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Abstract

Due to the dynamic nature in videos, it is evident
that perceiving and reasoning about temporal in-
formation are the key focus of Video Question An-
swering (VideoQA). In recent years, several meth-
ods have explored relationship-level temporal mod-
eling with graph-structured video representation.
Unfortunately, these methods heavily rely on the
question text, thus making it challenging to per-
ceive and reason about video content that is not
explicitly mentioned in the question. To address
the above challenge, we propose Graph Prompts-
based VideoQA (GP-VQA), which adopts a video-
based graph structure for enhanced video under-
standing. The proposed GP-VQA contains two
stages, i.e., pre-training and prompt tuning. In pre-
training, we define the pretext task that requires
GP-VQA to reason about the randomly masked
nodes or edges in the video graph, thus prompt-
ing GP-VQA to learn the reasoning ability with
video-guided information. In prompt-tuning, we
organize the textual question into question graph
and implement message passing from video graph
to question graph, therefore inheriting the video-
based reasoning ability from video graph comple-
tion to VideoQA. Extensive experiments on various
datasets have demonstrated the promising perfor-
mance of GP-VQA.

1 Introduction

Video Question Answering (VideoQA) aims to assist hu-
mans in addressing everyday challenges [Wong et al., 2022;
Grauman et al., 2022], such as helping users locate items,
reminding them of past activities, and facilitating the com-
pletion of complex tasks, which is an intriguing cross-modal
task bridging the domains of computer vision and natural lan-
guage processing.

Each video is involved with dynamic actions, activities,
and events, thus VideoQA models should be able to per-
ceive and reason about the temporal information for answer
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generation. To capture detailed temporal information, re-
cent methods have attempted to explore relation-level tempo-
ral modeling to avoid insufficient understanding of temporal
context when modeling at the object level [Lei et al., 2021;
Xiao et al., 2022; Liu et al., 2021]. For example, some re-
searchers [Li er al., 2023d; Urooj et al., 2023; Zong et al.,
2024] propose adopting multi-scale feature encoding to con-
sider the temporal relationships of objects at different scales,
such as objects, regions, and clips within the video. However,
these methods do not explicitly define and model the tempo-
ral relationships between objects, thus they may encounter
difficulties in capturing the fine-grained temporal dynamics
and complex interactions among objects. Furthermore, to
address explicitly define and model the temporal relation-
ships between objects, recent approaches [Shi ef al., 2019;
Park et al., 2021] attempt to explore graph-structured video
representation for VideoQA, as shown in Figure 1 (a). These
methods adopt scene graph-liked structure which abstracts
the visual content or textual question to relationship triplets,
e.g., (subject, predicate, object), thereby explicitly model-
ing the relationship. However, these question-guided tem-
poral modeling methods rely heavily on the question text,
which merely focuses on the question-mentioned objects and
ignores other objects in the video that may be crucial for
answer reasoning. For example, to deal with a reasoning-
related question “Why does the toddler cry in the last of
video?”, question-guided methods merely concern the men-
tioned “toddler” in the given question, while ignoring the un-
mentioned “dog” that interacts with the toddler, thus generat-
ing incorrect answers.

To address these challenge, we introduce the video-guided
temporal modeling method, as shown in Figure 1 (b), which
has the following advantages: (1) a more comprehensive un-
derstanding of the dynamic relationships between objects in
the video, and (2) a stronger reasoning ability for video con-
tent not mentioned in the given question. Firstly, we construct
a video graph and a question graph simultaneously, where the
video graph contains objects and corresponding relationships
of each frame, and the question graph is generated through se-
mantic analysis of textual questions. Since the video graphs
are generated based on video instead of textual questions,
the perception of VideoQA model is no longer limited to
the directly mentioned information in questions and achiev-
ing a comprehensive understanding of video. Then we can
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Figure 1: (a) Question-guided relationship-level temporal modeling
by graph structure. (b) The proposed video-guided relationship-level
temporal modeling.

adopt message passing between video and question graphs,
thus integrating the video and question graph into a union
graph structure. In this way, the VideoQA model can obtain
stronger reasoning ability for all the video-contained objects
by incorporating relationship-level information on the ques-
tion semantics and all the video-contained objects. However,
during the message-passing process, the interaction between
the question graph and the video graph is based on nodes,
inevitably leading to the model still being biased towards tex-
tual questions. Merely expanding the model’s perception of
the video is insufficient to address this issue.

Inspired by the success of recent prompt-tuning researches
, we propose to adopt a two-stage training paradigm and in-
troduce a video graph completion pretext task to address the
above issue. In detail, we first randomly mask nodes and
edges in the video graph, and the video graph completion
is defined as completing the masked graph through tempo-
ral modeling, thus forcing the model to automatically learn
each relationship in the video graph, rather than merely learn-
ing the question-mentioned object relationships. Moreover,
since the video graph completion task is like a cloze-style
question-answering task, it also facilitates the adaptation to
VideoQA. Based on the proposed pretext task, we design
a Graph Prompts based Video Question Answering model
named GP-VQA. In pre-training, we introduce video SGG
methods [Cong et al., 2021; Li et al., 2022b; Nag et al., 2023]
to provide a raw video graph, which makes the proposed
GP-VQA able to adapt different models flexibly. Then we
employ a vision-language model to learn temporal reasoning
ability based on video graph completion pretext task. In the
prompt-tuning stage, we first organize the questions as ques-
tion graphs and adopt message-passing between the question
graph and video graph, therefore perceiving the global infor-
mation of the video and capturing the relevant information for
answer reasoning. At the last, we take the question graph as a
prompt and utilize the language module to predict the answer.

The main contributions are summarized as follows:

1. By incorporating video-based scene graphs instead of re-
lying solely on question text for temporal modeling, we
ensure that the proposed model obtains a more compre-

hensive perception of the video.

2. We propose a graph prompt-based VideoQA approach
GP-VQA, which learns the reasoning ability from
masked video graph completion pre-training and inherits
this ability to VideoQA task in the prompt-tuning stage.

3. The evaluation on the three public VideoQA datasets
verifies the effectiveness of the proposed GP-VQA,
which also demonstrates the flexibility of GP-VQA.

2 Related Work

2.1 Video Question Answering

Some early works [Zeng er al., 2017] apply the global video
and question representations for answer prediction, which
cannot construct robust fine-grained video semantics. For
example, work [Zeng et al., 2017] directly utilizes element-
wise multiplication to capture the global multi-modal feature
for answer classification. To capture the critical frames and
regions, ST-VQA [Jang et al., 2017] propose a dual-LSTM-
based approach with spatial and temporal attention mecha-
nisms. Work [Xu et al., 2017] enhances the attention unit
by incorporating the interaction between question words and
both frame-level and clip-level visual features. Despite the
aforementioned methods having the ability to attend to video
frames and clips, they have later been shown to be weak in
capturing long-term dependency.

To address the above problem, some work attempts to
leverage the memory network [Barmann and Waibel, 2022;
Datta et al., 2022] and Transformer [Li et al., 2023c;
Yuan et al., 2023] to capture robust long-term representa-
tions. Specifically, memory networks can cache sequential
inputs in memory slots and explicitly utilize long-term in-
formation, and Transformer utilizes the self-attention mech-
anism to model long-distance dependencies in context. Re-
cently, graph-structured techniques have been favored for im-
proving the reasoning ability of VideoQA models. Some
work [Park et al., 2021; Wang et al., 2021; Gao et al., 2023;
Peng er al., 2021; Huang et al., 2020] build the graphs based
on coarse-grained video segments. To capture the object-
level information, L-GCN [Huang et al., 2020] utilizes the
object representation to construct graph, e.g., appearance and
location features. Furthermore, work [Peng et al., 2021] con-
catenate the object-level, frame-level, and clip-level graphs to
learn the visual relations

The most similar method to ours is [Park et al., 2021],
which also adopts question graph to connect textual and vi-
sual domains. The main difference is that we introduce video-
based pre-training and design graph-based multimodal inter-
action to expand the model’s perception and avoid limitations
imposed by the question.

2.2 Scene Graph in VideoQA

Since the previous work succeeded in adopting scene graph
in visual question answering, this idea has been extended to
videoQA and captioning tasks [Tsai et al., 2019; Cherian
et al., 2022; Park er al., 2021]. For video understanding,
scene graph generation is defined to decompose long-term
actions into a series of frame-level relationships triplets [Ji
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Figure 2: The framework of the proposed method. We employ the standard video scene graph generation model as spatial-temporal semantic
extractor and adopt random mask operation to generate masked video graph, a language model with graph completion(GC) head is utilized
in pre-training stage, and a question answering (QA) head is employed in prompt-tuning.

et al., 2020; Li et al, 2022a; Li et al, 2022b; Li et
al., 2023e]. STG [Pan et al, 2020] explore combining
video scene graphs with knowledge distillation for video
captioning, while STSGR [Geng et al., 2021] propose to
adopt a multi-modal transformer guided by scene graph for
VideoQA. Moreover, (2.5+1)D-Transformer [Cherian et al.,
2022] propose to model the semantic and motion informa-
tion within video by scene graph, therefore conducting tem-
poral reasoning. However, the above methods construct scene
graphs based on the given questions, which limits the model’s
perception of global information.

To sum up, the major difference between GP-VQA with
existing methods is we propose a video-guided temporal
modeling approach, which induces the proposed model to uti-
lize broader perception for answer reasoning.

3 Method

The proposed method is illustrated in Figure 2, which con-
sists of two stages: pre-training with masked video graph
completion, and prompt-tuning with VideoQA. In the pre-
training stage, we adopt standard video SGG model, e.g.,
STTran [Cong er al., 2021], APT [Nag et al., 2023], and Tem-
pura [Li et al., 2022b], to obtain the raw video scene graphs
which abstract spatial-temporal semantic information within
the given video. Then, we randomly mask nodes or edges in
the raw video scene graph, and force the model to complete
the masked parts. In the prompt-tuning stage, we organize the
given question into a question graph, and update the feature
of each node and edge in question graph by adopting mes-
sage passing between video graph and question graph. After

that, we take the question graph as prompt and feed it into the
pre-trained language model with a new QA head to infer the
answer of the given question.

3.1 Problem Formulation

GP-VQA consists of pre-training and prompt-tuning stages,
where pre-training stage aims to complete the masked video
graph, while the prompt-tuning stage aims to generate more
accurate question answers. In other words, these two stages
have different output, where pre-training stage generates a
complete graph, and prompt-tuning stage utilizes classifica-
tion to predict correct answer. Therefore, GP-VQA needs to
address the following issues: how to design a model to con-
nect these two stages so that the prompt-tuning stage can in-
herit the temporal modeling knowledge from the pre-training
stage?

To address the above issue, we propose to bridge the
pre-training and prompt-tuning stages with graph structure.
Given the video V = {I,Is,...,In} and question X,
VideoQA aims to generate the answer as follows:

a = argmax Fp(a| X4, V), (1)
acA

where @ is the infferred answer in answer space A and is
generated by Fy. In contrast, regarding masked video graph
completion as a variant of scene graph generation, the com-
pleted video scene graph sequence can be denoted as G =
{91, 92, .-, gn }, where g; = {O, E;} is composed of the ob-
jects Oy and there relationships F; in I;. To connect VideoQA
and masked video graph completion, we formulate the infer-
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ence of g; similar to Eq. 1 as follows:

O, = argmax F.(olg;, V),
o€

) 2
E; = argmax F.(e|g,;, V),
ect
where O and £ are the label space of object and relationship,
respectively. We assume a dense graph g; with edges between
all the nodes and predict the nodes and edges by F.. More-
over, by analyzing the semantic dependency of each word in
the question X, with [Manning et al., 2014], we can orga-
nize X, into question graph g, = {Og, E,}. Thus, the aim
of VideoQA can be regarded as predicting a specific node or
edge in g, and Eq. 1 can be reformulated as follows:

a = arg max J; (algq, V). 3)
acA

Since a could be regarded as a node or edge in g, it can be

observed that if g; and g, are embedded the same, it is pos-
sible to handle VideoQA and masked video graph comple-
tion with the same function. Therefore, connecting VideoQA
and masked video graph completion is transformed into con-

structing a module or structure that can bridge g; and g,.

3.2 Pre-training with Masked Graph Completion

Similar to recent VideoQA models, we adopt pre-trained
feature extractors to capture the visual feature of V =
{I,I5,...,Ix}. The extracted feature is denoted as Fy =
{f1, f2, - fn'}, where f; € R*09 is the visual feature of
the ¢-th frame. After that, we adopt Mask-RCNN [He et al.,
2017] to detect the object in each frame, the visual features
and categories of objects are also provided by the detector,
For the i-th object in I;, we denote the visual feature and pre-
dicted category as v, ; € R?%%® and o, ;.

With the extracted visual features and detected objects, we
adopt the existing approach to obtain the raw video scene
graphs. The adopted model is denoted as F,, and raw video
scene graphs is denoted as G = {§1,§o,..., gn}, where
g = {Ot,E‘t} is the obtained raw video scene graph, O,
and E, is the objects and the relation edge in I, respectively.
We take the prediction result of F; as a pseudo-label, and
Ot € Ot can be represented as follows:

0r,i = Concate(syi, ft,i) )

where s;; is pseudo-label embedding provided by
Glove [Pennington et al., 2014] and f;; is the original
node representation extracted by F,. Moreover, the repre-
sentation construction process of edges is the same as that of
nodes. Then we establish hyperedges between scene graphs
of different frames based on the temporal order, therefore
locating the objects and relationships in the temporal dimen-
sion and facilitating subsequent question graph construction.
For example, a node will be connected to all the nodes in the
scene graphs of the previous frame by a directed hyperedge
labeled as “after”. Similarly, the directed hyperedge between
this node and the nodes in the scene graphs of the subsequent
frame is labeled as “before”. Thus, we can obtain a video
graph G to build a comprehensive perception of the video.

Then we construct masked video graph completion based
on the G. We randomly mask some nodes and edges with
rate A thus generating masked scene graph, e.g., (person —
write_on — [mask]) and (person — [mask] — paper). Af-
ter that, we employ a trainable language model F; with graph
completion head ¢4.(-) to predict a complete video graph,

which takes visual feature and G as input. Denoting the com-
plete video graph as G, it can be generated as follows:

G = poel Fi(6(Fy), RM (G, N))). 5)

where ¢(-) is a visual mapping function for dimension align,
RM (-) is random mask operation, and F; predicts the masked
element in G as a cloze task. Specifically, we also follow
[Dai et al., 2019] to generate relative temporal position en-
coding and utilize it to determine temporal order, which is
concatenated with each f; € Fy . Since there are multiple
masked nodes or edges in G, the video graph completion task
can naturally guide GP-VQA to expand its perception and ac-
quire stronger video understanding and reasoning abilities.

3.3 Prompt-tuning with VideoQA

In prompt-tuning, we aim to allow the transfer of learned
comprehensive video understanding and reasoning capabil-
ity from video graph completion to VideoQA. Therefore, it is
necessary to transform the textual questions in VideoQA into
a similar structure to G, thus enabling the pre-trained F; can
process VideoQA.

Question Graph construction. To understand the seman-
tic information within both the question and the video, we
embed all words in the question and the labels of objects
in video graph into 300-dimensional vectors with pre-trained
word embeddings ( e.g., GloVe [Pennington et al., 2014]).
With the same semantic embedding, we can establish a con-
nection between the video graph and the question, which al-
lows the information integration and facilitates the associa-
tion between video graph and the question. Moreover, we
adopt Stanford CoreNLP [Manning et al., 2014] to identify
the semantic dependency within the text, thus abstracting the
semantic structure of the question into a graph. As shown in
Figure. 2, given the question “What did the person hold after
drinking from a cup?”, we first decompose this sentence into
“what”, “person”, “cup”, “hold”, “drinking from” and “af-
ter”. After that, we construct a question graph g, based on
the semantic dependency of these words. Following the con-
struction of the video graph, “person”, “cup”, and “what” are
presented as object nodes in g,, while “what” with no definite
semantic information, and we denote it as a masked node.
“hold” and “drinking from” are denoted as spatial relation-
ship edges, while “after” is denoted as temporal hyperedge.

Prompts Generation. Although we have organized the
textual question into a question graph, it cannot be directly
adopted to calculate the answer since g, does not involve
any visual information for reasoning. Therefore, we cap-
ture related visual information and update g, based on video

graph G that is generated by a frozen spatial-temporal se-
mantic extractor in prompt-tuning. We first calculate the rel-
evance between nodes in the question graph g, and the video

graph G with temporal order. With denote the node in g,
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Methods obj.-rela. rela.-act. obj.-act. superlative sequencing exists dur. com. acti. recog. ALL
most likely 9.39 50.00 50.00 21.01 49.78 50.00 24.27 5.52 10.99
PSAC 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 40.18
HME 3742 49.90 49.97 33.21 49.77 49.96 47.03 543 39.89
HCRN 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
AIO 48.34 48.99 49.66 37.53 49.61 50.81 45.36 18.97 48.59
SHG-VQA 46.42 60.67 64.63 38.83 62.17 56.06 48.12 10.12 49.20
Temp 50.15 49.76 46.25 39.78 48.25 51.79 49.59 18.96 49.79
MIST-AIO 51.43 54.67 55.37 41.34 53.14 53.49 47.48 20.18 50.96
MIST-CLIP 51.68 67.18 68.99 42.05 67.24 60.33 54.62 19.69 54.39
GF 54.96 - - 44.62 53.24 59.13 52.80 14.17 55.08
GP-VQA’ 53.03 68.51 70.63 45.21 58.05 60.26 56.20 22.20 57.90
GP-VQA* 52.76 69.25 72.04 46.28 68.66 62.39 55.82 25.50 60.43
GP-VQA™ 56.74 71.69 73.67 47.51 70.82 65.80 58.25 27.38 61.24
Table 1: QA accuracies of state-of-the-art methods w/o large model on AGQA v2.
as Vg = {vg,1,q2,--,VgnN,}. the edge between v, , and  functions that adjust the relevance scores of nodes and edges

vqp 1s defined as ey qp, the relevance weight between a node
Vg,a € gq and vy ; € §; defined as follows:

w;,a—nﬁ,i —~ SOfthLI(S%a © St7i)’ ©)

where s, , and s; ; are semantic embeddings generated with
Glove [Pennington et al., 2014]. And we also calculate the
relevance weight wy ., ., ;. between each edge eqqp € 9gq
and e¢;; € §:. Finally, we form the similarity between re-
lation triplelet as wy ,; ,; ;i = (WG o + Wo apyrij +
wg ;,_,; ;)/3. Then we can update g, as follows:

1) Triplelet Retrieve: We first retrieve triplets in the video
graph that have a similarity higher than threshold « to the
masked nodes or edges in the question graph. Then, based on
the direction of hyperedges in the question graph, we sequen-
tially search for the corresponding parts of other triplets in the
question graph within the video graph, until all the triplets in
the question graph have been traversed.

2) Graph Construction: We extract the video subgraphs
of frames that correspond to the triplets in the question graph
that we retrieved, along with the video subgraphs connected
to them by no more than « hyperedges. Then we establish
dense connections between the obtained video subgraphs and
the question graph, constructing a cross-modal graph.

3)Feature Update: We apply message passing on the
cross-modal graph to update the nodes in the question graph.

In detail, the nodes and edges in g, is updated as follows:

h'gtq)a = ‘Fo(hlg:_al) ® Z O-O(wg,ab%t,c>h0t,i)7
01,i €Gt
hgz)«ab - fe(hg?a ® hg’tq)b & Z Je(wg,ab%t,c)hﬁt‘q‘,j%

et,ij €t
(7)
where we process the updating operation with temporal order

and wg ., ., . is the similarity between triplelet (a,ab, by €

gy and the most similar triplet, k! is the representation of
question graph node or edge * in t-th frame, h. is the rep-
resentation of video graph node or edge *, @ is an element-
wise add operation, F, and F. are the learnable liner layer
with relu activation. Moreover, we adopt o, and o, as score

in the video graph with respect to the question graph based on
the hop count to the most similar triplet. For each additional
hop, the relevance score decays by a factor of 5. By pass-
ing messages between video graph G and question graph g,,
we denote the generated graph as prompt graph g, which can
be processed by the language modle pre-trained in the video
graph completion.

Prompt-tuning with VideoQA. In prompt-tuning, we
freeze the spatial-temporal semantic extractor and GC head
while the language model and graph prompts generator are
trainable. We take g, to replace G as the language model
input, the answer prediction can be formulated as follows:

Ans = ©qa(Fi(O(FV), 9p)), ®

where ¢, is trainable QA head. Furthermore, since there are
different types of questions, e.g., causal, temporal, and de-
scriptive in NEXT-QA [Xiao et al., 20211, we adopt different
classifiers as QA head for different question types. We uti-
lize the standard cross-entropy loss function to optimize the
parameters in prompt-tuning, which is denoted as Lg 4.

4 Experiments

Dataset: We evaluate our model on three recently pro-
posed challenging datasets for the long-form VideoQA,
namely AGQA v2 [Grunde-McLaughlin et al., 2022], NEXT-
QA [Xiao et al., 20211, STAR[Wu et al., 2021]. AGQA
v2 is an open-ended VideoQA benchmark for compositional
spatial-temporal reasoning, NExT-QA is a benchmark for
causal and temporal reasoning, STAR is a benchmark for sit-
uated reasoning.

Baselines: We compare our model with several state-
of-the-art VideoQA algorithms: SHG-VQAI[Urooj et al.,
2023], VQA-TI[Yang ef al., 20211, AIO[Wang et al., 2023],
VGTI[Xiao et al., 2022], MIST-AIO[Gao ef al., 20231, MIST-
CLIP[Gao et al., 2023], GF[Bai et al., 2024], ATM[Chen
et al., 2023], CoVGTI[Xiao er al., 2023], TranSTR[Li et
al., 2023d], VideoChat2[Li et al., 2023bl, SeVila[Yu et
al., 2024], All-in-one[Wang et al., 2023], BLIP-2[Li et al.,
2023al, ST-LLM [Liu et al., 2024], TG-Vid [Hu et al., 2024],
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Method Casual Temporal Descriptive All
HGA 44.22 52.49 44.07 49.74
CLIP 46.30 39.00 53.10 43.70
VQA-T 49.60 51.49 63.19 52.32
= AlIO 48.04  48.63 63.24 50.60
= Temp 53.10 50.20 66.80 54.30
L2 VGT 52.28 55.09 64.09 55.02
® MISTAIO | 51.54 51.63 64.16 53.54
MIST-CLIP | 54.62 56.64 66.92 57.18
GF 56.93 57.07 70.53 58.83
GP-VQA’ | 58.94 58.65 71.20 61.85
TIGV 55.00 56.30 62.90 56.70
ATM 56.04 58.44 65.38 58.27
CoVGT 59.69 58.00 69.88 60.73
= TranSTR | 59.70 60.20 70.00 61.50
= VideoChat2 | 64.70 68.70 76.10 68.60
S SeVila 68.10 72.90 81.20 72.60
SeVila* 75.62 71.83 82.65 74.29
ST-LLM | 74.30 70.00 81.30 74.00
TG-Vid 77.40 73.80 84.30 77.30
GP-VQA* | 77.22 73.94 84.84 77.47
GP-VQA™ | 78.69 75.58 86.26 78.12

Table 2: QA accuracies of SOTA methods on NEXT-QA, where
SeVila* is pre-trained with the proposed masked video graph com-
pletion and similar data.

ATT-4L[Jaiswal et al., 2024]. We also adopt the proposed
method on three video SGG methods: Sttran [Cong et al.,
2021], Tempura [Nag et al, 20231, and APT [Li et al.,
2022b], to evaluate the flexibility of GP-VQA.

Implementation Details: We employ Mask RCNN [He
et al., 2017] with a ResNet-101 backbone as the object
detector for adopted video scene graph models. For the
vision-language model, we adopt the frozen LLAVA-7B and
Qianwen2-VL-7B with LoRA. To ensure fairness, we also
employed a standard Transformer [Vaswani er al., 2017] to
test the performance of the proposed model. During the pre-
training stage, we use SGD optimizer with an initial learn-
ing rate of 0.001 and decay the learning rate by multiplying
it with 0.9 after every epoch. The momentum is set to 0.9
and the size of mini-batch is set to 8. For hyper-parameters,
we set the random mask rate A to 0.08, while the «, 3, and
v in prompts generation are set to 0.7, 0.8, and 2 respec-
tively. Moreover, we sample 1 frame in every 3 frames for
pre-training. For prompt-tuning, we use the same setting as
pre-training, except the initial learning rate is 1le — 5. More-
over, the adopted video scene graph generation models are
pre-trained on Action Genome [Ji et al., 2020]. Since there
is no scene graph annotation in NExT-QA, we do not pre-
train video graph completion on NExT-QA. Instead, we adopt
the module pre-trained on Action Genome and AGQA v2 for
NExT-QA.

4.1 Comparison with State-of-the-arts

We compare GP-VQA with the state-of-the-art (SOTA) meth-
ods on three VideoQA datasets, as shown in Table 1, Table 2,
and Table 3. GP-VQA’, GP-VQA* and GP-VQA™ are im-

Methods Inte. Seq. Pred. Feas. All
All-in-One 475 50.8 477 440 475
MIST 555 542 542 444 511

InternVideo 62.7 656 549 519 588
BLIP-2voting 523 548 490 512 518
BLIp-2¢0ncat 654 690 59.7 542 620
SeViLa 63.7 704 631 624 649
Concat-Att-4L | 68.1 714 66.6 552 653
Cross-Att-4L 675 721 644 585 65.6

GP-VQA 66.5 707 644 537 65.6
GP-VQA* 71.8 76.2 69.7 639 69.9
GP-VQA+ 734 779 712 648 723

Table 3: QA accuracies of SOTA methods on STAR.

plemented with Transformer, LLAVA-7B and Qianwen2-VL-
7B, respectively. GP-VQA achieves SOTA performances and
outperforms the existing methods on all datasets.

The proposed method with VLM achieves a 6.16% im-
provement on the AGQA v2 dataset, especially obtaining
4.51% and 7.69% improvements on the relation-action and
action recognition types. Since the SOTA method GF [Bai
et al., 2024] does not utilize LLM, to ensure fairness, we
also evaluate GP-VQA with a standard Transformer, which
still achieved a 2.82% improvement over the GF. As shown
in Table 2, the performance improvement of the proposed
method is lower on NExT-QA because we cannot perform
masked video graph completion pre-training on NExT-QA,
but it is worth noting that our model still has significant su-
periority and achieves the best performance. Moreover, it can
be observed that GP-VQA exhibits a significant advantage in
handling causal-type questions, with a 10.59% improvement
compared to SeVila. Since GP-VQA utilizes additional scene
graph data from Action Genome [Ji et al., 20201, we imple-
ment a variant SiVila* of SiVila to ensure fairness. SiVila*
also adopts masked video graph completion pre-training with
the additional data. As shown in Table 2, pre-training effec-
tively improved the answer reasoning ability of SiVila*, while
the proposed model GP-VQA™ still outperformed SiVila*.
Furthermore, GP-VQA obtains obvious improvement on each
metric of the STAR dataset, as shown in Table 3. This demon-
strates the effectiveness of the proposed masked video graph
completion pre-training in enhancing reasoning performance.

4.2 Ablation Study

In this part, we analyze the impacts of the designed pre-
training & prompt-tuning strategy, graph prompt generation,
and hyper-parameters in our model.

Effect of each component in GP-VQA: We ablate key
components in GP-VQA, e.g., Pre-training and Random
Mask, denoted as, w/o PT and w/o RM.

* w/o PT: It removes the masked video graph completion
pre-training in VideoQA, which we directly adopt video
graph generated by frozen video SGG model.

* w/o RM: It removes the Random Mask in masked video
graph completion pre-training, which vision-language
model server as a scene graph generator in pre-training.
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(a) (b) ()

Question Types w/oRM  w/o PT | mean pooling max pooling Sttran* Tempura* | GP-VQA

object-relationship 53.69 53.49 50.96 53.03 56.11 57.14 56.74

relationship-action 69.49 66.51 69.67 69.23 71.11 72.14 71.69

object-action 67.93 71.15 69.72 70.63 73.73 74.53 73.67
Q| superlative 41.73 44.36 4434 45.22 47.05 47.55 47.51
< | sequencing 65.85 66.72 68.63 68.06 71.30 70.76 70.82
8 exists 61.88 62.64 61.81 62.27 66.79 65.97 65.80
<C | duration comparison  53.41 55.18 53.21 56.21 58.96 58.95 58.25

activity recognition 23.34 24.83 24.57 22.21 25.45 25.66 27.38

ALL 58.76 56.58 57.11 57.91 59.87 +1.04  60.33+1.50 | 61.24+2.41
8 Causal 75.74 74.35 74.88 74.35 77.17 77.57 78.69
. | Temporal 72.98 73.31 70.95 68.53 74.62 73.69 75.58
5 | Descriptive 79.89 80.34 77.87 80.23 81.84 82.68 86.26
Z | Al 73.40 72.87 70.96 71.60 75.57 +2.94  76.60+4.00 | 78.12+5.79

Table 4: Effect of (a) each component and (b) different strategies for prompts generation in GP-VQA. (c) Ablation Study of adopting different
video SGG methods. The red numbers indicate the improvement compared with the previous SOTA methods.
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Figure 3: Effect of different parameters on AGQA v2.

The results of these variants on AGQA v2 and NEXT-QA are
shown in Tableb 4 (a). We can see that removing masked
video graph completion pre-training causes a 4.66% and
4.25% accuracy drop on AGQA v2 and NExT-QA datasets,
respectively. It proves that the proposed pre-training strat-
egy can effectively enhance the comprehensive understand-
ing ability of videos, thereby obtaining strong reasoning abil-
ity for question answering. In addition, the performance drop
on both datasets is significant when removing pre-training,
which also demonstrates the learned reasoning ability is uni-
versal in VideoQA. Tableb 4 also highlights the importance
of random mask strategy, the full model GP-VQA obtains the
best results on both datasets, which can be attributed to the
random mask operation indeed helps the training of model’s
reasoning ability. Moreover, as it simulates the form of ques-
tion answering in the masked video graph completion, the
proposed model can more easily adapt to prompt-tuning.

Effect of different strategies for prompts generation:
We compare three types of prompts generation strategies:
mean pooling, max pooling, and learned layer (GP-VQA),
which can be realized by modifying F,, and F. in Eq. 7. As
shown in Table 4 (b), graph prompts achieve the best perfor-
mance, e.g., 4.13% and 3.33% improvements compared with
mean and max pooling on the AGQA v2 dataset. The reason
is that a learned layer can effectively capture relevant infor-
mation in video graph.

Effect of different video SGG models: To evaluate the
flexibility of GP-VQA in incorporating different methods

for obtaining raw video graphs, we conduct several exper-
iments on different video scene graph generation methods,
e.g., Sttran*, Tempura*, and APT(GP-VQA). We conduct
different video scene graph generation methods to replace the
spatial-temporal semantic extractor in GP-VQA, as shown in
Table 4 (c). We can see that all these methods outperform the
previous SOTA method SiVila [Yu e al., 2024] and GF [Bai
et al., 2024] on both AGQA v2 and NeXT-QA datasets. The
improvement of performance further demonstrates the flexi-
bility of the proposed GP-VQA, and verifies the advantage of
introducing video graph for extending the proposed model’s
perception.

Effect of different hyperparameters: We analyze the per-
formance with different random mask rates A, and hyperpa-
rameters «, [ and -y in prompts generation. As shown in Fig-
ure 3, it can be observed that accuracy first increases and then
slowly decreases or level off. Thus, we set A = 0.08,ax =
0.7, 3=0.8and v = 2.

5 Conclusion

In this work, we present a video-guided temporal modeling
approach for VideoQA, comprising pre-training on masked
video graph completion and prompt-tuning for VideoQA.
The method uses random masking in pre-training for graph
construction, leveraging video scene graphs and a graph-
completion-equipped language model for multimodal reason-
ing. During prompt-tuning, question graphs are built, mes-
sages are passed between video and question graphs to cre-
ate prompts, and answers are computed using the pre-trained
model. This strategy enhances visual scene perception and
overcomes text-question limitations. We conduct extensive
experiments to show that the proposed method significantly
outperforms the SOTA methods, with adaptable components
such as the video SGG. Future exploration will focus on semi-
supervised or unsupervised graph-based prompt-tuning, aim-
ing for practical real-world adaptation.
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