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Abstract
Cognitive diagnosis is crucial for intelligent educa-
tion because of its ability to reveal students’ pro-
ficiency in knowledge concepts. Although neural
network-based neural cognitive diagnosis models
(CDMs) have exhibited significantly better perfor-
mance than traditional models, neural cognitive
diagnosis is criticized for the poor model inter-
pretability due to the multi-layer perceptron(MLP)
employed, even with the monotonicity assump-
tion. Therefore, this paper proposes to empower
the interpretability of neural cognitive diagnosis
models through efficient Kolmogorov-Arnold net-
works (KANs), named KAN2CD, where KANs are
used to enhance interpretability in two manners.
Specifically, in the first manner, KANs are directly
used to replace the used MLPs in existing neural
CDMs; while in the second manner, the student
embedding, exercise embedding, and concept em-
bedding are directly processed by several KANs,
and then their outputs are further combined and
learned in a unified KAN to get final predictions.
Besides, the implementation of original KANs is
modified without affecting the interpretability to
overcome the problem of training KANs slowly. Ex-
tensive experiments show KAN2CD outperforms
traditional CDMs and slightly surpasses existing
neural CDMs, and its learned structures ensure in-
terpretability on par with traditional CDMs and bet-
ter than neural CDMs. The datasets, associated
code, and more experimental results are available at
https://github.com/null233QAQ/KAN2CD.

1 Introduction
In intelligent education, cognitive diagnosis (CD)[Anderson
et al., 2014] identifies students’ proficiency in knowledge
concepts by analyzing their historical exercise records. As

∗Corresponding author

Cognitive 
Diagnosis

Q matrix
( , , , ) ))

Figure 1: Illustration of the cognitive diagnosis process.

illustrated by the example in Fig. 1, the CD process begins
with a student’s response records, such as (e1, e3, e4) and
(e1, e2, e3). To interpret these responses, the process relies on
an exercise-concept relational matrix (Q-matrix) that maps
each exercise to a set of underlying knowledge concepts. By
integrating the information from both the response records
and the Q-matrix, a CD model can be built to infer the stu-
dent’s mastery level for each concept. With this diagnosis,
online education platforms can support tasks like remedial
instruction, learning path recommendations [Nabizadeh et
al., 2020], targeted training [Stojanoski et al., 2018], and ex-
ercise/course assembly more effectively[Yang et al., 2023;
Beck, 2007].

To develop convincing cognitive diagnosis models (CDMs)
for meeting the demands of online education platforms (e.g.,
ASSISTments [Patikorn et al., 2018], PTA [Hu et al., 2023]),
massive efforts have been devoted by researchers , mainly
from two research perspectives [Wang et al., 2024]. The
first perspective is to design completely interpretable CDMs
whose components and operations are drawn from educational
psychology, so that the users can understand how the diagno-
sis results are obtained, trusting the results. The representa-
tives include IRT [Embretson and Reise, 2013], DINA [Torre
and J., 2009], MIRT [Reckase, 2009], and MF [Koren et al.,
2009]. The second perspective is to leverage neural networks
(NNs) to model the student’s response prediction process,
aiming to improve the prediction accuracy and provide more
accurate diagnosis results for making subsequent tasks like

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/null233QAQ/KAN2CD


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

recommendations more convincing [Urdaneta-Ponte et al.,
2021]. This type of CDMs is called neural cognitive diag-
nosis models, and the representatives contain NCD [Wang
et al., 2020], KaNCD [Wang et al., 2022], RCD [Gao et
al., 2021], and so on [Ma et al., 2022; Yu et al., 2024b;
Qian et al., 2024].

Compared to traditional CDMs in educational psychology,
neural CDMs achieve better performance, effectively sup-
porting subsequent tasks [Wu et al., 2024; Yu et al., 2024a;
Shen et al., 2024]. However, their interpretability is weaker,
as they rely on multi-layer perceptrons (MLPs) or fully con-
nected (FC) layers [Fan et al., 2021]. Understanding how
these layers process inputs and produce predictions remains
challenging [Zhang et al., 2021], even under the monotonicity
assumption [Samek et al., 2016], which ensures only positive
weights and monotonic output increases [Wang et al., 2020;
Zhang et al., ; Zhang et al., 2023]. This limited interpretability
undermines their ability to engage users fully.

To this end, this paper aims to build more convincing CDMs
by enhancing the interpretability of neural cognitive diagno-
sis models without sacrificing the accuracy of the diagno-
sis results. Thus, this paper proposes leveraging efficient
Kolmogorov-Arnold networks for neural cognitive diagnosis
models (KAN2CD) to empower the model’s interpretability
and maintain the accuracy of diagnosis. Specifically, our main
contributions include:

• This paper is the first to utilize Kolmogorov-Arnold net-
works (KANs) to enhance the interpretability of neu-
ral CDMs while maintaining high diagnostic accuracy.
We propose two approaches: replacing MLPs in neural
CDMs with KANs for direct interpretability improve-
ment, and designing a novel aggregation framework com-
posed entirely of KANs without relying on neural CDMs.

• In the new aggregation framework, two levels of KANs
are used for input processing and prediction. Lower-
level KANs handle student, exercise, and concept embed-
dings separately, while an upper-level two-layer KAN
integrates their outputs for final predictions. To address
high runtime in the original KAN implementation, modi-
fications were made to accelerate training.

• In experiments, we compared it with representative
CDMs on four popular education datasets. The results
show KAN2CD outperforms both traditional and neural
CDMs in performance. Furthermore, the learned struc-
tures of KANs in KAN2CD demonstrate higher inter-
pretability than neural CDMs, comparable to traditional
CDMs. Besides, the modified implementation ensures
that KAN2CD’s training cost remains competitive with
existing models.

2 Preliminaries and Related Work
2.1 Preliminaries of Cognitive Diagnosis Task
In the cognitive diagnosis task, we consider N students, M
exercises, and K knowledge concepts, represented by the
sets S = {s1, s2, . . . , sN}, E = {e1, e2, . . . , eM}, and
C = {c1, c2, . . . , cK}, respectively. The platform uses an
exercise-concept relation matrix, the Q-matrix, provided by

domain experts and denoted as Q = (Qjk ∈ {0, 1})M×K .
Here, Qjk = 1 indicates that exercise ej involves knowledge
concept ck, and Qjk = 0 otherwise.

The platform also maintains a log of students’ responses
to exercises, recorded as Rlog. This log contains triplets
(si, ej , rij), where si ∈ S, ej ∈ E, and rij ∈ {0, 1}. Here,
rij = 1 means student si correctly answered exercise ej , while
rij = 0 indicates an incorrect response.

Using Rlog and the Q-matrix, the cognitive diagnosis task
aims to assess students’ proficiency in knowledge concepts by
developing a model F to predict students’ exercise scores. The
model F uses three input features to predict the score of stu-
dent si on exercise ej : the student feature vector hS ∈ R1×D,
the exercise feature vector hE ∈ R1×D, and the knowledge
concept feature vector hC ∈ R1×K . The embeddings for
students, exercises, and knowledge concepts are obtained as
follows:

hS = xS
i ×WS ,WS ∈ RN×D,

hE = xE
j ×WE ,WE ∈ RM×D

xC
j = xE

j ×Q = (Qj1, · · · , QjK),

hC = xC
j ×WQ,WQ ∈ RK×D

, (1)

where D is the embedding dimension (usually equal to K
for consistency), xS

i ∈ {0, 1}1×N is the one-hot vector for
student si, xE

j ∈ {0, 1}1×M is the one-hot vector for exercise
ej , and WS and WE are trainable matrices in the embedding
layers. Then, the model F outputs the predicted response r̂ij
as

r̂ij = F(hS ,hE ,hC), (2)

where F(·) denotes the diagnostic function that integrates
three types of inputs in various ways. Generally, after training
the model F using students’ response logs, each bit value of
hS reflects the student’s proficiency in the respective knowl-
edge concept.

2.2 Related Work on Cognitive Diagnosis
In the following, some representatives of traditional CDMs
and neural CDMs will be reviewed.

Traditional CDMs
As a typical cognitive diagnosis model (CDM), DINA [Torre
and J., 2009] predicts r̂ij as

r̂ij = g1−nt(1− sl)nt,where nt =
∏

k θ
βk

k , β = hC . (3)

Here, θ ∈ {0, 1}1×K and β ∈ {0, 1}1×K are binary latent
features indicating the concepts mastered by the student and
those contained in the exercise. θ is derived from hS using a
fully connected (FC) layer and Gumbel-Softmax [Jang et al.,
2016].

The guessing factor g ∈ R1 and slipping factor sl ∈ R1

represent the probabilities of correctly answering by guess-
ing and mistakenly answering despite mastering the concept.
Both are transformed from hE via FC layers. While the pre-
diction process of DINA is interpretable, it suffers from poor
performance on large-scale data.
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As another typical CDM, the prediction process of IRT [Em-
bretson and Reise, 2013] can be denoted as:

r̂ij = Sigmoid(a(θ − β)), θ ∈ R1 = FC(hS)

β ∈ R1 = FC(hE), a ∈ R1 = FC(hE)
, (4)

where θ is obtained from hS by an FC layer, denoting the
student ability feature. β and a are transformed from hS by
two different FC layers, denoting the exercise difficulty and
distinction features. As can be seen, the prediction of IRT can
be easily understood and interpreted. However, IRT also does
not perform well on some complex datasets.

As a multidimensional variant of IRT, MIRT [Reckase,
2009] applies the same logistic function to the linear transfor-
mation of the student ability vector θ ∈ R1×K , the difficulty
feature β ∈ R1, and the knowledge concept latent vector
α ∈ R1×K . That can be denoted as

r̂ij = Sigmoid(
∑

α⊙ θ − β)

θ = hS , β = FC(hE), α = FC(hC)
, (5)

where student ability feature θ and knowledge concept latent
feature α are multidimensional and can handle multidimen-
sional data. Therefore, MIRT exhibits better performance than
IRT without losing interpretability.

Different from the above traditional CDMs, MF [Koren
et al., 2009] is originally devised for recommender systems
but can be used for CD. MF holds very high interpretability
because its prediction process [Wang et al., 2020] is very easy
as r̂ij =

∑
hS ⊙hE . MF directly applies the inner product to

student embedding hS and exercise embedding hE to compute
the similarity. Larger similarity represents a higher probability
of correctly the student answering the exercise. MF is quite
simple yet effective compared to above CDMs.

Neural CDMs
To improve the diagnosis accuracy, Wang et al. incorporated
NNs with high-interpretability traditional CDMs like IRT to
propose a neural cognitive diagnosis framework (NCD) [Wang
et al., 2020; Yu et al., 2024c], whose prediction is as

r̂ij = FC3(FC2(FC1(y)))

y = hC ⊙ (fS − fdiff )× fdisc, fS ∈ R1×K

fS = Sigmoid(hS), fdiff ∈ R1×K = Sigmoid(hE)

fdisc ∈ R1 = Sigmoid(FC(hE)), fdisc ∈ R1

. (6)

fS denotes student ability vector, fdiff and fdisc denote exer-
cise difficulty vector and distinction feature. The computation
process of y is similar to IRT, and r̂ij is obtained by applying
three FC layers to y.

The three fully connected (FC) layers in NCD present sig-
nificant challenges for interpretability. This is because FC
layers obscure the inference process, making it difficult to
trace how input features are transformed into diagnostic re-
sults, thereby hindering users’ intuitive understanding of the
model’s internal mechanisms and output reasoning. While
NCD incorporates the monotonicity assumption as an effort to
improve interpretability, this assumption alone does not pro-
vide sufficient clarity on how diagnostic outcomes are derived.

In summary, although NCD achieves notable advancements
in diagnostic accuracy, it does so at the cost of reduced model
interpretability.More neural CDMs can be found in the Ap-
pendix

2.3 Kolmogorov-Arnold Networks (KANs)
To address the lack of interpretability in existing neural CDMs,
which can be mainly attribute to the opaque nature of the MLP.
This paper aims to incorporate KANs into neural CDMs or
directly leverage KANs for cognitive diagnosis because high
model interpretability of KANs as shown in [Liu et al., 2024b].
In the following, KANs will be introduced briefly.

A L-layer MLPs can be written as interleaving of transfor-
mations W and activations σ:

MLP(x) = (WL−1 ◦ σ ◦WL−2 ◦ σ ◦ · · · ◦W1 ◦ σ ◦W0)x,
(7)

which approximates complex functional mappings through
multiple layers of nonlinear transformations. However, its
deeply opaque nature constrains the model’s interpretability,
posing challenges to intuitively understanding the internal
decision-making process.

To address the issues of low parameter efficiency and poor
interpretability in MLPs, Liu et al. [Liu et al., 2024b] intro-
duced the Kolmogorov-Arnold Network (KAN) that is in-
spired by Kolmogorov-Arnold representation theorem [Braun
and Griebel, 2009]. Similar to MLP, a L-layer KAN can be
described as a nesting of multiple KAN layers:

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x, (8)

where Φi represents the i-th layer of the whole KAN network.
For each KAN layer with nin -dimensional input and nout

-dimensional output, Φ consist of nin ∗ nout 1-D learnable
activation functions ϕ:

Φ = {ϕq,p} , p = 1, 2, · · · , nin , q = 1, 2 · · · , nout . (9)

When computing the result of the KAN network from layer
l to layer l + 1, it can be represented in matrix form:

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl(·)

...
...

...
ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl(·)


︸ ︷︷ ︸

Φl

xl.

(10)
In conclusion, KANs differentiate themselves from tra-

ditional MLPs by using learnable activation functions on
the edges and parametrized activation functions as weights,
eliminating the need for linear weight matrices. This de-
sign allows KANs to achieve comparable performance with
smaller model sizes [Liu et al., 2024b; Somvanshi et al., 2024;
Peng et al., 2024]. Moreover, their structure enhances model
interpretability without compromising performance, making
them suitable for applications like scientific discovery [Liu et
al., 2024a]. In cognitive diagnostic tasks, KANs may offer
precise diagnosis and analysis of learners’ knowledge struc-
tures, aiding personalized teaching and precision education
with intuitive data interpretation.
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Figure 2: The Overview of the proposed KAN2CD, containing two implementation manners.

3 The Proposed KAN2CD
Overview. Figure 2 presents the overview of the proposed
KAN2CD containing two implementation manners. In the first
manner (termed KAN2CD-native), all FC layers in the uti-
lized CDM (NCD or KaNCD or KSCD or RCD) are replaced
by KANs with the same settings. In the second manner, there
are two levels of KANs in the main module and two alterna-
tive embedding modules. In the main module, KANs at the
lower level process the received student, exercise, and concept
embeddings, while a KAN at the upper level combines and
learns the lower KANs’ outputs to get the prediction. For the
second manner, KAN2CD-e adopts the common embedding
layers as its embedding module, while KAN2CD-kan adopts
KANs as its embedding module.

3.1 Manner 1: KAN2CD-native
KAN2CD-native directly replaces all FC layers in the utilized
neural CDM. For example, when adopting the NCD as the
main module, KAN2CD-native (can be denoted as NCD+)
outputs prediction r̂ij as

r̂ij = KAN2(y), y = hC ⊙ (fS − fdiff )× fdisc
fS = Sigmoid(hS), fdiff = Sigmoid(hE)

fdisc = Sigmoid(KAN1(hE))

. (11)

KAN1(·) is used to get the exercise difficulty scalar, and
KAN2(·) is used to get r̂ij from y. Due to the page limit,
more KAN2CD-native variants (taking KaNCD, KSCD, and
RCD as the main modules) can be found in Appendix, denoted
as KaNCD+, KSCD+, and RCD+.

3.2 Manner 2: KAN2CD-e and KAN2CD-kan
Different from manner 1 under existing CDMs, in manner
2, a novel aggregation framework is designed for cognitive
diagnosis based on KANs, which consists of two modules,
i.e., the embedding module to get the input embedding and

the main module to process input embedding and get the
prediction.

The embedding module
This paper designs two alternative embedding modules: the
vanilla embedding module using the embedding layers and
the KAN embedding module using KANs to get the embed-
ding. For whichever type of embedding module,there are L
sub-embedding modules to get L different initial embeddings
{hSl,hEl,hCl|1 ≤ l ≤ L}. Multiple embeddings provides
diverse representations and may cause better results, which
is similar to multiple heads in Transformer [Vaswani et al.,
2017]

For the vanilla embedding module, each sub-embedding
module’s forward process is the same as Eq.(1), and the pro-
cess of the vanilla embedding module can be denoted as

hSl = xS
i ×WSl,WSl ∈ RN×D

hEl = xE
j ×WEl,WEl ∈ RM×D

hCl = xC
j ×WQl,WQl ∈ RK×D

, 1 ≤ l ≤ L. (12)

For the KAN embedding module, each sub-embedding mod-
ule’s forward process is as

hSl = KANSl(x
S
i |ΦSl)

hEl = KANEl(x
E
j |ΦEl)

hCl = KANCl(x
C
j |ΦCl)

, 1 ≤ l ≤ L. (13)

hSl has a length of D, and thus ΦSl in KANSl(·) contains
D ∗N learnable functions to learn the embedding hSl. ΦEl

and ΦCl hold D ∗M and D ∗K learnable functions.

The main module
After getting the input embedding set H =
{H1, . . . ,H3∗L} = {hSl,hEl,hCl|1 ≤ l ≤ L}, the
main module is used to porocess these embeddings to get the
final prediction r̂ij by two levels of KANs.
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In the lower level, there are 3 × L KANs used for han-
dling the input embedding set and obtaining the latent vector
v = {v1, v2, . . . , v3∗L}, where the forward pass process is as
follows:

vi = KAN low
i (Hi|Φlow

i ), 1 ≤ i ≤ 3 ∗ L. (14)

Afthewards, in the upper level, a unified 2-layer KAN
KANup is used to process to the latent vector v as

r̂ij = KANup(v|Φup
1 ,Φup

2 ) = Φup
2 ◦ ls = Φup

2 ◦ Φup
1 ◦ v, (15)

where Φup
1 contains D × 3 ∗ L learnable functions and Φup

2
contains 1×K learnable functions. Note that there is a latent
vector ls ∈ R1×K with length of K, which can be used to
represent the student’s knowledge mastery across different
knowledge concepts.

While in manner 1, the student’s knowledge mastery vector
(i.e., the student knowledge proficiency vector) is still repre-
sented by the latent student ability vector. For example, fS
represents the student knowledge proficiency in NCD+ and
KaNCD+, while ĥS represents the student knowledge profi-
ciency in KSCD+ and RCD+.

3.3 Model Training and Implementation
Model Training. To train the proposed KAN2CD model, the
Adam optimizer [Kingma and Ba, 2014] is used to mine the
following cross entropy loss [De Boer et al., 2005] between
model’s output r̂ij and true response rij :

L = −
∑

(si,ej ,rij)∈Rlog
(rij log yij)+(1− rij) log (1− yij) .

(16)
Implementation Modification. The original implementa-
tion of KANs is inefficient because intermediate variables X
need to be expanded to perform different pre-given activation
functions, which will demand more memory and incur higher
training costs. Considering activation functions can be linear
combinations of a fixed set of B-splines basis functions B =
{B1(·), . . . , BL(·)}, the process of one activation function can
be rewritten as [B1(X), . . . , BL(X)] × Wlinear,Wlinear ∈
RL×1, i.e., activation with multiple basis functions and com-
bine them linearly.

To further enhance the computational efficiency of KANs,
we have integrated the FastKAN implementation as detailed
by Li et al. [Li, 2024]. Standard KANs traditionally rely on
B-spline activation functions, which can be computationally
intensive. The FastKAN variant circumvents this bottleneck
by approximating these B-spline functions with Radial Basis
Functions (RBFs). This substitution offers a more streamlined
and efficient architectural approach for deploying KANs, as
RBFs typically involve simpler and faster computations. Con-
sequently, the adoption of FastKAN not only accelerates the
individual KAN modules but also improves the overall perfor-
mance and scalability of our entire KAN2CD framework.

4 Experiments
The following experiments aim to answer the following re-
searcher questions:

RQ1: How about the effectiveness of manner 1 of
KAN2CD?

RQ2: How about the effectiveness of manner 2 of
KAN2CD, i.e., KAN2CD-e(-kan)?

RQ3: How about the efficiency and complexity of the pro-
posed KAN2CD?

RQ4: How about the interpretability (visualization) of
KAN2CD?

RQ5: How can KAN2CD be interpreted?
RQ6: What is the sensitivity of KAN2CD to hyperparame-

ters?

4.1 Experimental Settings
Datasets. To verify the proposed KAN2CD, we conducted
experiments on four education datasets, including ASSIST-
ments [Feng et al., 2009], SLP [Lu et al., 2021] JunYi [Chang
et al., 2015] and FrcSub [AICFE, 2018]. Their detailed de-
scriptions are in Appendix.

Compared Models. Four traditional CDMs (including IRT,
MIRT, DINA, and MF) were taken as baselines. Besides, four
neural CDMs (including NCD, KaNCD, KSCD, and RCD) are
taken as baselines to validate the effectiveness of KAN2CD-
native.

Model Settings. For all models, their embedding dimension
D is set to the number of concepts K. The hyperparameters of
comparison models follow the original papers. For KAN2CD,
the batch size and learning rate are set to 128 and 0.002, the
training epoch number is set to 20. All models were imple-
mented in PyTorch 2.3.0 and executed under an Intel 13700k
CPU. Accuracy (ACC) and Area Under the ROC Curve (AUC)
were used as evaluation metrics.

4.2 Effectiveness of The KAN2CD (RQ1 & RQ2)
To answer RQ1 and RQ2, Table 1 summarizes the performance
of all CDMs on four datasets in terms of AUC and ACC.
To assess statistical significance, Wilcoxon rank-sum tests
(5% significance level) were conducted. Table 2 shows the
results, where ’+’, ’-’, and ’≈’ indicate whether KAN2CD-
e or KAN2CD-kan is better than, worse than, or similar to
baselines, respectively. Key observations are as follows.

Firstly, KAN2CD-native variants (NCD+, KaNCD+,
KSCD+, RCD+) achieve significantly better AUC and ACC
values than traditional CDMs (IRT, MIRT, DINA, MF) across
ASSISTments, SLP, and JunYi datasets. For example, they
consistently outperform traditional CDMs in AUC and achieve
competitive ACC. On FrcSub, their ACC values are slightly
worse than MF, reflecting the general trend of neural CDMs
underperforming MF on this dataset. Despite this, KAN2CD-
native models show clear advantages over traditional ap-
proaches across most datasets.

Secondly, KAN2CD-e achieves top-tier performance across
all datasets, consistently surpassing traditional and neural
CDMs. The Wilcoxon test validates its reliability, showing
8/0/0 outcomes against traditional CDMs and 7/0/1 against
neural CDMs like KaNCD and KSCD. KAN2CD-kan, though
slightly less effective than KAN2CD-e on certain datasets,
remains competitive. On datasets SLP, JunYi, and FrcSub, it
achieves comparable outcomes, outperforming most baselines
except KSCD. Wilcoxon test results show 8/0/0 against tradi-
tional models and balanced outcomes against neural CDMs,
e.g., 4/2/2 against NCD and 4/3/1 against KSCD. Despite
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Dataset Assistments SLP JunYi FrcSub
Method AUC↑ ACC↑ AUC↑ ACC↑ AUC↑ ACC↑ AUC↑ ACC↑

IRT 72.02% 70.25% 80.91% 74.29% 74.80% 72.74% 80.63% 57.14%
MIRT 65.84% 63.90% 72.78% 71.90% 69.59% 69.50% 81.93% 69.12%
DINA 72.15% 68.06% 77.24% 71.43% 75.81% 68.18% 80.66% 78.16%

MF 70.55% 68.26% 79.22% 72.80% 79.48% 74.15% 84.10% 81.36%
NCD 74.84% 72.15% 84.76% 80.72% 80.70% 76.73% 90.12% 70.15%

NCD+ 75.71% 71.91% 84.72% 80.38% 80.38% 76.12% 90.66% 74.30%
KaNCD 76.44% 73.33% 85.21% 81.61% 80.80% 76.15% 90.11% 76.68%

KaNCD+ 76.99% 73.54% 85.25% 81.91% 82.06% 77.23% 91.44% 78.36%
RCD 75.91% 72.99% 85.57% 79.37% 83.25% 78.67% 89.39% 73.83%

RCD+ 77.10% 73.78% 86.38% 80.12% 83.33% 78.76% 89.46% 74.53%
KSCD 76.55% 73.04% 85.90% 81.02% 82.17% 77.83% 90.49% 80.27%

KSCD+ 76.72% 73.01% 86.06% 80.87% 83.43% 78.67% 90.66% 82.93%
KAN2CD-e 76.64% 72.96% 86.08% 82.66% 83.18% 78.39% 91.27% 84.58%

KAN2CD-kan 72.89% 71.55% 85.91% 81.91% 83.14% 78.41% 90.38% 83.30%

Table 1: Overall performance comparison: the best/second-best is bolded/ underlined. KAN2CD-native is not involved.

+/-/≈ IRT MIRT DINA MF NCD KaNCD RCD KSCD
KAN2CD-e 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 7/0/1 5/1/2 7/0/1

KAN2CD-kan 8/0/0 8/0/0 8/0/0 8/0/0 4/2/2 3/2/3 4/2/2 4/3/1

Table 2: Wilcoxon rank sum test results with a 5% significance level. +, -, and ≈ indicate KAN2CD-e/KAN2CD-kan is better than, worse than,
and similar to baselines.

being marginally outperformed by KAN2CD-e and KSCD,
KAN2CD-kan remains an effective method in cognitive diag-
nosis, surpassing traditional CDMs and several neural coun-
terparts.

4.3 Complexity&Efficiency of KAN2CD (RQ3)
To demonstrate the performance of the proposed KAN2CD
model in terms of complexity and efficiency, Table 3 pro-
vides a comparison of neural cognitive diagnostic models and
KAN2CD models in terms of parameter count and training
runtime across different datasets. Here, ’K’ represents kilo,
and ’h’ stands for hours.

As can be seen, the parameters of KAN2CD-native are less
than half of the corresponding neural CDM, while parameters
of KAN2CD-e and KAN2CD-kan are much more than neural
CDMs, especially for KAN2CD-kan. The higher parameter
count in KAN2CD-kan contributes to its increased runtime.
Despite this, the runtimes of KAN2CD-native, which utilizes
our custom KAN implementation (models without a specific
suffix like ‘+O‘ or ‘+A‘), are close to those of neural CDMs.
This indicates that the efficiency of our KAN2CD framework
with our optimized KAN components is competitive. This
enhanced efficiency is primarily attributed to our modified im-
plementation of KANs. The original PyKAN implementation
(denoted with a ‘+O‘ suffix) is notably inefficient. For in-
stance, as shown in Table 4, NCD+O required approximately
0.9 on ASSISTments and 1.1 on JunYi, while KaNCD+O took
about 0.9 on ASSISTments and 0.35 on JunYi. These times
are substantially longer than those of our optimized versions
or standard neural CDMs. More experimental can be found in

appendix.
To further enhance efficiency, we incorporated FastKAN, an

faster KAN variant that leverages RBF (Radial Basis Function)
approximations. Models employing this FastKAN implemen-
tation are distinguished by a ‘+A‘ suffix (e.g., KAN2CD-e+A,
NCD+A, KaNCD+A). The integration of FastKAN leads to
significant reductions in training time, positioning these ‘+A‘
suffixed models as the most computationally efficient among
the KAN-based approaches we evaluated. Table 4 details these
efficiency gains, demonstrating that models with the ‘+A‘ suf-
fix consistently train faster on both the ASSISTments and
JunYi datasets compared to their counterparts using our stan-
dard custom KAN implementation (e.g., KAN2CD-e+A vs.
KAN2CD-e) and are vastly superior to the original PyKAN
(‘+O‘) versions.

4.4 Visualization of KAN2CD (RQ4)
To address RQ3, Figure 3 presents the final KAN layer struc-
tures for NCD+ and KaNCD+ on the JunYi dataset (selected
for its manageable number of knowledge concepts, K). This
layer is crucial as it replaces traditional Multi-Layer Percep-
trons (MLPs) in the prediction process.

As shown in Figure 3, the learned KAN structures for
both models are strikingly similar, more importantly for inter-
pretability, the KANs are markedly sparse. For instance, only
a few connections (e.g., 8 out of 39) are retained in the final
structures. These preserved connections correspond to key
knowledge concepts. We observe that these selected knowl-
edge nodes typically exhibit higher in-degree and out-degree
within the knowledge graph. This structural prominence sug-
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Param. NCD NCD+ KaNCD KaNCD+ RCD RCD+ KSCD KSCD+ KAN2CD-kan KAN2CD-e
SLP 232K 83K 91K 50K 279K 115K 94K 81K 4143K 471K

JunYi 219K 68K 79K 36K 266K 97K 74K 67K 3420K 416K
Runtime NCD NCD+ KaNCD KaNCD+ RCD RCD+ KSCD KSCD+ KAN2CD-kan KAN2CD-e
ASSIST 0.12h 0.17h 0.15h 0.2h 0.16h 0.28h 0.46h 1.12h 15h 1.2h
JunYi 0.02h 0.02h 0.06h 0.08h 0.03h 0.03h 0.08h 0.13h 1.3h 0.33h

Table 3: Model parameter and training runtime comparisons between neural CDMs and KAN2CD on SLP & JunYi and ASSISTments &
JunYi. (’K’ means kilo, ’h’ represents hours).

Dataset NCD+ NCD
+O

NCD
+A KaNCD+ KaNCD

+O
KaNCD

+A KAN2CD-e KAN2CD-e
+O

KAN2CD-e
+A

ASSISTments 0.17 h 0.9 h 0.07 h 0.2 h 0.9 h 0.11 h 1.20 h 11.3 h 0.33 h
JunYi 0.02 h 1.1 h 0.01 h 0.08 h 0.35 h 0.03 h 0.33 h 6.8 h 0.19 h

Table 4: Training runtime comparison on ASSISTments & JunYi (without RCD). Order: our implementation, original PyKAN (+O), FastKAN
(+A). Runtimes are in hours (h).

pruned

pruned

39 bits

Figure 3: Visualization of NCD+ (upper) and KaNCD+ (lower) on
JunYi datasets.

gests that, in the learning process, they maintain a highly in-
terconnected and influential relationship with other concepts,
often serving as crucial hubs for knowledge construction and
flow. To visually contextualize these key concepts, Figure 4
depicts the prerequisite and successor relationships among all
knowledge concepts. In this graph, the knowledge concepts
identified as key by the KAN (and thus retained) are distinctly
marked (e.g., in red), highlighting their central roles and in-
terconnections within the broader knowledge structure. Con-
sequently, by focusing on these essential connections, which
are further contextualized by their depiction in Figure 4, the
models effectively identify the most salient concepts.

4.5 How to interpert KAN2CD (RQ5)
Taking NCD+ in Figure 3 as an example, y is conceptualized
as the difference between student ability and item difficulty.
These differences quantitatively capture the contrast between
a student’s mastery level of various concepts and the chal-
lenges presented by the corresponding items. Specifically, a
larger yi denotes that the student’s ability in the i-th concept
significantly surpasses the difficulty of the associated item, in-
dicating a higher probability of a correct response. Conversely,
a smaller yi reflects an insufficient ability relative to the item
difficulty, leading to a lower likelihood of success.

4
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27
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Figure 4: KAN-selected concepts (red) in the JunYi dataset.

The formula KAN2(y) = y−1
3 + y10 + y211 + y12 + y14 +

y−1
16 + y218 + y232 elucidates the role of these differences in

the prediction process. Each term involving yi delineates
the influence and importance of the difference for a specific
concept. For instance, y−1

3 suggests that the contribution of
the third concept difference is inversely proportional, with
its influence diminishing as y3 increases. This may highlight
scenarios where the effect of foundational concepts dimin-
ishes after reaching a certain threshold. On the other hand,
y211 underscores a quadratic effect for the eleventh concept
difference, indicating an amplified impact of variations in the
ability-difficulty difference for this concept. Such behavior
is often associated with items of higher difficulty that exhibit
greater sensitivity to ability differences.

By introducing KAN, this framework offers a clear sym-
bolic representation of how students’ abilities impact predic-
tions, enhancing interpretability compared to traditional MLP
models. Additionally, it provides students with an intuitive
understanding of ability-item difficulty relationships and gives
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l 1 2 3 4 5 6 7 8
SLP 83.56% 84.68% 85.62% 86.06% 86.08% 85.68% 84.89% 84.62%
FrcSub 90.26% 90.89% 91.11% 91.16% 91.27% 91.13% 91.12% 90.82%

Table 5: AUC performance of KAN2CD-e under varying l on the SLP and FrcSub dataset.

Model (K → 512 → 256 → 1) (K → 128 → 1) (K → 16 → 1) (K → 1)

NCD+ 75.43% 75.37% 75.43% 75.71%
KaNCD+ 75.41% 75.86% 76.77% 76.99%

Table 6: AUC performance of KAN2CD-native across different hidden layer sizes on the ASSISTments dataset.

KAN2CD-e (K → 1) (K → 8 → 1) (K → 16 → 1) (K → 32 → 16 → 1)
SLP 86.08% 85.84% 86.04% 85.58%
FrcSub 91.27% 91.29% 91.27% 91.03%

Table 7: AUC performance of KAN2CD-e across different hidden layer sizes on SLP and FrcSub dataset.

teachers clearer insights for designing targeted strategies.

4.6 What is the sensitivity of KAN2CD to
hyperparameters? (RQ6)

Impact of KAN hyperparameters:
To investigate the effect of B-splines in KAN on KAN2CD

performance under different order of piecewise polynomial
(P ) and number of grid intervals (G), experiments were con-
ducted on the FrcSub dataset, as show in Figure 5.

Figure 5: AUC performance of KAN2CD-e under varying B-splines
settings

When G and P are both 1, the model’s AUC is relatively
low at 89.98%, indicating weak fitting ability. As P and G
increase, AUC improves, reaching 91.19% for G = 3 and P =
2, and 91.27% for G = 3 and P = 3. This shows that model
complexity enhances fitting ability. However, further increases
in P and G, such as when both are 5, maintain a high AUC of
about 90.26%, but no considerable performance improvement
is observed. This suggests that while moderate increases in

complexity improve performance, excessive complexity may
lead to overfitting.

Impact of hyperparameter l on KAN2CD-e: To analyze
the impact of hyperparameter l on KAN2CD-e, we evaluate
AUC on the SLP and FrcSub datasets as l varies from 1 to
8 (Table 5). AUC initially increases, reaching a peak before
slightly declining. For SLP, AUC rises from 83.56% at l = 1
to 86.08% at l = 5, then drops slightly.

Impact of hidden layer size on manner 1 Evaluating
KAN2CD-native on ASSISTments with varied hidden layer
configurations (from 3-layer (K → 512 → 256 → 1) to 1-
layer (K → 1), where K is knowledge concepts revealed, per
Table 6, that increasing hidden layers struggles to boost AUC.
NCD+ performance was stable, peaking at 75.71% with the
1-layer (K → 1) setup. KaNCD+ improved with simpler mod-
els, its AUC rising from 75.41% (3-layer) to 76.99% (1-layer
(K → 1)); a 2-layer model (K → 16 → 1) also achieved
76.77%. Consequently, simpler hidden layer designs often
prove superior for these cognitive diagnosis tasks.

Effect of hidden layer size on manner 2 For KAN2CD-
e, hidden layer configurations from one (K → 1) to three
(K → 32 → 16 → 1) layers (K denotes knowledge concepts)
were evaluated on SLP and FrcSub dataset (see Table 7). On
SLP, a single layer performed best (86.08%); for FrcSub, a
two-layer model (K → 8 → 1) was slightly better (91.29%),
though differences across depths were minimal. These results
indicate simpler architectures are optimal, as deeper layers
provide negligible benefits and may overfit.

5 Conclusion
In this paper, we introduce KAN2CD to improve the inter-
pretability of neural CDMs using KANs. KAN2CD can be
implemented in two ways: the first replaces MLPs with KANs
to enhance interpretability, while the second constructs a novel
CDM entirely with KANs. Experimental results validate the
effectiveness and high interpretability of KAN2CD.
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