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Abstract

Spatio-temporal forecasting is pivotal in numer-
ous real-world applications, including transportation
planning, energy management, and climate monitor-
ing. In this work, we aim to harness the reasoning
and generalization abilities of Pre-trained Language
Models (PLMs) for more effective spatio-temporal
forecasting, particularly in data-scarce scenarios.
However, recent studies uncover that PLMs, which
are primarily trained on textual data, often falter
when tasked with modeling the intricate correlations
in numerical time series, thereby limiting their ef-
fectiveness in comprehending spatio-temporal data.
To bridge the gap, we propose REPST, a semantic-
oriented PLM reprogramming framework tailored
for spatio-temporal forecasting. Specifically, we
first propose a semantic-oriented decomposer that
adaptively disentangles spatially correlated time se-
ries into interpretable sub-components, which fa-
cilitates PLM to understand sophisticated spatio-
temporal dynamics via a divide-and-conquer strat-
egy. Moreover, we propose a selective discrete
reprogramming scheme, which introduces an ex-
panded spatio-temporal vocabulary space to project
spatio-temporal series into discrete representations.
This scheme minimizes the information loss dur-
ing reprogramming and enriches the representa-
tions derived by PLMs. Extensive experiments on
real-world datasets show that the proposed REPST
outperforms twelve state-of-the-art baseline meth-
ods, particularly in data-scarce scenarios, highlight-
ing the effectiveness and superior generalization
capabilities of PLMs for spatio-temporal forecast-
ing. Codes and Appendix can be found at https:
//github.com/usail-hkust/REPST.

†Corresponding author

1 Introduction
Spatio-temporal forecasting aims to predict future states of
real-world complex systems by simultaneously learning spatial
and temporal dependencies of historical observations, which
plays a pivotal role in diverse real-world applications, such as
traffic management [Li et al., 2018; Wu et al., 2019], environ-
mental monitoring [Han et al., 2023], and resource optimiza-
tion [Geng et al., 2019]. In the past decade, deep learning has
demonstrated great predictive power and led to a surge in deep
spatio-temporal forecasting models [Jin et al., 2023a]. For ex-
ample, Recurrent Neural Networks (RNNs) and Graph Neural
Networks (GNNs) are frequently combined to capture com-
plex patterns for spatio-temporal forecasting [Li et al., 2018;
Han et al., 2020]. Despite fruitful progress made so far, such
approaches are typically confined to the one-task-one-model
setting, which lacks general-purpose utility and inevitably falls
short in handling widespread data-scarcity issue in real-world
scenarios, e.g., newly deployed monitoring services.

In recent years, PLMs like GPT-3 [Brown, 2020] and the
LLaMA family [Touvron et al., 2023] have achieved ground-
breaking success in the Natural Language Processing (NLP)
domain. PLMs exhibit exceptional contextual understand-
ing, reasoning, and few-shot generalization capabilities across
a wide range of tasks due to their pre-training on extensive
text corpora. Although originally designed for textual data,
the versatility and power of PLMs have inspired their ap-
plication to numerically correlated data [Zhou et al., 2024;
Jin et al., 2023b; Jin et al., 2024]. For example, [Zhou et al.,
2024] pioneers research in this direction and showcases the
promise of fine-tuning PLMs as generic time series feature
extractors. Besides, model reprogramming [Jin et al., 2023b]
has considered the modality differences between time series
and natural language, solving time series forecasting tasks
by learning an input transformation function that maps time
series to a compressed vocabulary.

However, two significant challenges remain in directly
applying the aforementioned reprogramming techniques to
spatio-temporal forecasting. The foremost issue lies in the un-
derutilization of PLMs’ full potential. Recent work [Tan et al.,
2024] suggests that existing PLM-based approaches for time
series forecasting fail to leverage the generative and reasoning
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Figure 1: Simple Fourier-based decomposition can improve PLM’s
understanding of spatio-temporal data. We conduct experiments
by applying reprogrammed GPT-2 on widely used PEMS-BAY and
METR-LA datasets.

abilities of PLMs. This limitation becomes even more appar-
ent when handling more complex spatially correlated time
series data. To this end, a crucial question arises: how can
we better explain this shortcoming and unlock the potential
of PLMs for spatio-temporal forecasting? Another challenge
is PLMs’ limited capacity to model the intricate correlations
present in spatio-temporal data. While PLMs excel at cap-
turing dependencies within one-dimensional sequential data,
they fall short in comprehending spatio-temporal data, which
often has more complex structures like grids or graphs [Li
et al., 2024]. This gap poses a significant obstacle to PLMs’
effective use in this domain.

To address these challenges, we argue that the primary limi-
tation of existing approaches lies in their oversimplified treat-
ment of spatio-temporal data, which prevents PLMs from fully
understanding the underlying semantics. Instead of merely
serving as a one-dimensional encoder, PLMs need a more
sophisticated understanding to handle spatio-temporal data ef-
fectively. As depicted in Figure 1, our explorative experiments
uncover that even applying simple decomposition techniques
can significantly facilitate PLMs to better understand spatio-
temporal data and lead to improved performance.

Building on this insight, we propose REPST, a reprogram-
ming framework specifically designed for spatio-temporal
forecasting using PLMs. Specifically, we first propose
a semantic-oriented spatio-temporal decomposer, which
adaptively disentangles spatio-temporal dynamics into com-
ponents that represent interpretable sub-processes within the
system. This is achieved through a Koopman theory-based
evolutionary matrix, which results in decomposed components
rich in spatio-temporal semantics that PLMs can more eas-
ily comprehend. This decomposition-based approach enables
PLMs to capture both spatial and temporal dynamics more ef-
fectively. Moreover, we introduce a selective reprogramming
strategy to tackle the complexity of spatio-temporal struc-
tures, which differ fundamentally from the one-dimensional
sequence-like structure of textual data. Our strategy constructs
an expanded spatio-temporal vocabulary by selecting the most
relevant spatio-temporal word tokens from the PLM’s vocabu-
lary through a differentiable reparameterization process. Un-
like previous works that use compressed vocabularies, which
can lead to ambiguous semantics, our approach reconstructs
the reprogramming space with a rich, semantically distinct

spatio-temporal vocabulary. By leveraging pretrained spatio-
temporal correlations, this strategy enables PLMs to focus
on relationships among tokens in a 3D spatio-temporal space,
significantly enhancing their ability to model complex spatio-
temporal dynamics. We evaluate REPST on a variety of spatio-
temporal forecasting tasks, including energy management, air
quality prediction, and traffic forecasting. Extensive experi-
mental results highlight the framework’s superior performance
compared to state-of-the-art models, particularly in few-shot
and zero-shot learning contexts. Our main contributions are
summarized as:

• We identify the underlying reason for the underperformance
of existing PLM-based approaches for spatio-temporal fore-
casting, highlighting the need to decompose spatio-temporal
dynamics into interpretable components to fully leverage
PLMs’ potential.

• We propose REPST, a spatio-temporal forecasting frame-
work that enables PLMs to grasp complex spatio-temporal
patterns via semantic-oriented decomposition-based repro-
gramming. The reprogramming module reconstructs an
expanded spatio-temporal vocabulary using a selective strat-
egy, allowing PLMs to model spatio-temporal dynamics
without altering their pre-trained parameters.

• We show that REPST consistently achieves superior perfor-
mance across real-world datasets, particularly in data-scarce
settings, demonstrating strong generalization capabilities in
few-shot and zero-shot learning scenarios.

2 Preliminaries
Spatio-temporal data can be considered as observations of the
state of a dynamical system. It is typically represented as a
two-dimensional matrix X ∈ RN×T , which captures the states
of a set of N nodes V , where each node in V corresponds to an
entity (e.g., grids, regions, and sensors) in space. Specifically,
we denote xi

t−T+1:t = [xi
t−T+1, xi

t−T , ..., xit]⊤ ∈ RT×1 as
the observations of node i from time step t − T + 1 to t,
where T represents the look-back window length. The goal of
spatio-temporal forecasting problem is to predict future states
for all nodes i ∈ V over the next τ time steps based on a
sequence of historical observations. This involves uncovering
the complex spatial and temporal patterns inherent in spatio-
temporal data to reveal the hidden principles governing the
system’s dynamics:

Ŷt+1:t+τ = fθ(Xt−T+1:t), (1)

where Xt−T+1:t = [x0
t−T+1:t, x1t−T+1:t, ..., xN−1

t−T+1:t]
⊤ ∈

RN×T denotes the historical observations in previous T
time steps, and fθ(·) is the spatio-temporal forecasting
model parameterized by θ. Ŷt+1:t+τ = {ŷi

t+1:t+τ}Ni=0

and Yt+1:t+τ = {yi
t+1:t+τ}Ni=0 denote the estimated future

states and the ground truth in the next τ time steps, where
Ŷt+1:t+τ ,Yt+1:t+τ ∈ RN×τ . For convenience, we omit the
lower corner mark and represent Xt−T+1:t,Yt+1:t+τ as X,Y
and xit−T+1:t, yi

t+1:t+τ as xi, yi.
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Figure 2: The model framework of REPST. (1) Given a raw input spatio-temporal data, we first perform normalization and then decouple
the spatio-temporal data into a set of evolutionary signals. (2) After that, the signals are concatenated and divided into patches and further
transformed into embeddings by a semantic-oriented context encoder. (3) Then, the patch embeddings are aligned with natural language by
reprogramming with expanded spatio-temporal vocabulary and further processed by the frozen GPT-2 backbone. The output patches of the
pre-trained language model are reprocessed by a learnable mapping function to generate the forecasts.

3 Methodology
As illustrated in Figure 2, REPST consists of three compo-
nents: a semantic-oriented spatio-temporal decomposer, a
selective reprogrammed language model, and a learnable map-
ping function.

3.1 Semantic-Oriented Evolutional
Spatio-Temporal Decomposition

Recent studies have revealed that PLMs possess rich spatio-
temporal knowledge and reasoning capabilities [Gurnee and
Tegmark, 2023; Jin et al., 2024]. However, existing meth-
ods failed to fully leverage the capabilities of PLMs, which
raises challenges for spatio-temporal data forecasting as well.
As aforementioned, reasons for this shortcoming lies in their
over simplistic encoding to time series. PLMs requires further
process of spatio-temporal data to enhance their comprehen-
sibility to such complex structure. In this section, we ad-
dress this shortcoming through a carefully designed semantic-
oriented spatio-temporal decomposer. Previous works [Liu et
al., 2024c; Yi et al., 2024; Shao et al., 2022b] decouple the
time series in Fourier space and handle the decoupled signals
separately for better use of the hidden information of time
series. Simply decomposing time series solely based on fre-
quency intensity is not interpretable and cannot effectively
capture the highly coupled spatio-temporal dynamics. Further-
more, this cannot be easily realized by language models as
well due to their limited semantics information.

To fully unlock the spatio-temporal knowledge, inspired by
dynamic mode decomposition [Schmid, 2010], we propose

to capture the underlying dynamic signals in an interpretable
manner by leveraging the dynamic system’s evolution matrix
A. To be specific, considering two state observations X1:t−1

and X2:t, it satisfies X2:t = AX1:t−1. This evolution matrix A
is sought in a low-rank setting to capture the modes governing
the system’s dynamics. By applying a series of mathematical
process such as singular value decomposition (SVD) to X1:t−1

and X2:t, we obtain the eigenvectors Ω = [ω1, ω2, ..., ωC ] and
corresponding eigenvalues V = [v1, v2, . . . , vC ] , which can
be leveraged to decompose spatio-temporal dynamic systems
into different components. Each ωi, referred to as a mode of
the dynamical system, reflects certain evolution dynamics of
the system. We provide detailed description for calculation
process in Appendix A.5.

Specifically, we first obtain Xnorm by normalizing the input
X for each node to have zero mean and unit standard deviation
using reversible instance normalization (RevIN) [Kim et al.,
2021]. Then, we disentangle a set of interpretable dynamic
components Xdyn ∈ RN×T×C from intricate spatio-temporal
data through reconstructing the system dynamics via modes
ωi from the system’s evolution matrix’s eigenvectors Ω and
the corresponding eigenvalues vi. By explicitly decoupling
the interpretable nature of the spatio-temporal system, our ap-
proach is well-suited to capture the various dynamic behaviors
of the system, providing PLMs with a series of components
enriched with spatio-temporal semantic information that is
significantly easier to comprehend compared to the originally
densely coupled dynamic signals.

Xdyn = ε0e
ω0tv0 ∥ ε1e

ω1tv1 ∥ · · · ∥ εCe
ωCtvC , (2)
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where Xdyn is a set of spatio-temporal dynamics calculating
based on the modes ωi and eigenvalues vi. εi is based on the
input observation (see Appendix A.5). Since the dynamics of
the system is disentangled, we can distinguish the noise from
the dominant dynamic signals in the original data. If only the
most significant information is retained during reconstruction,
the reconstruction results can remove noise, thus obtaining
a smoother state evolutionary information. Therefore, we
further reconstruct the whole system Xrec ∈ RN×T with most
dominant modes to enhance prediction:

Xrec =
∑︂
i

εie
ωitvi, i ∈ α, (3)

where α represents a set of indices stands for top-k most dom-
inant modes, constructed based on each mode’s contribution to
the overall system [Schmid, 2010], which is calculated through
the analysis of ωi and vi (see Appendix A.5 in supplementary
material). Compared to existing Fourier-based methods, the
system’s evolution matrix Ω is derived from data represent-
ing the true dynamics of the system. It can separate modes
corresponding to specific intepretable processes, enabling us
to capture various aspects of the system’s evolution, such as
periodic oscillations in traffic flows caused by traffic signals or
slow changes in air pollution driven by wind direction [Chen
et al., 2012].

Additionally, to enhance the information density of de-
coupled signals, we employ patching strategy [Nie et al.,
2022] to construct patches as the input tokens for PLMs.
Given the decoupled signals Xdec = Xrec ∥ Xdyn ∈
RN×T×(C+1), we divide the observations of each node as
a series of non-overlapped patches XP

dec ∈ RN×P×TP×(C+1),
where P = [T/TP ] + 1 represents the number of the re-
sulting patches, and TP denotes the patch length. Next,
we encode the patched signals as patched embeddings :
Xenc = Conv(XP

dec, θp) ∈ RN×P×D, where N stands
for the number of nodes, and D is the embedding dimen-
sion. Conv(·) denotes the patch-wise convolution opera-
tor and θp represents the learnable parameters of the patch-
wise convolution. Unlike previous works [Liu et al., 2024a;
Liu et al., 2024b] that simply regard each node as a token, our
model treats each patch as one token, allowing to construct
fine-grained relationships among both spatial and temporal
patterns. By doing so, our model can preserve representations
rich in semantic information, allowing PLM’s comprehension
in both spatial and temporal dynamics more effectively.

3.2 Selective Reprogrammed Language Models
Based on the decoupled signal patches Xenc, how to tackle
the complexity of spatio-temporal structures raises another
question. Compared to directly handling the spatio-temporal
embeddings, representations in natural language space are
inherently suitable for PLMs. To enrich spatio-temporal se-
mantics and enable more comprehensive modeling of hidden
spatio-temporal relationships, as well as unlocking the rea-
soning capabilities of PLMs, we further reprogram the com-
ponents into the textual embedding place via an expanded
spatio-temporal vocabulary. When handling textual-based
components, the rich semantic information can boost the pre-

trained knowledge of PLMs, resulting in an adequate modeling
of the hidden interactions between disentangled components.

Specifically, we introduce our selective reprogramming
strategy, which further constructs an expanded spatio-temporal
vocabulary in a differentiable reparameterization process. We
begin with E ∈ RV×d, the pretrained vocabulary of the PLMs,
where V is the vocabulary size and d is the dimension of
the embedding. We introduce a learnable word mask vec-
tor m ∈ RV×1 to adaptively select the most relevant words,
where m[i] ∈ {0, 1}. In specific, we first obtain m through
a linear layer followed by a Softmax activation, denoted as
m = Softmax(EW), where W is a learnable matrix. After-
ward, we sample Top-K word embeddings from E based on
probability m[i] associated with word i for reprogramming.
Since the sampling process is non-differentiable, we employ
Gumbel-Softmax trick [Jang et al., 2016] to enable gradient
calculation with back-propagation, defined as:

m′[i] =
exp((logm[i] + gi)/τ)∑︁V
j=1 exp((logm[i] + gj)/τ)

, (4)

where m′ is a continuous relaxation of binary mask vec-
tor m for word selection, τ is temperature coefficient, gi
and gj are i.i.d random variables sampled from distribution
Gumbel(0, 1). Concretely, the Gumbel distribution can be
derived by first sampling u ∼ Uniform(0, 1) and then com-
puting gi = − log(− log(u)). By doing so, we can expand
vocabulary space while preserving the semantic meaning of
each word.

After obtaining the sampled word embeddings E′ ∈ RK×d,
we perform modality alignment by using cross-attention. In
particular, we define the query matrix Xq = XencWq, key
matrix Xk = E′Wk and value matrix Xv = E′Wv , where Wq ,
Wk, and Wv. After that, we calculate the reprogrammed
patch embedding as follows: Z = Attn(Xq,Xk,Xv) =

Softmax(
XqX⊤

k√
d
)Xv, where Z ∈ RN×P×d denotes the aligned

textual representations for the input spatio-temporal data.
Based on the aligned representation, we utilize the frozen

PLMs as the backbone for further processing. Roughly, PLMs
consist of three components: self-attention, Feedforward Neu-
ral Networks, and layer normalization layer, which contain
most of the learned semantic knowledge from pre-training.
The reprogrammed patch embedding Z is encoded by this
frozen language model to further process the semantic infor-
mation and generates hidden textual representations Ztext.
A learnable mapping function Projection(·) is then used to
generate the desired target outputs, which map the textual rep-
resentations into feature prediction: Ŷ = Projection(Ztext).

4 Experiments
4.1 Experimental Settings
Datasets. We conducted experiments on six commonly used
real-world datasets [Lai et al., 2018]*, varying in the fields
of traffic [Zhang et al., 2017; Li et al., 2018], solar energy,
and air quality†. Each dataset comprises tens of thousands of

*https://github.com/LibCity/Bigscity-LibCity
†https://www.biendata.xyz/competition/kdd_2018/data/
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time steps and hundreds of nodes, offering a robust founda-
tion for evaluating spatio-temporal forecasting models. The
detailed statistics of the datasets are summarized in Appendix
in supplementary material.

Baselines. We extensively compare our proposed REPST
with the state-of-the-art (sota) forecasting approaches, in-
cluding (1) the GNN-based methods: [Wu et al., 2019;
Shao et al., 2022b; Wu et al., 2020] (2) non-GNN-based sota
models: [Shao et al., 2022a; Liu et al., 2023a; Deng et al.,
2021] which emphasizes the integration of spatial and tempo-
ral identities; (3) sota time series models: [Zhou et al., 2021;
Liu et al., 2023b; Nie et al., 2022] (4) PLM-based time series
forecasting models: [Zhou et al., 2024]; (5) methods with no
trainable parameters: [Cui et al., 2021]. We reproduce all of
the baselines based on the original paper or official code.

4.2 REPST Generalization Performance
Few-shot performance. PLMs were trained using large
amounts of data that cover various fields, equipping them
with cross-domain knowledge. Therefore, PLMs can utilize
specific spatio-temporal related textual representations to un-
lock their capabilities for spatio-temporal reasoning, which
can handle the difficulties caused by data sparsity. To verify
this, we further conduct experiments on each field to evaluate
the predictive performance of our proposed REPST in data-
sparse scenarios. Our evaluation results are listed in Table 1
with the best in bold and the second underlined. Concretely,
all models are trained on 1-day data from the train datasets
and tested on the whole test dataset. REPST consistently
outperforms other deep models and PLM-based time series
forecasters. This illustrates REPST can perform well on a
new downstream dataset and is suitable for spatio-temporal
forecasting tasks with the problem of data sparsity.

Specifically, our REPST show competitive performance
over other baselines in few-shot experiments, demonstrating
that PLMs contain a wealth of spatio-temporal related knowl-
edge from pre-training. Moreover, the capabilities of spatio-
temporal reasoning can be enhanced by limited data. This
shows a reliable performance of REPST when transferred to
data-sparse scenarios.

Zero-shot performance. In this part, we focus on eval-
uating the zero-shot generalization capabilities of REPST
within cross-domain and cross-region scenarios following the
experiment setting of [Jin et al., 2023b]. Specifically, we
test the performance of a model on dataset A after training
under a supervised learning framework on another dataset
B, where dataset A and dataset B have no overlapped data
samples. We use the similar experiment settings to full
training experiments and evaluate on various cross-domain
and region datasets. The datasets includes NYC Bike, CHI
Bike [Jiang et al., 2023], Solar Energy and Air Quality (NYC,
CHI, Solar and Air). We compare our performance with re-
cent works in time series or spatio-temporal data with open-
sourced model weights [Das et al., 2023; Li et al., 2024;
Ekambaram et al., 2024].

Our results in Figure 3 show that REPST consistently secure
top positions on all settings. This outstanding zero-shot predic-
tion performance indicates REPST’s versatility and adaptabil-

2.03
NYC->CHI

11.90
CHI->NYC

5.53
NYC->Solar

35.86
Solar->Air

5.57
CHI->Solar

3.61
Solar->CHI

9.07

6.39

Models

RePST
TimesFM
OpenCity-plus
OpenCity-base
OpenCity-mini

Figure 3: Zero-Shot Performance. We evaluate the zero-shot capabil-
ity of our REPST in the same setting as few-shot experiments.

ity in handling diverse scenarios. It does obtain transferable
knowledge for dynamic systems by unlocking the reasoning
capabilities of PLMs. Its excellent adaptation to brand new
scenarios significantly reduces the time and computational
resources typically required by traditional approaches. Al-
though our REPST falls a little short to OpenCity-base in
Solar Energy → CHI_Bike, it is because of the large amount
of traffic related datasets included by OpenCity’s pretrain
datasets. Compared to it, our REPST is trained on Solar En-
ergy dataset which has almost no connection with such traffic
datasets. This relatively comparable performance demonstrate
REPST’s excellent generative capability in cross-domain set-
tings. The numerical results are shown in Appendix B.3 in
supplementary material.
Increasing predicted length. In this part, we analyze the
model performance across varying prediction horizons τ ∈
{6, 12, 24, 36, 48}, with a fixed input length T = 48. Figure 4
showcases the MAE across two datasets: Air Quality and NYC
Bike, for four models. The REPST model demonstrates the
most stable performance across both MAE and RMSE metrics,
particularly in longer prediction horizons (τ = 36, 48). In
contrast, previous state-of-the-art models exhibit notable per-
formance degradation as the prediction horizon increases. The
performance of REPST, on the other hand, remains relatively
stable and robust, demonstrating its efficacy in leveraging
PLM to improve performance over longer-term predictions,
which can also be attributed to its ability to capture both spatial
and temporal correlations effectively, making it highly suited
for few-shot learning tasks in spatio-temporal forecasting.

6 12 24 36 48
Prediction Horizons

30

40

50

60

70 Air Quality (MAE)

6 12 24 36 48
Prediction Horizons

5.0

6.0

7.0

8.0

9.0 NYC Bike (MAE)

STID STAEformer GWNET RePST

Figure 4: Few-Shot performance with multiple prediction horizons
τ ∈ {6, 12, 24, 36, 48} and fixed input length T = 48.
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Dataset METR-LA PEMS-BAY Solar Energy Air Quality Beijing Taxi NYC Bike
Inflow Outflow Inflow Outflow

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Informer 8.19 14.35 5.30 10.43 8.95 11.92 38.02 56.45 29.20 53.52 28.76 52.53 6.99 16.44 6.33 15.62

iTransformer 7.72 15.85 5.20 10.94 4.74 8.27 35.59 52.95 31.56 58.11 32.22 59.93 8.23 16.21 7.46 15.68
PatchTST 7.20 15.56 4.52 8.85 4.65 7.82 35.76 53.80 32.66 61.17 32.58 60.95 7.03 15.32 6.88 14.84
MTGNN 9.62 17.60 5.67 8.91 4.73 8.68 36.51 53.14 28.98 48.72 28.80 46.87 6.51 14.85 6.56 14.90
GWNet 7.04 12.58 5.84 9.42 9.10 11.87 36.26 54.88 29.24 51.68 29.47 50.52 12.55 21.97 12.68 22.27
STNorm 7.93 13.67 5.15 8.92 5.36 9.59 36.38 57.66 28.92 50.59 28.86 49.39 11.69 20.17 12.53 21.84

D2STGNN 6.41 11.57 5.31 9.39 8.80 11.26 40.77 55.07 36.73 58.70 36.06 66.01 10.64 18.96 10.33 18.43
STID 7.26 12.70 6.83 12.88 4.89 9.41 43.21 61.07 32.73 51.77 32.91 51.94 8.94 16.34 8.88 15.77

STAEFormer 6.35 11.38 5.37 9.35 4.66 12.57 37.68 53.39 28.88 49.86 28.06 48.13 12.50 20.77 11.84 20.88
FPT 6.80 11.36 4.55 9.71 10.59 13.92 36.62 51.33 41.66 74.87 43.28 77.84 12.97 20.06 12.72 20.11

REPST 5.63 9.67 3.61 7.15 3.65 6.74 33.57 47.30 26.85 45.88 26.30 43.76 5.29 12.11 5.66 12.85

Table 1: Few-Shot performance comparison on six real-world datasets in terms of MAE and RMSE. We utilize data in one day (less than
1%)for training and the same data as full training settings for validation and test. The input history time steps T and prediction steps τ are both
set to 24. We use the average prediction errors over all prediction steps.

4.3 Full Training Performance of REPST
Table 2 reports the overall performance of our proposed
REPST as well as baselines in 6 real-world datasets with
the best in bold and the second underlined. As can be seen,
REPST consistently achieves either the best or second-best
results in terms of MAE and RMSE.

Notably, REPST surpasses the state-of-the-art PLM-based
time series forecaster FPT [Zhou et al., 2024] by a large mar-
gin in spatio-temporal forecasting tasks, which can demon-
strate that simply leveraging the PLMs cannot handle problems
with complex spatial dependencies. Additionally, the perfor-
mance of our REPST reaches either the best or second-best
results in METR-LA and PEMS-BAY datasets. Previous state-
of-the-art models, STAEformer and STID, learn global shared
embeddings both in spatial structure and temporal patterns
tailored for certain datasets, which is harmful to their general-
ization abilities but benefits their capabilities to handle single
datasets. Our spatio-temporal reprogramming block leverages
a wide range of vocabulary and sample words that can ade-
quately capture the spatio-temporal patterns, which do make
an impact on unlocking the capabilities of PLMs to capture
fine-grained spatio-temporal dynamics.

4.4 Ablation Study
To figure out the effectiveness of each component in REPST,
we further conduct detailed ablation studies on Air Quality
and Solar Energy datasets with three variants as follows: r/p
PLM: it replaces the PLM backbone with transformer layers,
following the setting of [Tan et al., 2024]; r/p Decomposition:
it replaces the semantic-oriented spatio-temporal decomposer
with a transformer encoder; w/o expanded vocabulary: it
removes our selective spatio-temporal vocabulary and utilizes
the dense mapping function to enhance reprogramming.

Figure 5 shows the comparative performance of the vari-
ants above on Air Quality, Solar Energy and Beijing Taxi.
Based on the results, we can make the conclusions as fol-
lows: (1) Our REPST actually leverage the pretrain knowledge
and generative capabilities of PLMs. When we replace the
PLM backbone with transformer layers, the performance of

all the datasets decline obviously, indicating that the pretrain
knowledge makes an effect to handle spatio-temporal dynam-
ics. (2) The semantic-oriented spatio-temporal decomposer
which adaptively disentangles input spatio-temporal data into
interpretable components can actually enable PLMs to bet-
ter understand spatio-temporal dynamics. When constructing
spatio-temporal dependencies by a transformer encoder layer,
it is still unclear for PLMs to comprehend. (3) The impressive
performance in w/o expanded vocabulary demonstrates that
the selectively reconstructed vocabulary achieves accurate re-
programming which enables PLMs to focus on relationships
among tokens in 3D spatio-temporal space.

MAE RMSE20

25

30

35 Air Quality

MAE RMSE2.5

3.0

3.5

4.0

4.5 Solar Energy

MAE RMSE10

15

20

25

30 Beijing Taxi

35

40

45

50

4

5

6

7

8

20

30

40

50

r/p PLM r/p Decomposition w/o Expanded Vocabulary RePST

Figure 5: Ablation study.

5 Related Works
5.1 Spatio-Temporal Forecasting
Spatio-temporal forecasting has been playing a critical role in
various smart city services, such as traffic flow prediction [Liu
et al., 2023a; Shao et al., 2022a; Fang et al., 2023], air quality
monitoring [Han et al., 2023; Han et al., 2021], and energy
management [Geng et al., 2019]. Unlike traditional time
series forecasting, the forecasting challenges associated with
spatio-temporal data are often characterized by the unique
properties of strong correlation and heterogeneity along the
spatial dimension, which are inherently more complex.

Early studies usually capture spatial dependencies through
a predefined graph structure [Li et al., 2018; Han et al., 2020;
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Dataset METR-LA PEMS-BAY Solar Energy Air Quality Beijing Taxi NYC Bike
Inflow Outflow Inflow Outflow

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HI 9.88 16.98 5.51 10.50 9.42 12.53 53.18 67.42 105.55 142.98 105.63 143.08 11.98 19.23 12.18 19.50

Informer 4.68 8.92 2.54 5.30 3.92 5.91 29.38 42.58 16.41 29.03 16.01 26.90 3.49 8.36 3.92 9.52
iTransformer 4.16 9.06 2.51 5.90 3.33 5.41 28.37 44.33 21.72 36.80 22.15 38.63 3.15 7.55 3.28 7.82

PatchTST 4.15 9.07 2.06 4.85 3.49 5.89 28.05 44.81 23.64 43.63 22.71 41.52 3.58 8.83 3.66 8.99
MTGNN 3.76 7.45 1.94 4.40 3.60 5.61 27.07 40.17 15.92 26.15 15.79 26.08 3.31 7.91 3.38 8.24
GWNet 3.93 8.19 2.28 5.06 3.55 5.39 31.57 44.82 15.69 26.82 15.76 26.84 3.13 7.58 3.33 7.64
STNorm 3.98 8.44 2.20 5.02 4.17 5.99 30.73 44.82 15.37 27.50 15.45 27.52 3.14 7.46 3.24 7.63

D2STGNN 3.94 7.68 2.11 4.83 4.36 5.85 27.77 41.87 24.33 45.65 26.86 45.57 3.10 7.43 3.25 7.75
STID 3.68 7.46 1.93 4.31 3.70 5.57 26.94 41.01 15.60 27.96 15.81 28.28 3.36 7.91 3.38 8.24

STAEFormer 3.60 7.44 1.97 4.33 3.44 5.21 28.12 41.83 15.47 26.45 16.08 26.83 3.03 7.39 3.27 7.56
FPT 6.03 10.85 2.56 5.01 6.02 8.31 32.79 47.55 32.41 55.28 32.77 55.77 7.21 12.76 7.75 13.85

REPST 3.63 7.43 1.92 4.33 3.27 5.12 26.20 39.37 15.13 25.44 15.75 25.24 3.01 7.33 3.16 7.43

Table 2: Performance comparison of full training on six real-world datasets in terms of MAE and RMSE. The input history time steps T and
prediction steps τ are both set to 24. We use the average prediction errors over all prediction steps.

Shao et al., 2022b; Wu et al., 2020], which decribes the ex-
plicit relationships among different spatial locations. In re-
cent years, there is a growing trend toward the utilization
of adaptive spatio-temporal graph neural networks, which
can automatically capture dynamic spatial graph structures
from data [Wu et al., 2019]. Besides, attention mecha-
nism is also widely employed in existing models, as seen
in examples like [Guo et al., 2021; Liu et al., 2023a;
Fang et al., 2024]. In contrast, [Shao et al., 2022a], a model
based on Multi-Layer Perceptrons, achieves state-of-the-art re-
sults by utilizing multiple embedding techniques to memorize
stable spatial and temporal patterns.

More recently, inspired by the huge success of PLMs in
NLP field, there is increasing interest in building pre-trained
models for spatio-temporal forecasting tasks. Several stud-
ies [Liu et al., 2024a; Liu et al., 2024b; Yan et al., 2023]
explore the application of PLMs for handling spatio-temporal
data. Furthermore, the strong power of Transformer offers
an opportunity to build spatio-temporal foundation models,
such as OpenCity [Li et al., 2024] and UniST [Yuan et al.,
2024]. Trained on numerous spatio-temporal data, these mod-
els demonstrate strong capabilities across diverse forecasting
scenarios. However, due to the problems of data-sparsity
in multiple spatio-temporal scenarios, it is difficult for these
models to gather large amount of data to perform pretraining
comprehensively. In addition, the PLM-based spatio-temporal
forecasting approaches do not fully leverage PLM’s potential.
To address these gaps, this paper introduces a new reprogram-
ming framework to leverage PLM’s generative and reasoning
capabilities for spatio-temporal forecasting, particularly in
data-sparse scenarios.

5.2 Pretrained Language Models for Time Series
In recent years, PLMs have demonstrated remarkable perfor-
mance across various time series analysis tasks [Zhou et al.,
2024; Gruver et al., 2024; Sun et al., 2023]. A significant
body of research has focused on leveraging PLMs to address
these challenges [Gruver et al., 2023]. However, a persistent
issue in these efforts is the modality gap between time series

data and natural language. To address this challenge, [Jin et
al., 2023b] develops a time series reprogramming approach,
which can effectively bridges the modality gap between time
series and text data. The objective of reprogramming is to
learn a trainable transformation function that can be applied
to the patched time series data, enabling it to be mapped into
the textual embedding space of the PLM.

Nevertheless, [Tan et al., 2024] conducted numerous exper-
iments showing that existing PLM-based approaches do not
fully unlock the reasoning or generative capabilities of PLMs.
The reason these approaches achieve high performance lies
in the similar sequential formulation shared by time series
and natural language [Liu et al., 2024d]. Although PLMs can
handle one-dimensional sequential data like text and time se-
ries, they fall short in capturing dependencies among complex
spatio-temporal structure, leading to suboptimal performance
for spatio-temporal forecasting tasks. In this work, we propose
REPST, which enables PLMs to comprehend complex spatio-
temporal dynamics via a semantic-oriented decomposition-
based reprogramming strategy.

6 Conclusion
In this paper, we highlight the underlying reason for the poor
performance of previous PLM-based approaches in spatio-
temporal forecasting, emphasizing the need for the inter-
pretability to fully leverage PLM’s potential. To address this
problem, we developed REPST, a tailored spatio-temporal
forecasting framework that enables PLMs to comprehend
the complex spatio-temporal patterns via a semantic-oriented
decomposition-based reprogramming strategy. As a result,
PLM’s potential is full unlocked to handle spatio-temporal
forecasting tasks. Extensive experiments demonstrate that
our proposed framework, REPST, achieves state-of-the-art
performance on real-world datasets and exhibits exceptional
capabilities in few-shot and zero-shot scenarios.
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