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Figure 3: Error metrics under different values of the inter-class coherence s and sampling density p for data points in each subspace. Left:

multi-view subspace-preserving error; Right: classification error.

Theorem 5. The similarity matrix Z generated by the RM-
SClu model (18) satisfies the subspace-preserving property if
and only if the leave-one-out multi-view data Y\yZ satisfies
the UMRC for i € [N].

Proof. The proof can be seen in the supplementary material
due to space limitation. O

S Numerical Experiments

5.1 Evaluation Metrics

We consider two metrics including the multi-view subspace-
preserving (MSP) error and the classification error. Given
any multi-view test sample y, we denote the representation
matrix obtained by RMJSR as C*. If y is drawn from the
class k, then the MSP error is calculated as MSP error =
1— 110k (C*)||1,2/]/C*|]1,2, where §;(C*) denotes the matrix
which only keeps the rows of C* aligned with the k-th class
and other rows are all set to zero vectors. Hence, the MSP er-
ror is utilized to measure how far the matrix C* from being a
multi-view subspace-preserving representation (MSPR). The
MSP error is smaller while C* is closer to a MSPR. Another
metric is the classification error, which is calculated as the
percent of misclassified test samples.

5.2 Impact of Inter-class Coherence and Sampling
Density for MSCla

In the aforementioned analysis, we demonstrate that the suc-
cess of RMJSR for multi-view subspace classification relies
on the inter-class coherence and the distribution of data points
in each subspace. To validate the argument above, we gen-
erate three subspaces with two views (the number of views
V = 2) {8}3_,,v € [2] such that the subspaces in each
view share the same dimension. Then we set the subspace
dimension d; = 20,ds; = 40 while the ambient dimension
my = 40,mo = 80, i.e., m, = 2d,. More results of the
cases m, < 2d, or m, > 2d, and V = 3 are shown in the
supplementary material. Following [Wang et al., 2019], the
subspace bases UY € R™v*dv ¢ € [2] are generated as

v Idv v Odvxdv
Y04, <, TR L, |’

[cos(p1) 0 e 0
0 cos(pa) - 0
G| 00 cos(en)
37 |sin(p1) 0 e 0 ’
0 sin(ps2) 0
0 0 sin(ia, )

where I;, and 04, » 4, denote the identity matrix and zero ma-
trix of size d,, X d,, respectively. The angles {goi},‘fgl are set

as cosp; = (1 — ﬁcosw) and ¢ is a tuning parameter.

Here, we refer to the inter-class coherence u M([')_ ks Sk) as
s for simplicity. To study the impact of 1, ¢ varies from
0 to 7/2 and we then calculate the corresponding value of
war. Here, p denotes the sampling density in each subspace
and we randomly sample pd; points from each subspace to
construct the training set D. The test set contains N = 500
samples randomly drawn from each subspace. To study the
impact of sampling density, we vary p from 0.1 to 5.

Fig. 3 illustrates the average MSP error and the classi-
fication error of the RMSCla (RMJSR based MSCla) with
various values of ys and p. The experimental result is con-
sistent with our theoretical analysis, which demonstrates that
it is harder for RMJSR to achieve MSPR and accurate clas-
sification results when the class coherence is larger and the
sampling density of training data in each subspace declines.

6 Conclusions

This paper focuses on the multi-view subspace-preserving
recovery theory, which is the theoretical underpinnings for
multi-view subspace classification (MSCla) and multi-view
subspace clustering (MSClu). Specifically, we prove that
the optimal solution to the RMJSR model is a Multi-view
Subspace-Preserving Representation (MSPR) under proper
conditions. Unlike previous results, our results do not re-
quire the equality constraint, which is a common requirement
and may be too restrictive in reality. Besides, we provide
both universal theoretical guarantee and individual theoretical
guarantee for MSPR. The results provide concise geometric
characterizations for the success of MSCla and MSClu.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Ethical Statement

There are no ethical issues.

Acknowledgments

We are grateful to the anonymous IJCAI reviewers for
their constructive comments. This work was supported by
the National Natural Science Foundation of China (under
Grant Nos. 62276111, 62076041, 62302188, 72471008,
72434005, and 62202009), the University of Macau (un-
der Grant Nos. MYRG-GRG2024-00290-FST-UMDF and
MYRG-CRG2024-00046-FHS), and the HZAU-AGIS Coop-
eration Fund (under Grant No. SZYJY2023010).

References

[Basri and Jacobs, 2003] R. Basri and D.W. Jacobs. Lamber-
tian reflectance and linear subspaces. IEEE Trans. Pattern
Anal. Mach. Intell., 25(2):218-233, 2003.

[Chang et al., 2024] Wei Chang, Huimin Chen, Feiping Nie,
Rong Wang, and Xuelong Li. Tensorized and compressed
multi-view subspace clustering via structured constraint.
IEEE Trans. Pattern Anal. Mach. Intell., 46(12):10434—
10451, 2024.

[Costeira and Kanade, 1998] Jodo Paulo Costeira and Takeo
Kanade. A multibody factorization method for indepen-

dently moving objects. International Journal of Computer
Vision, 29:159-179, 1998.

[Dyer et al., 2013] Eva L Dyer, Aswin C Sankaranarayanan,
and Richard G Baraniuk. Greedy feature selection for sub-
space clustering. The Journal of Machine Learning Re-
search, 14(1):2487-2517, 2013.

[Elhamifar and Vidal, 2009] Ehsan Elhamifar and René Vi-
dal. Sparse subspace clustering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2790-2797, 2009.

[Elhamifar and Vidal, 2010] Ehsan Elhamifar and René Vi-
dal. Clustering disjoint subspaces via sparse represen-
tation. In Proc. IEEE Conf. ICASSP, pages 1926-1929,
2010.

[Elhamifar and Vidal, 2013] Ehsan Elhamifar and René Vi-
dal. Sparse subspace clustering: algorithm, theory, and
applications. IEEE Trans. Pattern Anal. Mach. Intell.,
35(11):2765-2781, Nov. 2013.

[Kaba et al., 2021] Mustafa D Kaba, Chong You, Daniel P
Robinson, Enrique Mallada, and Rene Vidal. A nullspace
property for subspace-preserving recovery. In Interna-
tional Conference on Machine Learning, pages 5180—
5188, 2021.

[Li et al., 2017] Chun-Guang Li, Chong You, and René Vi-
dal. Structured sparse subspace clustering: A joint affinity
learning and subspace clustering framework. /IEEE Trans-
actions on Image Processing, 26(6):2988-3001, 2017.

[Ma et al., 2008] Yi Ma, Allen Y. Yang, Harm Derksen, and
Robert Fossum. Estimation of subspace arrangements
with applications in modeling and segmenting mixed data.
SIAM Review, 50(3):413-458, 2008.

[Robinson et al., 2019] Daniel P Robinson, Rene Vidal, and
Chong You. Basis pursuit and orthogonal matching pur-
suit for subspace-preserving recovery: Theoretical analy-
sis. arXiv preprint arXiv:1912.13091, 2019.

[Shekhar et al., 2013] Sumit Shekhar, Vishal M Patel,
Nasser M Nasrabadi, and Rama Chellappa. Joint sparse
representation for robust multimodal biometrics recogni-

tion. IEEE Transactions on pattern analysis and machine
intelligence, 36(1):113-126, 2013.

[Soltanolkotabi and Candés, 2012] Mahdi Soltanolkotabi
and Emmanuel J Candés. A geometric analysis of
subspace clustering with outliers. The Annals of Statistics,
40(4):2195-2238, 2012.

[Thaker et al., 2022] Darshan Thaker, Paris Giampouras,
and René Vidal. Reverse engineering /,, attacks: A block-
sparse optimization approach with recovery guarantees.

In International Conference on Machine Learning, pages
21253-21271, 2022.

[Vidal, 2011] René Vidal. Subspace clustering. IEEE Signal
Process. Mag., 28(2):52—-68, Mar. 2011.

[Wang and Xu, 2016] Y. Wang and H. Xu. Noisy sparse sub-
space clustering. J. Mach. Learn. Res., 17(12):1-41, 2016.

[Wang et al., 2019] Yulong Wang, Yuan Yan Tang, Luoging
Li, Hong Chen, and Jianjia Pan. Atomic representation-
based classification: theory, algorithm, and applications.
IEEE transactions on pattern analysis and machine intel-
ligence, 41(1):6-19, 2019.

[Wang et al., 2023] Yulong Wang, Kit Ian Kou, Hong Chen,
Yuan Yan Tang, and Luoqing Li. Simultaneous robust
matching pursuit for multi-view learning. Pattern Recog-
nition, 134:109100, 2023.

[Wang, 2024] Yulong Wang. Atomic recovery property for
multi-view subspace-preserving recovery. In IJCAI, pages
5144-5152, 2024.

[Wright er al., 2009] John Wright, Allen Y Yang, Arvind
Ganesh, S Shankar Sastry, and Yi Ma. Robust face recog-
nition via sparse representation. /IEEE Trans. Pattern Anal.
Mach. Intell., 32(2):210-227, Jan. 2009.

[Yang er al., 2024] Yang Yang, Yonggiang Tang, Jiangbo
Bai, Lu Zhang, and Wensheng Zhang. Multiview subspace
tensor self-representation for sar image semi-supervised
classification. IEEE Geoscience and Remote Sensing Let-
ters, 21:1-5, 2024.

[You and Vidal, 2015] Chong You and René Vidal. Geomet-
ric conditions for subspace-sparse recovery. In Interna-

tional conference on machine learning, pages 1585-1593.
PMLR, 2015.

[You et al., 2016] Chong You, Daniel Robinson, and René
Vidal. Scalable sparse subspace clustering by orthogonal
matching pursuit. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3918—
3927, 2016.

[You eral., 2019] Chong You, Chun-Guang Li, Daniel
Robinson, and Rene Vidal. Is an affine constraint needed



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

for affine subspace clustering? In IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
9914-9923, 2019.

[Zhang et al., 2012] Amy Zhang, Nadia Fawaz, Stratis Ioan-
nidis, and Andrea Montanari. Guess who rated this movie:
identifying users through subspace clustering. In Proceed-
ings of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence, page 944-953, 2012.

[Zhang ef al., 2020] Changging Zhang, Huazhu Fu, Qinghua
Hu, Xiaochun Cao, Yuan Xie, Dacheng Tao, and Dong Xu.
Generalized latent multi-view subspace clustering. /EEE
Trans. Pattern Anal. Mach. Intell., 42(1):86-99, 2020.

[Zhang et al., 2022] Chao Zhang, Huaxiong Li, Chunlin
Chen, Yuhua Qian, and Xianzhong Zhou. Enhanced group
sparse regularized nonconvex regression for face recogni-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 44(5):2438—
2452, 2022.

[Zhang er al., 2024] Hengmin Zhang, Jian Yang, Jianjun
Qian, Guangwei Gao, Xiangyuan Lan, Zhiyuan Zha, and
Bihan Wen. Efficient image classification via structured
low-rank matrix factorization regression. IEEE Trans-
actions on Information Forensics and Security, 19:1496—
1509, 2024.



