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Abstract
We study the allocation of indivisible goods under
conflicting constraints, represented by a graph. In
this framework, vertices correspond to goods and
edges correspond to conflicts between a pair of
goods. Each agent is allocated an independent set
in the graph. In a recent work of Kumar et al. (AA-
MAS, 2024), it was shown that a maximal EF1 allo-
cation exists for interval graphs and two agents with
monotone valuations. We significantly extend this
result by establishing that a maximal EF1 alloca-
tion exists for any graph when the two agents have
monotone valuations. To compute such an alloca-
tion, we present a polynomial-time algorithm for
additive valuations, as well as a pseudo-polynomial
time algorithm for monotone valuations. Moreover,
we complement our findings by providing a coun-
terexample demonstrating a maximal EF1 alloca-
tion may not exist for three agents with monotone
valuations; further, we establish NP-hardness of de-
termining the existence of such allocations for ev-
ery fixed number n ≥ 3 of agents. All of our results
for goods also apply to the allocation of chores.

1 Introduction
How can we allocate a resource fairly? This problem was
first formalized by the pioneering work of [Steinhaus, 1949]
and has since been extensively studied in the fields of eco-
nomics, mathematics, and computer science under the um-
brella of fair division. Applications of fair division arise in
many real-life situations, including the allocation of courses
among students [Budish et al., 2017], the division of fam-
ily inheritance among family members [Goldman and Pro-
caccia, 2014], and the division of household chores between
couples [Igarashi and Yokoyama, 2023].

A central notion of fairness in fair division is envy-freeness,
which requires that every agent is allocated their most pre-
ferred bundle in the allocation. However, such a fairness guar-
antee is impossible to achieve when dealing with indivisible
resources, such as courses, houses, or tasks. Consequently,
recent literature on discrete fair division has focused on ap-
proximate fairness, exploring various concepts and algorith-
mic results [Amanatidis et al., 2023]. One particular influ-

ential relaxation of envy-freeness is, envy-freeness up to one
good (EF1), introduced by [Budish, 2011], allowing agents
to remove one good from others’ bundle to eliminate envy.
This concept has garnered significant attention over the past
decade. It is known that for general classes of monotone val-
uations, an EF1 allocation exists and can be computed effi-
ciently [Lipton et al., 2004].

Most studies on fair division assume that any allocation
is feasible. While this assumption may hold in some cases,
many practical scenarios involve constraints that restrict the
structure of allocations. For instance, consider the allocation
of multiple offices among several people over different peri-
ods of time. If the time intervals associated with two offices
overlap, they cannot be assigned to the same person. Sim-
ilar constraints arise in job scheduling, where overlapping
shifts cannot be allocated to the same employee. Another
example is the allocation of players to sports teams. If two
players have overlapping areas of expertise, it is preferable
not to assign them to the same team. A versatile framework
for modeling such constraints, explored in a series of recent
papers [Chiarelli et al., 2023; Hummel and Hetland, 2022;
Kumar et al., 2024], represents conflicts among indivisible
resources using a graph structure, where vertices correspond
to resources and edges represent conflicts.

Conflicting constraints introduce new challenges, as stan-
dard fairness and efficiency concepts often become unattain-
able. Notably, canonical efficiency concepts such as com-
pleteness and Pareto-optimality are incompatible with EF1
under these constraints. In fact, with conflicting constraints,
a complete allocation that assigns all goods may not always
exist. Furthermore, even if such an allocation exists, there are
simple instances where a complete EF1 allocation is unattain-
able [Hummel and Hetland, 2022].

[Kumar et al., 2024] studied chore allocation under con-
flicting constraints, observing that even on a path, EF1 is in-
compatible with Pareto-optimality for two agents with iden-
tical additive valuations.1 To address this limitation, they
introduced the notion of maximality. A maximal allocation
ensures that no unassigned item can be feasibly allocated to
some agent. Kumar et al. showed that for interval graphs—a
common structure in job scheduling—a maximal EF1 alloca-

1In [Kumar et al., 2024], Pareto-optimality is defined with re-
spect to maximal allocations.
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tion among two agents always exists and can be efficiently
found for monotone valuations. However, the existence of a
maximal EF1 allocation for more general graph families re-
mains unresolved, offering a rich avenue for further research.

Our contributions. We study the allocation of indivisible
goods under conflicting constraints. Our goal is to identify
conditions under which a maximal EF1 allocation exists and
can be efficiently computed. Our main contributions are:

1. Two-Agent-Case: We significantly extend the result of
[Kumar et al., 2024] by establishing that a maximal
EF1 allocation exists for any graph when the agents
have monotone valuations. Further, we develop effi-
cient algorithms for finding such allocations, including
a polynomial-time algorithm for additive valuations and
a pseudo-polynomial-time algorithm for monotone val-
uations. Note that the two-agent case is of particular im-
portance in fair division, with various applications, in-
cluding inheritance division, house-chore division, and
divorce settlements [Brams and Fishburn, 2000; Brams
et al., 2014; Igarashi and Yokoyama, 2023].

2. Three or More Agents: We establish a sharp dichotomy
from the two-agent case in terms of both existence and
computational complexity. First, we provide an example
where a maximal EF1 allocation fails to exist, even for
three agents with monotone valuations. While [Hummel
and Hetland, 2022] previously identified a counterexam-
ple for four agents, no such example was known for three
agents. We also prove the NP-hardnesss of determining
the existence of a maximal EF1 allocation for a fixed
number n ≥ 3 of agents with monotone valuations.

3. Chore Allocation: Finally, we consider the problem of
chore allocation, where each agent has a monotone non-
increasing valuation. We show that the existence of a
maximal EF1 allocation under identical valuations di-
rectly translates from the goods case, establishing that
all our results for goods hold for chores as well.

Related work. There is a growing body of research on fair
division under constraints. For a comprehensive survey on
the topic, see [Suksompong, 2021]. Conflicting constraints
in the context of fair division were introduced by [Chiarelli
et al., 2023] and have been further explored by [Hummel
and Hetland, 2022; Kumar et al., 2024; Biswas et al., 2023;
Li et al., 2021]. [Chiarelli et al., 2023] explored different
fairness objectives from ours, focusing on partial allocations
that maximize the egalitarian social welfare—defined as the
value of a bundle received by the worst-off agent. [Hummel
and Hetland, 2022] studied complete allocations satisfying
fairness criteria such as EF1 and MMS (maximin fair share).
[Biswas et al., 2023] generalized the model of [Hummel and
Hetland, 2022], taking into account capacity of resources. [Li
et al., 2021] and [Kumar et al., 2024] considered an inter-
val scheduling problem, with the goal of achieving fairness
concepts such as EF1 and MMS. While [Li et al., 2021] fo-
cused on goods allocation with flexible intervals, [Kumar et
al., 2024] examined chore allocation.

A related type of constraints to conflicting constraints is
the connectivity constraints of a graph [Bouveret et al., 2017;

Bilò et al., 2022], where each agent receives a connected bun-
dle of a graph. Note that while connectivity constraints im-
posed by a sparse graph such as a tree allow fewer feasible
allocations, in our setting, sparsity implies greater flexibility,
as it increases the number of feasible allocations.

2 Preliminaries
For any natural number s ∈ N, let [s] = {1, 2, . . . , s}.
Problem instance. We use M = [m] to denote the set
of goods and N = [n] to denote the set of agents. Let
G = (M,E) denote an undirected graph, where each vertex
corresponds to a good and each edge corresponds to a con-
flict. Each agent i has a valuation function vi : 2

M → R+;
here, R+ is the set of non-negative reals. We assume that
vi(∅) = 0. The valuation of a single good g ∈ M , vi({g}),
is denoted by vi(g). An instance of our problem is given by
the tuple (N,M,V, G) where V = (v1, v2, . . . , vn) denotes a
valuation profile. We use Ks,t to denote a complete bipartite
graph with a bipartition in which one part contains s vertices
and another part includes t vertices.

Valuation function. A valuation function vi is monotone
non-decreasing if vi(S) ≤ vi(T ) for every S ⊆ T ⊆ M .
Unless specified otherwise, we refer to such a function simply
as monotone. It is additive if vi(S) =

∑
g∈S vi(g) holds for

every S ⊆M and i ∈ N . A valuation profile V is called iden-
tical if every agent i ∈ N has the same valuation function; in
this case, we denote this function by v. Let T (m) denote the
time to compute valuation vi(S) for a given S ⊆M .

Allocation. An allocation is an ordered subpartition A =
(A1, . . . , An) of M where for every pair of distinct agents
i, j ∈ N , Ai ∩ Aj = ∅, ∪i∈NAi ⊆ M , and for each i ∈ N ,
Ai is an independent set of G, namely, there is no pair of
goods in Ai that are adjacent to each other. The subset Ai is
called the bundle of agent i. An allocation is complete if all
goods are allocated, i.e., ∪i∈NAi = M .

Fairness and efficiency notions. An allocation is envy-free
(EF) if for every pair of agents i, j ∈ N , we have vi(Ai) ≥
vi(Aj) [Gamow and Stern, 1958; Foley, 1967]. It is envy-free
up to one good (EF1) if for every pair of agents i, j ∈ N ,
either Aj = ∅, or there exists some good g ∈ Aj such that
vi(Ai) ≥ vi(Aj \ {g}) [Budish, 2011; Lipton et al., 2004].

As discussed in the Introduction, observe that a complete
allocation may not always exist (e.g., consider a complete
graph K2 with one agent). Further, even when a complete al-
location exists, a complete EF1 allocation may not exist: For
instance, in a setting with n agents and a star where the center
has a value of 0 and each of the n+1 leaves has a value of 1,
an agent receiving the center cannot receive any other good,
while at least one agent receives two or more leaves.

Besides completeness, another commonly used notion of
efficiency in fair division is Pareto-optimality. Similar to the
chore setting, one can show that EF1 is incompatible with
Pareto-optimality for goods instances. As in [Kumar et al.,
2024], we therefore consider a relaxed efficiency notion of
maximality. An allocation A is maximal if for every agent
i ∈ N and every unallocated good g ∈ M \

⋃
i∈N Ai, g
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is adjacent to some good in Ai. Our goal is to achieve an
allocation that simultaneously satisfies maximality and EF1.

3 Two Agents
In this section, we consider the case of two agents.

3.1 Cut-and-Choose Protocol
When there are two agents, we can use a well-known strategy
called cut-and-choose protocol [Brams and Taylor, 1996].
Theorem 1. Suppose that a maximal EF1 allocation always
exists and can be computed in τ time for instances with two
agents and identical valuations. Then, a maximal EF1 allo-
cation always exists and can be computed in τ +2T (m) time
for instances with two agents.

Proof. Let (A1, A2) a maximal EF1 allocation in a hypotheti-
cal scenario that valuations of both agents are v1. Then, agent
2 chooses a preferred bundle, leaving the reminder for 1. The
resulting allocation is maximal and EF1.

Now, the question is whether a maximal EF1 allocation
exists for identical valuations. In subsections 3.2-3.5, we as-
sume that the valuations are identical and monotone, and val-
uations for both agents are represented by v(S) (S ⊆M).

3.2 Proof Strategy of Kumar et al.
To describe our proof strategy, let us (informally) review Ku-
mar et al.’s proof of the existence of maximal EF1 allocation
when G is a path. At a high level, the idea of the proof is to
construct a chain of maximal allocations A(0), . . . ,A(m−1),
as illustrated in Figure 1, satisfying the following two prop-
erties: (i) adjacent allocations only “differ slightly” and (ii)
(A

(0)
1 , A

(0)
2 ) = (A

(m−1)
2 , A

(m−1)
1 ). The latter implies that

the signs of v(A(0)
1 )− v(A

(0)
2 ) and v(A

(m−1)
1 )− v(A

(m−1)
2 )

are different. Therefore, there exists an i that the signs of
v(A

(i)
1 )−v(A(i)

2 ) and v(A
(i+1)
1 )−v(A(i+1)

2 ) are different. At
this point, they show that at least one of A(i) or A(i+1) must
be EF1, which shows the existence of a maximal EF1 allo-
cation. This concludes the proof overview of [Kumar et al.,
2024] for path graphs. They also extended this method to in-
terval graphs, although the construction of the chain of maxi-
mal allocations becomes significantly more involved. Indeed,
as explained and formalized below, our main contribution is
to give a construction of a chain for any graph.

3.3 Useful Definitions and Lemmata
Our construction will require several generalizations of defi-
nitions and lemmata from [Kumar et al., 2024]. We believe
that these tools can be useful beyond the context of our work.
Firstly, we use the following definition of “adjacency”. Com-
pared to [Kumar et al., 2024], our definition (Definition 2)
is more relaxed, in that it does not place any requirement on
|A′

1 \A1| and |A2 \A′
2| whereas Kumar et al.’s enforces that

these are at most one. Such a relaxation is crucial since our
“chain” constructed below violates the aforementioned Ku-
mar et al.’s condition.
Definition 2. A pair (A,A′) of allocations is
ordered adjacent if |A1 \A′

1| ≤ 1 and |A′
2 \A2| ≤ 1.

3 1 4 2 7 5

3 1 4 2 7 5

3 1 4 2 7 5

3 1 4 2 7 5

3 1 4 2 7 5

3 1 4 2 7 5

𝒜 0

𝒜 1

𝒜 2

𝒜 3

𝒜 4

𝒜 5

-10 0 +10-5 +5

Allocations Difference 𝑣 𝐴1 − 𝑣 𝐴2

Either allocation

is EF1

Figure 1: An example of chain of allocations for a path graph,
A(0), . . . ,A(5). The number written in each vertex is a valuation
of the corresponding good. Red and blue vertices are those assigned
to agent 1 and 2, respectively.

The following is the key lemma that enables to find an EF1
allocation at the point when v(A1)−v(A2) crosses from pos-
itive to negative.

Lemma 3. Let (A,A′) be any ordered adjacent pair of allo-
cations. Further, assume that the following conditions hold:

1. v(A1) ≥ v(A2)

2. v(A′
1) ≤ v(A′

2)

Then, at least one of A or A′ must be EF1.

Proof. Suppose that the allocation A is not EF1. Since
v(A1) ≥ v(A2), agent a2 envies agent a1 even if one good
is removed from A1. Since |A1 \ A′

1| ≤ 1, we must have
v(A1 ∩A′

1) = v(A1 \ (A1 \A′
1)) ≥ v(A2). As a result,

v(A′
1) ≥ v(A1 ∩A′

1) ≥ v(A2)

≥ v(A′
2 ∩A2) = v(A′

2 \ (A′
2 \A2)), (1)

where the first and third inequalities hold because v is mono-
tone. Now, consider the allocation A′:

• Since |A′
2 \ A2| ≤ 1, (1) implies that agent 1 does not

envy agent 2 after removing a good from A′
2.

• Agent 2 does not envy agent 1 since v(A′
1) ≤ v(A′

2).

Therefore, this allocation is EF1.

We generalize Kumar et al.’s method by defining a gapless
chain, and prove that any gapless chain must contain an EF1
allocation. We stress again that our requirements are weaker
than the chain used in Kumar et al.’s2, but still suffices to
ensure EF1 for identical valuations.

Definition 4. A sequence of allocation A(0), . . . ,A(k) is a
gapless chain if it satisfies the following conditions:

1. v(A
(0)
1 ) ≥ v(A

(0)
2 ).

2. v(A
(k)
1 ) ≤ v(A

(k)
2 ).

2Namely, we use a weaker adjacency notion and we only require
the sign flip (first two conditions) whereas Kumar et al. require that
(A

(0)
1 , A

(0)
2 ) = (A

(k)
2 , A

(k)
1 ).
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3. (A(i−1),A(i)) is ordered adjacent for every i ∈ [k].

Lemma 5. If A(0), . . . ,A(k) is a gapless chain, there exists
an i ∈ {0, . . . , k} that A(i) is EF1.

Proof. From the first two conditions, there exists i ∈ [k] that
v(A

(i−1)
1 ) ≥ v(A

(i−1)
2 ) and v(A

(i)
1 ) ≤ v(A

(i)
2 ). Lemma 3

then implies that at least one of A(i−1) or A(i) is EF1.

Given Lemma 5, our main task is thus to (efficiently) con-
struct a gapless chain of maximal allocations (for any graph
G). We devote the remainder of this section to this task.

3.4 Proof of Existence
Now, we prove that, a maximal EF1 allocation always exists
for two agents, as stated below.

Theorem 6. For n = 2 agents, any graph G and any mono-
tone valuation v, there exists a maximal EF1 allocation.

Although we only claim the existence in the above theo-
rem, we will in fact present an algorithm for finding such an
allocation, as its running time will be discussed in the next
section. Our algorithm is presented in Algorithm 1 where the
input S can be any maximal independent set of G. To prove
Theorem 6, we use one that maximizes v(S). In Figure 2, we
provide an example of a chain constructed by the algorithm.

Algorithm 1 CHAINEF1(S;G = (M,E), v)

Require: S = {s1, . . . , sk} is a maximal independent of G.
1: for t ∈M \ S do
2: Γt := {i ∈ [k] | {si, t} ∈ E}

▷ Non-empty since S is a maximal independent set
3: pt = mini∈Γt i
4: qt = maxi∈Γt

i

5: X1 ← ∅
6: for t ∈M \ S in increasing order of qt do
7: if t has no neighbor in X1 then
8: X1 ← X1 ∪ {t}
9: X2 ← ∅

10: for t ∈M \ S in decreasing order of pt do
11: if t has no neighbor in X2 then
12: X2 ← X2 ∪ {t}
13: for i = 0, . . . , k do
14: A

(i)
1 = {si+1, . . . , sk} ∪ {t ∈ X1 | qt ≤ i}

15: A
(i)
2 = {s1, . . . , si} ∪ {t ∈ X2 | pt > i}

16: if A(i) = (A
(i)
1 , A

(i)
2 ) is EF1 then

17: return A(i)

18: return NULL

We now prove a couple of crucial lemmata. Starting with
the fact that each allocation is valid and maximal:

Lemma 7. For every i ∈ {0, . . . , k},A(i) is a valid maximal
allocation.

Proof. First, we prove that the allocation is valid:

9 1

1 9

4 4

9 1

1 9

4 4

9 1

1 9

4 4

+10 -4 -16

Either allocation is EF1

s1

s2

s1

s2

s1

s2

Figure 2: An example of a gapless chain of allocations, constructed
by Algorithm 1. The number written in each vertex is a valuation of
the corresponding good. Red and blue vertices are those assigned to
agent 1 and 2, respectively.

• No good is assigned to both agents. This is obvious for
goods in S. For good t ∈M \ S, since qt ≥ pt, at most
one of the conditions qt ≤ i or pt > i can hold; thus, it
is assigned to at most one agent.

• No adjacent goods are assigned to the same agent.
Consider two goods g, g′ (g ̸= g′) that are assigned to
agent 1 and consider the following cases:

1. Both goods are in S. They are not adjacent because
S is an independent set.

2. Both goods are in M \ S. They are not adjacent
because g, g′ ∈ X1 and X1 is an independent set.

3. One good is from S and the other is from M \ S.
Assume w.l.o.g. that g ∈ S and g′ ∈ M \ S.
From this, we must have g ∈ {si+1, . . . , sk} and
that qg′ ≤ i. By the definition of qg′ , this ensures
that g, g′ are not adjacent.

Next, we prove maximality of A(i), i.e., that no good in
M \ (A(i)

1 ∪ A
(i)
2 ) can be assigned to one of the agents. Let

g ∈ M \ (A(i)
1 ∪ A

(i)
2 ) be any unassigned good. Consider

three following cases:

1. qg ≤ i. Since g is adjacent to sqg ∈ A
(i)
2 , g cannot be

assigned to agent 2. Moreover, since g /∈ A
(i)
1 , it must be

that g /∈ X1. From how X1 is constructed, there exists
t ∈ X1 such that qt ≤ qg and t is adjacent to g. As
t ∈ A

(i)
1 , g cannot be assigned to agent 1.

2. pg > i. This case follows from an analogous argument
to the first case.

3. pg ≤ i < qg . In this case, g is adjacent to spg ∈ A
(i)
2

and sqg ∈ A
(i)
1 . Thus, tj cannot be assigned.

Next, we show that A(0), . . . ,A(k) is a gapless chain.
However, this requires an additional requirement that v(S)
is no smaller than v(X1), v(X2).
Lemma 8. If v(S) ≥ v(X1) and v(S) ≥ v(X2), then
A(0), . . . ,A(k) is a gapless chain.

Proof. Note that A(0) = (S,X2) and A(k) = (X1, S).
Thus, the first two conditions are satisfied by our assumption
v(S) ≥ v(X1), v(S) ≥ v(X2). Finally, for every i ∈ [k], we
can see that A(i−1)

1 \ A(i)
1 = {si} and A

(i)
2 \ A

(i−1)
2 = {si}.

Thus, (A(i−1),A(i)) is ordered adjacent.
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Lemmas 5, 7 and 8 together immediately imply the follow-
ing:

Lemma 9. If v(S) ≥ v(X1) and v(S) ≥ v(X2), then Algo-
rithm 1 outputs a maximal EF1 allocation.

Our main theorem of this section (Theorem 6) now then
follows easily from Lemma 9 by choosing an appropriate S.

Proof of Theorem 6. Let S be a maximal independent set of
G that maximizes v(S). Since X1, X2 are independent set
and v is monotone, we have v(S) ≥ v(X1) and v(S) ≥
v(X2). Thus, Lemma 9 ensures that running Algorithm 1
on input S yields a maximal EF1 allocation.

3.5 Algorithm
Recall in the proof of Theorem 6 that we pick S to be a maxi-
mal independent set with largest valuation. Doing so trivially
would require enumerating through all 2m subsets of M . In
this section, we give a simple algorithm (Algorithm 2) that
significantly improves upon this running time. In particular,
it runs in polynomial-time for additive valuations and pseudo-
polynomial time for general monotone valuations.

Algorithm 2 SWAPEF1(G = (M,E), v)

1: g∗ ← argmaxg∈M v(g)

2: Si ← any maximal independent set of G containing g∗

3: i← 0
4: while True do
5: if CHAINEF1(Si;G, v) ̸= NULL then
6: return CHAINEF1(S0;G, v)

7: Xi
1, X

i
2 ← X1, X2 in CHAINEF1(Si;G, v)

8: ℓ← argmaxℓ′∈{1,2} v(X
i
ℓ′)

9: Si+1 ← any maximal independent set containing Xi
ℓ

10: i← i+ 1

Our algorithm running time is stated below in Theorem 10.
Note that in the second case, if the valuations v(S) are all
integers, the running time is pseudo-polynomial.

Theorem 10. When there are n = 2 agents, there exists an
algorithm that can find a maximal EF1 allocation and its run-
ning time is as follows:

• O(3m/3 · (m · T (m) + |E|)) for monotone valuations,

• O(B · (m · T (m) + |E|)) for monotone valuations such
that the number of distinct values of v(S) is at most B
(i.e. |{v(S) | S ⊆M}| ≤ B), and,

• O(m logm · (m · T (m) + |E|)) for additive valuations.

Proof. Observe that the preprocessing time and the running
time of each loop is O(m · T (m) + |E|). Thus, it suffices to
bound the number of iterations of the loop in each case.

• For monotone valuations, by Lemma 9, each loop either
terminates or we must have v(Xi

ℓ) > v(Si). This im-
plies v(Si+1) > v(Si). This means that S0, S1, . . . are
all distinct maximal independent sets of G. Since there
are at most 3m/3 maximal independent sets [Moon and
Moser, 1965], the number of iterations is at most 3m/3.

• Next, suppose that v(S) can take at most B distinct val-
ues. From the argument above, v(S0), v(S1), . . . are
distinct. Thus, the number of iterations is at most B.

• Finally, suppose that v is additive. We claim that the
following holds for each loop i that does not terminate:

v(Si+1) >
m

m− 1
· v(Si). (2)

Before we prove (2), let us first use it to bound the
number of iterations. Notice that (2) implies that, after

loop i, we must have v(Si+1) >
(

m
m−1

)i+1

· v(S0) ≥(
m

m−1

)i+1

· v(g∗). Moreover, our choice of g∗ ensures

that v(Si+1) ≤ m·v(g∗). Thus, the number of iterations
is at most logm/(m−1) m+ 1 = O(m logm).
To see that (2) holds, first recall from Algorithm 1 that,
if Algorithm 1 returns NULL, it has considered either
(Si, Xi

ℓ) or (Xi
ℓ, S

i) already and has determined that
this is not EF1. Since v(Xi

ℓ) > v(Si), this means that,
for any good g ∈ Xi

ℓ , we must have v(S) < v(Xi
ℓ\{g}).

When we pick g ∈ Xi
ℓ with the largest v(g), we have

v(g) ≥ 1∣∣Xi
ℓ

∣∣v(Xi
ℓ) ≥

1

m
v(Xi

ℓ).

Hence, v(Si) < v(Xi
ℓ \ {g}) ≤ m−1

m v(Xi
ℓ), proving

(2).

4 Three or More Agents
Negative Examples. While a maximal EF1 allocation al-
ways exists when there are two agents, it turns out that this is
not the case for three agents or more.

Theorem 11. For n = 3 agents, there exists an instance with
identical monotone valuations where no maximal EF1 allo-
cation exists.

Proof Sketch. Consider the following instance with 7 goods.
The graph consists of a complete bipartite graph K3,3 with
bipartition X = {1, 2, 3} and Y = {4, 5, 6} together with
two edges {1, 7} and {4, 7}. Each of the three agents has an
identical monotone valuation v such that

• v(∅) = 0;

• v(S) = 1 if |S| = 1 and S ∈ {{1}, {4}};
• v(S) = 2 if |S| = 1 and S ̸∈ {{1}, {4}};
• v(S) = 3 if S is {2, 7}, {3, 7}, {5, 7}, or {6, 7};
• v(S) = 4 for any other S ⊆M .

Note that the symmetry on the graph and valuation holds:
swapping 2 and 3, swapping 5, 6, and swapping {1, 2, 3} and
{4, 5, 6} all lead to the same instance, and swapping the bun-
dles of agents does not change whether the allocation is EF1.
For this reason, there are only 6 maximal allocations to con-
sider (refer to Figure 3). All of them are not EF1, because:

• Allocations #1, #4, #5, #6: one agent takes one good but
but there is another agent who takes three goods.
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• Allocation #2: v({5, 7}) = 3 but
v({1, 2}), v({1, 3}), v({2, 3}) = 4.

• Allocation #3: v(4) = 1 but v(5) = v(7) = 2.

7

4 5 6

321

7

4 5 6

321

7

4 5 6

321

7

4 5 6

321

7

4 5 6

321

7

4 5 6

321

Allocation #1 Allocation #2 Allocation #3

Allocation #4 Allocation #5 Allocation #6

Figure 3: 6 maximal allocations to consider in the instance of The-
orem 11. The vertices in red, blue, green, and gray are goods taken
by agent 1, 2, 3, and no one, respectively.

The instance constructed in the proof of Theorem 11 uses
an identical monotone valuation. It remains an open question
for three agents with (even identical) additive valuations.

For n ≥ 4 of agents, [Hummel and Hetland, 2022] pre-
sented an instance with identical additive valuations and a
complete bipartite graph Kn−1,n−1 for which no complete
EF1 allocation exists. In Kn−1,n−1, any maximal allocation
is complete. Thus, this counterexample implies that achiev-
ing both EF1 and maximality is impossible for four agents
with identical additive valuations. Here, we provide a smaller
example using K3,n−1, which turns out to be smallest since
for m ≤ n+1, there always exists a maximal EF1 allocation.
Proposition 12. For every number n ≥ 4 of agents, there is
an instance with identical additive valuations, m = n + 2,
and G = K3,n−1 where no maximal EF1 allocation exists.

Proposition 13. For n agents with monotone valuations and
m ≤ n+ 1 goods, there exists a maximal EF1 allocation.
NP-Hardness. Next, we show that it is NP-hard to decide
whether a maximal EF1 allocation exists, as stated below.
Theorem 14. Given the graph and valuations, determining
whether a maximal EF1 allocation exists is NP-hard for:

1. any fixed n ≥ 4, even for identical and additive valua-
tion, and,

2. n = 3, even for identical and monotone valuation.

In fact, our proof can transform any negative example into
an NP-hardness result, as stated more precisely below.

Lemma 15. Suppose that there exists an instance Ĩ =
([n], M̃ , ṽ, G̃ = (M̃, Ẽ)) (with identical valuation) where the
number n of agents and the number |M̃ | of items are both
constants, such that no maximal EF1 allocation exists. Then,
it is NP-hard to decide whether a maximal EF1 allocation ex-
ists for n agents with identical valuations. Furthermore, if ṽ
is additive, then this applies even for additive valuations.

Theorem 14 is an immediate corollary of Lemma 15 where
Ĩ is the instance from Proposition 12 or Theorem 11. Note
that we state Lemma 15 in this generic form so that, if subse-
quent work finds such an instance Ĩ for additive valuation for
n = 3, then the NP-hardness would follow as a corollary.

Reduction. We will reduce from the Independent Set (IS)
problem, which is NP-hard [Karp, 1972]. In IS, we are given
a graph H = (VH , EH) and a positive integer t, and the goal
is to decide whether H contains an IS of size t.

At a high-level, our reduction starts from Ĩ and adds to it n
copies of the graph H , where each good has the same value
λ. Roughly speaking, we wish the i-th copy of H (denoted by
Xi in the proof below) to give “extra goods” to the i-th agent,
in case that agent envies some other agent by more than one
good. The crux of the reduction is that such an agent can
“catch up” (and thus satisfy EF1) iff there is a sufficiently
large independent set in H . This is not yet a complete re-
duction since, H may not have a maximal independent set
of a certain prescribed size. To alleviate this, we introduce
“dummy goods” with zero value (denoted by Yi below) to en-
sure that we can pick any desired number of goods from each
copy of H . Finally, some additional edges are also added to
ensure that each agent selects goods from a single copy of H .

For the proof below, we will use the following notation:
for any valuation v and set S of goods, let v−1(S) :=
minj∈S v(S \ {j}) denote the value of S after its most valu-
able good is removed. We use the convention v−1(∅) = 0.

Proof of Lemma 15. Recall Ĩ from the lemma statement.
Let3γ := minÃ maxi,i′∈[n]

(
ṽ−1(Ãi)− ṽ(Ãi′)

)
where the

outer minimum is over all maximal allocation Ã of Ĩ . By the
assumption on Ĩ , we have γ > 0. Let λ := γ/t.

Let (H = (VH , EH), t) denote the IS instance. Our reduc-
tion constructs the instance I = ([n],M, v,G) as follows:

• Goods: M = M̃ ∪X1 · · · ∪Xn ∪ Y1 ∪ · · · ∪ Yn where
Xi = {xi,w | w ∈ VH} and Yi = {yi,w | w ∈ VH} are
sets (each of size |VH |) of additional goods.

• Graph: G contains the following edges:

(i) All edges in G̃,
(ii) (xi,u, xi,w) for all i ∈ [n] and (u,w) ∈ VH ,

(iii) (xi,w, yi,w) for all i ∈ [n] and w ∈ VH ,
(iv) all pairs of vertices in (Xi ∪ Yi) × (Xi′ ∪ Yi′) for

all distinct i, i′ ∈ [n].

• Valuation: For all S ⊆M , let v(S) = ṽ(S∩M̃)+λ|S∩
X| where X := X1 ∪ · · · ∪Xn. That is, the valuations
on original goods remain the same, each good in X has
value λ, and the goods in Y1 ∪ · · · ∪ Yn have value zero.

See Figure 4 for an illustration of the instance I .
It is clear that the reduction runs in polynomial time, and

that, if ṽ is additive, then v is also additive.

3γ can be computed in O(1) time by bruteforce.
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(YES) Suppose that H contains an IS of size
t. Let Ã∗ be a maximal allocation of Ĩ such that
maxi,i′∈[n]

(
ṽ−1(Ã∗

i )− ṽ(Ã∗
i′)
)

= γ. Assume w.l.o.g.

that v−1(Ã∗
1) ≥ v−1(Ã∗

2), . . . , v
−1(Ã∗

n). For each i ∈ [n],
we construct A∗

i as follows:

1. Let ci := ⌈max{0, ṽ−1(Ã∗
1)− ṽ(Ã∗

i )}/λ⌉ ≤ t.
2. Let Si be any (non-necessarily maximal) IS of size ci in

H , which exists since H contains an IS of size t.
3. Let A∗

i = Ã∗
i ∪ {xi,v}v∈Si

∪ {yi,v}v∈(VH\Si)

Observe that each good in Xi ∪ Yi can only belong to A∗
i ,

and there is no edge between goods in A∗
i . Thus, A∗ =

(A∗
1, . . . , A

∗
n) is a valid allocation. To see that this is max-

imal, note that the goods from Yi (resp., Xi) together with
type-(iii) edges ensure that no other goods in Xi (resp., Yi)
can be added to A∗

i . Since at least one good from Xi ∪ Yi is
picked, type-(iv) edges ensure that no goods in Xi′ ∪ Yi′ for
i′ ̸= i can be added to A∗

i .
Finally, we argue that A∗ is EF1. To bound v−1(A∗

i ), note
that v(A∗

i ) = ṽ(Ã∗
i ) + ciλ. Consider two cases based on ci.

• If ci = 0, we have v−1(A∗
i ) = ṽ−1(Ã∗

i ) ≤ ṽ−1(Ã∗
1).

• If ci > 0, by definition of ci, we have v(A∗
i ) <

ṽ−1(Ã∗
1)+λ. Thus, v−1(A∗

i ) ≤ v(A∗
i )−λ < ṽ−1(Ã∗

1).

Thus, in both cases, we have v−1(A∗
i ) ≤ ṽ−1(Ã∗

1).
On the other hand, for any i′ ∈ [n], the definition of ci′

immediately implies v(A∗
i′) ≥ ṽ−1(Ã∗

1).
By the two previous paragraphs, A∗ is EF1.

(NO) Suppose that H does not contain an IS of size t. Con-
sider any maximal allocation A = (A1, . . . , An) of I . No-
tice that the allocation Ã = (A1 ∩ M̃, . . . , An ∩ M̃) is
maximal w.r.t. Ĩ . Thus, there exist i, i′ ∈ [n] such that
ṽ−1(Ãi) − ṽ(Ãi′) ≥ γ. Due to type-(iv) edges, at most one
of Ai′ ∩ X1, . . . , Ai′ ∩ Xn can be non-empty. Furthermore,
type-(ii) edges imply that the non-empty set must correspond
to an independent set in H . From our assumption, this im-
plies |Ai′ ∩X| < t. As a result,

v−1(Ai) ≥ ṽ−1(Ai) ≥ γ + ṽ(Ãi′)

= γ + v(Ai′)− λ|Ai′ ∩X|

> γ + v(Ai′)− λ · t
(⋆)

≥ v(Ai′),

where (⋆) is due to our choice of λ. Thus, Ã is not EF1.

5 Chore Allocation
In this section, we consider the chore version of our problem,
where each agent i has a monotone non-increasing valuation
function vi. An allocation A = (A1, . . . , An) is envy-free
up to one chore (EF1 for chores) if for every pair of agents
i, j ∈ N , either Ai = ∅, or vi(Ai \ {c}) ≥ vi(Aj) some
c ∈ Ai [Aziz et al., 2022; Bhaskar et al., 2021]. For identi-
cal valuations, the existence of a maximal EF1 allocation is
equivalent for goods and chores: An allocation A is EF1 for
chores under valuation v iff A is EF1 for goods under −v.

3 3 3
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Figure 4: Instance I created with n = 4 instance given by Proposi-
tion 12 for Ĩ , and 5-vertex 7-edge graph for H , setting t = 3 (note
that γ = 1, λ = 1

3
). The bands in purple represents type-(iv) edges.

.

Consider the case of two agents with monotone non-
increasing valuations. Theorem 1 holds in this case, so we
can assume w.l.o.g. that the agents have identical valuations
v. By combining the discussion above with the fact that −v
is monotone non-decreasing, Theorem 6 guarantees the exis-
tence of a maximal EF1 allocation. Moreover, the algorithms
presented in Theorem 10 remain applicable in this setting.

For three or more agents with monotone non-increasing
valuations, there exist instances where a maximal allocation
does not exist. In fact, the instances given in Theorem 12
and Proposition 11 use an identical valuation v, and the cor-
responding instance obtained by replacing v with −v yields
no maximal allocation that is EF1 for chores. Also, determin-
ing whether a maximal EF1 allocation exists is NP-hard also
for monotone non-increasing valuations. This follows from
Theorem 14 since the constructed instance uses an identical
monotone non-decreasing valuation.

6 Conclusion
While we give a nearly complete picture of the existence for
maximal EF1 allocations, there are still a few open questions
left. First, for n = 2, our algorithm (Theorem 10) runs in
pseudo-polynomial time for general monotone valuations. Is
there a polynomial-time (in m,T (m)) algorithm for this task?

It might also be worthwhile considering special cases, by
restricting either the valuations or the graphs. Examples are:

• Additive valuations: The existence of maximal EF1 al-
location remains open only for the case n = 3 since our
lower bound in Theorem 11 requires non-additive valu-
ations, but the lower bound for n ≥ 4 (Proposition 12)
holds for additive (and identical) valuations.

• Uniform valuations: All n ≥ 3 remains open in this case
as we are not aware of any lower bound that holds for
uniform valuations (namely, all goods are equally valued
1). We also note that the well-known Hajnal-Szemerédi
theorem ([Hajnal and Szemerédi, 1970]) is equivalent to
stating that a maximal EF1 allocation exists when the
graph has maximum degree at most n− 1. Thus, a posi-
tive answer to the question for arbitrary graphs will sig-
nificantly generalize the theorem.
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