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Abstract
Accurate segmentation of lesions is crucial for dis-
ease diagnosis and treatment planning. However,
blurring and low contrast in the imaging process
can affect segmentation results. We have observed
that noninvasive medical imaging shares consid-
erable similarities with natural images under low
light conditions and that nocturnal animals pos-
sess extremely strong night vision capabilities. In-
spired by the dark vision of these nocturnal ani-
mals, we proposed a novel plug-and-play dark vi-
sion network (DVNet) to enhance the model’s per-
ception for low-contrast medical images. Specifi-
cally, by employing the wavelet transform, we de-
compose medical images into subbands of varying
frequencies, mimicking the sensitivity of photore-
ceptor cells to different light intensities. To sim-
ulate the antagonistic receptive fields of horizon-
tal cells and bipolar cells, we design a Mamba-
Enhanced Fusion Module to achieve global infor-
mation correlation and enhance contrast between
lesions and surrounding healthy tissues. Extensive
experiments demonstrate that the DVNet achieves
SOTA performance in various medical image seg-
mentation tasks.

1 Introduction
Accurate segmentation of lesion areas in medical images is a
key step in diagnosing, planning treatments, and monitoring
various diseases [Aglinskas et al., 2022]. The precise exca-
vation of disease markers directly affects subsequent clini-
cal decisions and the effectiveness of interventions [Isensee
et al., 2021]. Due to the principles of noninvasive imaging,
achieving high-precision segmentation is significantly chal-
lenged by factors such as artifacts, low contrast, and inher-
ent tissue characteristics that result in blurry images. Despite
the powerful capabilities of deep learning models based on
Convolutional Neural Networks (CNNs) [Yang and Yu, 2021;
Wang et al., 2024c], Transformers [Dosovitskiy et al., 2021],
or Mamba [Gu and Dao, 2024], they struggle to effectively

∗Corresponding author tongy@cse.sc.edu, sq.ma@siat.ac.cn,
and guofei@csu.edu.cn
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Figure 1: The proposed DVNet based on principles of biological
vision aims to enhance lesion segmentation in MRI images by emu-
lating the human vision mechanisms under dim lighting conditions.

address interference caused by image blurriness, leading to
unsatisfactory segmentation results.

Various methods have been attempted to mitigate this is-
sue, including model-based deblurring, image enhancement,
and the use of deep learning for feature extraction and image
reconstruction [Lian and Wang, 2023]. For instance, some
studies utilize CNNs to learn the mapping from blurry im-
ages to clear images, while others explore the application of
Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014] in image deblurring. In addition, efforts have been de-
voted to improving imaging equipment and acquisition tech-
niques to reduce blurriness.

However, these methods often face common challenges.
Firstly, the complexity and diversity of blurry images demand
models with high adaptability and generalizability. Current
deep learning models often require a large amount of anno-
tated data for training, which is, however, scarce and expen-
sive in the medical field. Secondly, key features may be lost

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

due to blurriness, increasing the difficulty for models to learn
these features. Lastly, although deep learning models perform
well in object detection and classification, they still have lim-
itations in interpreting the physical causes of blurry images
and restoring clear images. How to enhance the model’s un-
derstanding and processing capabilities of blurry images, es-
pecially with limited data, remains an open research question.

Through an in-depth understanding of the principles of
photoreception and imaging of the eye, we have discovered
that noninvasive medical imaging shares similarities with vi-
sual imaging in low light conditions, particularly in terms of
contrast between the foreground and background [Hofmann
and Lamb, 2023], as illustrated in Fig. 1. In addition, medical
image processing and analysis exhibit a high degree of con-
sistency with the contrast enhancement mechanisms of sco-
topic vision. In low light environments, rod cells are much
more sensitive to dim light than cells [McKyton et al., 2024].
This characteristic suggests that an effective medical image
analysis method needs to capture subtle signals.

Inspired by the scotopic vision perception mechanism, we
proposed a dark vision network (DVNet) with a wavelet-
driven perception module (WDPM) to better perceive fea-
tures in blurry image areas, as shown in Fig. 1. The wavelet
transform [Tian et al., 2023] can decompose an image into
a sum of coarse to fine image features, representing differ-
ent structures of the image. Using the wavelet transform, the
model can more easily extract the structural and detailed in-
formation from the original image.

We further proposed a Mamba-Enhanced Fusion Module
(MEFM) to simulate the antagonistic receptive fields of hor-
izontal and bipolar cells, which enhance the contrast be-
tween the central and peripheral visual fields through in-
creasing the brightness difference and thus achieve a high-
light representation of the central area. The Mamba frame-
work [Gu and Dao, 2024] combines state-space models with
selective mechanisms, effectively processing long-sequence
data, which contributes to obtaining global information and
localizing lesions. Our method, under a global view, can en-
hance the contrast between the lesion area and surrounding
healthy tissues, achieving perceptual activation of the lesion
area. The attention mechanism endows the model with the
ability to interact and associate directly between different po-
sitions within the sequence. By adaptively weighting, it en-
hances the features of key areas in the image and suppresses
the visual response of surrounding areas, thereby achieving
enhanced contrast. In summary, the key contributions of this
paper are as follows.

• By delving into the mechanisms of scotopic vision, we
proposed a novel DVNet with a WDPM and a MEFM to
enhance the model’s ability to perceive blurred areas in
non-invasive medical imaging. To the best of our knowl-
edge, DVNet is the first medical image segmentation al-
gorithm inspired by scotopic vision.

• The DVNet is plug-and-play and can be deployed in
various architectures based on CNNs, Transformers, or
Mamba. Extensive experiments have demonstrated that
the DVNet can consistently enhance the performance of
its baseline model by enhancing the model’s visual acti-

vation of lesion areas through contrast enhancement.

2 Related Work
2.1 U-Net and Its Variants
U-Net [Ronneberger et al., 2015] has become a cornerstone
in medical image segmentation due to its symmetric encoder-
decoder structure and skip connections that enhance detail
preservation. However, U-Net and its variants face limita-
tions in modeling explicit long-range dependencies within
images, which is critical for precise segmentation. To address
the limitations of U-Net, researchers explored the integration
of Transformers into U-Net. The integration of U-Net and
Transformer, e.g., TransUNet [Chen et al., 2024a], leverages
the strengths of both architectures to enhance segmentation
performance: restoring local spatial information through U-
Net and modeling global context by Transformer.

2.2 Mamba in Medical Image Segmentation
Most recently, Mamba [Gu and Dao, 2024], a state space
model, has emerged as a promising alternative to CNNs
and Transformers in medical image segmentation. Mamba
excels in modeling long-range interactions while maintain-
ing linear computational complexity, which is particularly
advantageous for handling large medical images. Mamba-
UNet [Wang et al., 2024d] further synergizes U-Net with
Mamba’s capabilities by adopting a pure Visual Mamba-
based encoder-decoder structure, which facilitates compre-
hensive feature learning and captures both intricate de-
tails and broader semantic contexts within medical images.
Mamba-UNet [Wang et al., 2024d] has been shown to out-
perform various types of UNet in medical image segmenta-
tion under the same hyperparameter setting.

2.3 Perception of Blurry Information
A variety of methods have been proposed to deal with the
issue of blurry medical images. An iterative edge attention
network was introduced in [Wang et al., 2022b], which em-
ploys an edge attention preservation module to reduce noise
and help the edge flow focus on boundary-related informa-
tion. Ma et al. [Ma et al., 2024c] developed an edge fea-
ture fusion module to integrate the spatial correlation of the
edges of the injury in adjacent images, achieving more precise
edge segmentation. Qiao et al. [Qiao et al., 2022] proposed
an edge extraction method for medical images based on im-
proved Local Binary Pattern combined with edge-aware fil-
tering to suppress noise and enhance contrast while preserv-
ing edges.However, these methods typically improve edge de-
tection capabilities by eliminating noise or incorporating ad-
ditional information but do not fundamentally change the vi-
sual contamination issues caused by imaging blurriness.

2.4 Segmentation and Detection in the Dark
Low illumination can lead to degraded image quality includ-
ing image blur and increased noise due to the low signal-to-
noise ratio and reduced contrast between targets and back-
grounds [Chen et al., 2023]. To overcome these issues, a DNF
model [Jin et al., 2023] was proposed to decouple domain-
specific subtasks, fully utilize the unique properties of the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

E e

T1
0

T2
0

T3
0

T4
0

WDPM

PE

SE

Conv

SWT

Ee

Ce
D

2 e-1
X

H
2 e-1

W
2 e-1

X X

CONCAT

Se
V XC

Norm Layer

Mamba Layer

T4
l^T3

l^T2
l^T1

l^

Ti
l^ Tj

l^
Q K V

SE Layer

MLP

SGRM

ConvTrans

Reshape

MLP

Norm

Ce
D

2 e-1X
H
2 e-1

W
2 e-1X X

Oe

Tc
l-1

T1
L

T2L

T3
L

T4
L

MEFM

Encoder DVNet Decoder

Input Output

E1
E2 E3 E4

Oe

Te
L

CONCAT

O1O2
O3O4

Figure 2: An overview of the proposed DVNet. The DVNet is implanted into the skip connection structure and plug-and-play. Three novel
modules, i.e., WDPM, MEFM, and SGRM, are integrated to heighten the contrast between lesions and their surrounding healthy tissues,
thereby improving lesion segmentation.

RAW and sRGB domains, and employ a feedback mecha-
nism for feature propagation across stages, avoiding infor-
mation loss caused by image-level data flow. Alternatively,
an improved SFNet algorithm, i.e., SFNet-N [Wang et al.,
2022a], was proposed specifically for semantic segmenta-
tion of low-light autonomous driving road scenes, which in-
cludes a light enhancement network and a segmentation net-
work with strong feature extraction capabilities to identify ob-
jects in dark environments. Wang et al. [Wang et al., 2024b]
proposed a method for multi-object tracking under low-light
conditions by utilizing an adaptive low-pass downsampling
module and a degradation suppression learning strategy to
learn illumination-invariant features from low-light videos.
Although these methods achieved success in different tasks
under low-light natural scenes, they have not yet been applied
to medical image analysis, which has similar conditions.

3 Methodology

DVNet represents a novel approach to mimicking the prin-
ciples of dark vision by improving the sensitivity of the
model to subtle image features and addressing the inher-
ent blurriness in medical images. In this section, we elabo-
rate on the three major components of the proposed DVNet:
(1) WDPM, (2) MEFM, and (3) Spatial-Guided Refinement
Module (SGRM). These components work synergistically to
emulate the remarkable ability of nocturnal animals to per-
ceive and process visual information in low light environ-
ments. Fig. 2 illustrates an overview of the proposed model.

3.1 Wavelet-Driven Perception Module

In dark vision, the ability of rod cells to perceive low contrast
regions relies mainly on enhancing signals of different fre-
quencies, which is critical to capture structural details in dim
environments. However, traditional skip connections, com-
monly used in U-shaped networks, simply propagate low-
level semantic information, limiting their ability to effectively
process different frequency signals in blurry images. To ad-
dress this limitation, the WDPM is developed by integrating
a 3D stationary wavelet transform (SWT) module [Chen et
al., 2012] into each branch of our U-shaped network. SWT
preserves spatial resolution while decomposing feature maps
into distinct frequency subbands, enabling the network to dis-
tinguish between structural details and noise. As shown in
Fig. 3, this enhances feature representation at a deeper se-
mantic level and aligns with the principles of dark vision.

As illustrated in Fig. 2, given a 3D input volume I ∈
RC0×D×H×W with C0 input channels, D slices (depth), spa-
tial dimensions H (height) and W (width), the U-shaped ar-
chitecture processes the input through its encoder structure,
generating embedding Ee ∈ RCe× D

2e−1 × H

2e−1 × W

2e−1 at dif-
ferent layers (e ∈ {1, ..., 4}) corresponding to varying levels
and resolutions of features.

Then, in each branch, the input feature maps are first pro-
cessed through a 3D SWT, which decomposes the volumetric
data into multiple subbands, capturing both high-frequency
edge details and low-frequency structural information. The
decomposed subbands are concatenated with the original in-
put feature maps. This operation combines the complemen-
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Figure 3: An illustration of the WDPM. By employing wavelet
transform, the WDPM decomposes medical images into subbands
of varying frequencies, mimicking the sensitivity of photoreceptor
cells to different light intensities.

tary information from the frequency domain (SWT subbands)
with the spatial features of the raw input, allowing the net-
work to leverage both perspectives for improved feature rep-
resentation. The concatenated features are passed through
a 3D convolution layer to integrate spatial and frequency-
domain information, extracting more discriminative features
relevant for lesion segmentation. To enhance channel-wise
feature dependencies, the convolution output is refined using
a 3D Squeeze and Excitation (SE) block [Hu et al., 2018].
This recalibrates the feature maps by dynamically weighting
the channels based on their importance, ensuring that critical
features are emphasized. Finally, to enable patches from mul-
tiple stages to focus on the corresponding regions in the orig-
inal embeddings, the embeddings are tokenized by reshaping
features from different scales into token sequences with patch
sizes P

2e−1 [Wang et al., 2024a]. The channel dimensions are
all changed to C = 128. Then, a spatial embedding mod-
ule is used to capture positional information, improve spatial
awareness of the model, and output the token sequences of
embeddings Se ∈ RV×C , V = DHW

P 3 .

3.2 Mamba-Enhanced Fusion Module
As shown in Fig. 4, MEFM is inspired by the working mech-
anisms of horizontal cells and bipolar cells in the visual neu-
ral system, where the Center-Surround Antagonism [Ankri et
al., 2020] enables edge detection and contrast enhancement
within the visual cortex. By integrating attention mechanisms
through Mamba, MEFM achieves global information correla-
tion and enhances the contrast between lesions and surround-
ing healthy tissues.

MEFM integrates multi-branch embeddings effectively
while preserving their unique characteristics. As illustrated in
Fig. 2, MEFM consists of L stacked layers, each performing
a sequence of operations to fuse and refine features from all
branches iteratively. For each layer l ∈ [1, 2, ..., L], the em-
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Figure 4: An illustration of the MEFM. Analogous to the working
mechanism of the visual neural system, MEFM integrates attention
mechanisms to achieve global information correlation and enhance
the contrast between lesion areas and surrounding healthy tissues.

beddings from all branches are concatenated along the chan-
nel axis to form a unified feature representation.

T 0
e = Se,

T l
c = concat([T l

e]),
(1)

where T l
c ∈ RV×4C and e is the index of branches.

This operation aggregates complementary information across
branches, preparing the features for subsequent fusion.

The concatenated embeddings are passed through a
Mamba layer, which plays a crucial role in dynamically learn-
ing and balancing frequency-specific weights to achieve com-
plementary integration of features, enhancing the model’s
adaptability to diverse input characteristics. After fusion, the
combined features are split and grouped to ensure that each
branch T̂ l

i focuses on its specific representation while main-
taining inter-branch relationships.

T̂ l
c = Mamba(T l−1

c ),

[T̂ l
1, T̂

l
2, T̂

l
3, T̂

l
4] = Split(T̂ l

c)
(2)

For each branch, its embedding T̂ l
i ∈ Rl×C is treated as

the query (Q), while the embeddings from the other branches
T̂ l
j = concat(T̂ l

k|k ̸= i) ∈ Rl×3C serve as the key (K) and
value (V). This attention mechanism allows each branch to
focus selectively on relevant features from the other branches,
enriching its representation through inter-branch interactions.
The process is repeated for all branches, ensuring compre-
hensive attention-based feature refinement.

Ql
i = T̂ l

iW
l
Q,i, Kl

i = T̂ l
jW

l
K,i, V l

i = T̂ l
jW

l
V,i (3)

Al
i = softmax

(
Ql

iK
l
i
⊤√

dli

)
V l
i , (4)
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Models
BraTS 2020 BraTS 2023

WT TC ET WT TC ET
DSC↑ / HD95↓ DSC↑ / HD95↓ DSC↑ / HD95↓ DSC↑ / HD95↓ DSC↑ / HD95↓ DSC↑ / HD95↓

SegResNet [Myronenko, 2019] 90.78 / 5.99 86.91 / 5.29 80.64 / 4.53 92.02 / 4.07 89.10 / 4.08 83.66 / 3.88
SegResNet + DVNet 91.02 / 4.87 87.80 / 4.92 79.51 / 4.34 93.82 / 3.64 92.19 / 2.81 88.32 / 2.69

UNETR [Hatamizadeh et al., 2022] 89.44 / 7.07 83.91 / 8.40 78.45 / 6.70 92.19 / 6.17 86.39 / 5.29 84.48 / 5.03
UNETR + DVNet 90.05 / 5.74 84.98 / 5.90 79.60 / 5.25 93.20 / 4.05 91.16 / 3.44 87.50 / 3.16

SwinUNETR [Hatamizadeh et al., 2021] 90.43 / 5.65 86.40 / 7.01 79.94 / 5.92 92.71 / 5.22 87.79 / 4.42 84.21 / 4.48
SwinUNETR + DVNet 90.58 / 5.28 85.72 / 6.99 79.48 / 5.07 93.71 / 4.03 92.22 / 2.72 88.40 / 2.68

SegMamba [Xing et al., 2024] 90.90 / 4.87 87.90 / 5.37 77.61 / 6.12 93.61 / 3.37 92.65 / 3.85 87.71 / 3.48
SegMamba + DVNet 91.22 / 4.78 87.48 / 4.52 79.56 / 4.94 93.99 / 3.22 92.68 / 3.54 88.87 / 2.85

Table 1: Performance comparison of DVNet-enhanced U-shaped segmentation models on BraTS 2020 and BraTS 2023. Metrics include
DSC (higher is better) and HD95 (lower is better) for WT, TC, and ET.

where W l
Q,i, W

l
K,i, and W l

V,i are learnable weight matrices
for each lth layer and ith branch, and dli is the feature dimen-
sion for scaling.

Each branch’s output from the attention mechanism is fur-
ther refined using a SE block to recalibrate channel-wise de-
pendencies dynamically and a Multi-Layer Perceptron (MLP)
to enhance non-linear feature representation and improve dis-
criminative ability.

T̃ l
i = SE(T̂ l

i +Al
i) (5)

T l
i = MLP(T̃ l

i ) + T̃ l
i (6)

This process is repeated for L layers, with the output of
each layer serving as input to the next. The iterative refine-
ment allows MEFM to progressively improve feature quality,
ensuring robust fusion and representation.

3.3 Spatial-Guided Refinement Module
The SGRM is designed to restore the dimensions of the uni-
fied embeddings of each branch to the original input size,
allowing seamless integration with the final reconstruction
pipeline. As illustrated in Fig. 2, SGRM employs an MLP to
project the feature representation of each branch, TL

e . Then,
using a 3D transposed convolution operation, the refined em-
beddings are reshaped and expanded to their original spatial
dimensions. This operation reconstructs the volumetric struc-
ture of the input image by reversing the patch embedding and
tokenization process.

O′
e = MLP(TL

e ), (7)

Oe = ConvTranspose3D(Reshape(O′
e)) + Ee. (8)

where Oe represents the final output of the eth branch.
This module ensures that the spatial integrity of the origi-

nal input image is preserved while maintaining the enhanced
feature representation learned during the earlier stages. By
directly coupling embedding refinement with spatial recon-
struction, SGRM effectively bridges the gap between the uni-
fied branch embeddings and the final output.

4 Experiments
4.1 Datasets
This study conducted an in-depth analysis using multiple
datasets across diverse domains to evaluate DVNet’s robust-
ness and adaptability. These datasets include both 2D and 3D

imaging modalities, ensuring a comprehensive assessment of
our model’s performance.

The BraTS 2020 and BraTS 2023 datasets [Menze et al.,
2014; Kazerooni et al., 2024; Henry et al., 2021] are widely
recognized benchmarks for brain tumor segmentation tasks.
These datasets provide 3D brain MRI volumes with precise
ground truth annotations, including four modalities for each
volume: T1-weighted, T1-contrast enhanced, T2-weighted,
and FLAIR. Ground truth annotations include three segmen-
tation targets: Whole Tumor (WT), Enhancing Tumor (ET),
and Tumor Core (TC). The BraTS 2020 & 2023 datasets
provide foundational and diversity benchmarks, challenging
the model’s adaptability to varying imaging conditions and
glioma types. For a fair comparison, we follow the evaluation
protocol outlined in SegMamba [Xing et al., 2024] and uti-
lize public implementations of the baseline methods in com-
parison to retrain their networks under the same settings for
BraTS 2020 & 2023 datasets, respectively. The data is split
randomly: 70% of the 3D volumes for training, 10% for vali-
dation, and the remaining 20% for testing.

In addition to 3D segmentation, DVNet was also evalu-
ated on the Abdomen MRI dataset [Ji et al., 2022] and Mi-
croscopy Cell Dataset [Ma et al., 2024b] for 2D segmentation
tasks. The Abdomen MRI dataset was used for the MICCAI
2022 AMOS Challenge [Ji et al., 2022], designed for seg-
mentation of abdominal organs. Microscopy Cell dataset was
used for the NeurIPS 2022 Cell Segmentation Challenge [Ma
et al., 2024b]. In accordance with the settings of xLSTM-
Unet [Chen et al., 2024b], we employed 60 labeled MRI
scans for training and 50 scans for testing in the Abdomen
MRI dataset and 1,000 images for training and 101 images
for evaluation in the Microscopy Cell dataset.

4.2 Implementation Details
DVNet is implemented based on SegMamba [Xing et al.,
2024] for 3D tasks and xLSTM [Chen et al., 2024b] for 2D
tasks. For 3D tasks, the input crop size is set to (64×64×64)
with a batch size of 2. The optimization process uses cross-
entropy loss with a stochastic gradient descent optimizer and
a polynomial learning rate scheduler (initial learning rate of
0.01 and decay of 1× 10−5). Training runs for 1,000 epochs
with data augmentations including brightness, gamma, rota-
tion, scaling, mirror, and elastic deformation. For 2D tasks,
the loss function is the sum of Dice loss and cross-entropy
loss, optimized with the AdamW optimizer (weight decay:

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Models WT TC ET Avg
DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

SegResNet [Myronenko, 2019] 92.02 4.07 89.10 4.08 83.66 3.88 88.26 4.01
UX-Net [Lee et al., 2022] 93.13 4.56 90.03 5.68 85.91 4.19 89.69 4.81

MedNeXt [Roy et al., 2023] 92.41 4.98 87.75 4.67 83.96 4.51 88.04 4.72
UNETR [Hatamizadeh et al., 2022] 92.19 6.17 86.39 5.29 84.48 5.03 87.68 5.49

SwinUNETR [Hatamizadeh et al., 2021] 92.71 5.22 87.79 4.42 84.21 4.48 88.23 4.70
SwinUNETR-V2 [He et al., 2023] 93.35 5.01 89.65 4.41 85.17 4.41 89.39 4.51

SegMamba [Xing et al., 2024] 93.61 3.37 92.65 3.85 87.71 3.48 91.32 3.56
DVNet + SegMamba 93.99 3.22 92.68 3.54 88.87 2.85 91.85 3.20

Table 2: Comparison of 3D segmentation performance across different SOTA models on BraTS 2023. Metrics include DSC (higher is better)
and HD95 (lower is better) for WT, TC, ET, and the average.

0.05). Learning rates are set empirically for each dataset: Ab-
domen MRI (0.005) and Microscopy (0.0015). Batch size is
set to 30 for Abdomen MRI and 12 for Microscopy. All mod-
els are trained for 1,000 epochs for 2D tasks.

4.3 Evaluation Metrics
The Dice Similarity Coefficient (DSC) and 95% Hausdorff
Distance (HD95) are adopted for quantitative comparison on
the BraTS 2020 & 2023 datasets. The DSC and Normalized
Surface Distance (NSD) are used as evaluation metrics for
Abdomen MRI dataset. The F1 score is used for cell segmen-
tation on the Microscopy dataset.

4.4 Experimental Results
To evaluate the effectiveness of DVNet, we conducted com-
parisons in different scenarios with appropriate baselines.
Plug-and-play: To demonstrate the effectiveness of DVNet
as a plug-and-play module, DVNet was plugged into
four state-of-the-art (SOTA) models (SegResNet [Myro-
nenko, 2019], UNETR [Hatamizadeh et al., 2022], Swin-
UNETR [Hatamizadeh et al., 2021] and SegMamba [Xing
et al., 2024]). Their performance with and without DVNet
was compared on the BraTS 2020 and BraTS 2023 datasets.
As shown in Table 1, DVNet consistently improves seg-
mentation accuracy (DSC) and boundary precision (HD95)
over baseline models by improving feature extraction and
addressing challenges such as blurry and low-contrast re-
gions. For example, on BraTS 2023 dataset, DVNet im-
proves the DSC score of SegResNet [Myronenko, 2019] from
92.02% to 93.82% for WT and reduces its HD95 from 4.07
to 3.64, demonstrating its ability to refine predictions and im-
prove boundary delineation. Similarly, when integrated with
transformer-based models like SwinUNETR [Hatamizadeh
et al., 2021], DVNet achieves notable gains, with DSC of
TC increasing from 87.79% to 92.22% and HD95 decreasing
from 4.42 to 2.72. These findings validate the robustness and
adaptability of DVNet, proving its capability to deliver SOTA
performance across diverse datasets and clinical scenarios.
Comparison with SOTA methods for the 3D segmenta-
tion task: We also evaluated the performance of DVNet
against other SOTA models reported in SegMamba [Xing et
al., 2024] on the BraTS 2023 dataset. The results in Table 2
demonstrate the superiority of DVNet over all baseline mod-
els for brain tumor segmentation as the DVNet achieves the

Models Abdomen MRI Microscopy
DSC ↑ NSD ↑ F1 ↑

nnU-Net [Isensee et al., 2021] 74.50±11.17 81.53±11.45 53.83±26.57
SegResNet [Myronenko, 2019] 73.17±13.79 80.34±13.86 54.11±26.33

UNETR [Hatamizadeh et al., 2022] 57.47±16.72 63.09±18.58 43.57±25.72
SwinUNETR [Hatamizadeh et al., 2021] 70.28±13.48 76.69±14.42 39.67±26.21

U-Mamba Bot [Ma et al., 2024a] 75.88±10.51 82.85±10.74 53.89±28.17
U-Mamba Enc [Ma et al., 2024a] 76.25±10.82 83.27±10.87 56.07±27.84
xLSTM bot [Chen et al., 2024b] 76.36±10.06 83.22±10.34 58.18±23.86
xLSTM enc [Chen et al., 2024b] 77.47±9.50 83.74±9.51 60.36±24.35

DVNet + xLSTM enc 77.72±15.05 84.23±9.22 65.54±26.15

Table 3: Comparison of segmentation performance on 2D tasks.

Models WT TC ET
DSC↑ / HD95↓ DSC↑ / HD95↓ DSC↑ / HD95↓

DVNet (w/o WDPM) 93.12 / 3.88 91.24 / 3.03 84.75 / 3.38
DVNet (w/o MEFM) 93.13 / 3.87 91.07 / 3.00 84.68 / 3.18

DVNet 93.82 / 3.64 92.19 / 2.81 88.32 / 2.69

Table 4: An ablation study to evaluate impact of WDPM and MEFM
on segmentation performance in DVNet on BraTS 2023.

highest DSC scores and the lowest HD95 values among all
methods compared, especially excelling in challenging sub-
regions like ET and TC. Compared to the strongest baseline,
SegMamba [Xing et al., 2024], DVNet further enhances seg-
mentation accuracy and improves boundary delineation, par-
ticularly for the challenging ET subregion.
Comparison with SOTA methods for 2D segmentation
tasks: Table 3 compares the segmentation performance of
DVNet with SOTA models for 2D medical images. On the
Abdomen MRI dataset, the DVNet integrated with the xL-
STM enc architecture [Chen et al., 2024b], slightly exceeds
xLSTM enc and achieves the highest performance, with a
DSC of 77.58% and an NSD of 83.84%, demonstrating
the effectiveness of our plugin-based approach in enhanc-
ing segmentation accuracy and boundary precision. For the
Microscopy dataset, DVNet again outperforms other SOTA
models, achieving an F1 score of 65.54%, a more impressive
improvement over xLSTM enc (60.36%). This demonstrates
the robustness of DVNet in handling complex instance seg-
mentation tasks.

In summary, experimental results have demonstrated the
effectiveness of DVNet as a plug-and-play module, consis-
tently enhancing segmentation accuracy and boundary preci-
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Input O1 O2 O3 O4 DVNet GT

Figure 5: Visualization of the segmentation results of the proposed
DVNet. Each row corresponds to a single case, and the columns
represent (from left to right): the input image, the outputs of the
four branches (O1 to O4), the final prediction by DVNet, and the
ground truth segmentation mask. The activation maps of O1 to O4

demonstrate a trend that as DVNet is more embedded into the base-
line model, the segmentation model more focuses on the lesion area
and weakens or suppresses the surrounding normal tissue area.

Models WT TC ET
DSC↑ / HD95↓ DSC↑ / HD95↓ DSC↑ / HD95↓

DVNet (w/ LLL) 93.52 / 3.84 91.87 / 3.72 87.84 / 3.32
DVNet (w/ HHH) 93.31 / 4.56 91.77 / 4.64 87.90 / 3.97

DVNet 93.82 / 3.64 92.19 / 2.81 88.32 / 2.69

Table 5: An ablation study to evaluate effect of different frequency
components in WDPM on segmentation performance.

sion for both 3D and 2D tasks.

4.5 Ablation Study
Ablation studies have been conducted to demonstrate the ef-
fectiveness of different modules in DVNet. Table 4 com-
pares the contributions of the WDPM and MEFM in the pro-
posed DVNet (plug-in SegResNet [Myronenko, 2019]) on the
BraTS 2023 dataset.

Removal of WDPM or MEFM results in notable perfor-
mance degradation with a decrease in DSC score and an in-
crease in HD95, particularly for the more challenging TC and
ET subregions. The results indicate reduced segmentation
precision and boundary accuracy, underscoring the critical
roles of both WDPM and MEFM in boundary refinement and
multi-region interaction. In contrast, the full DVNet achieves
the best overall performance.

To further explore the contributions of different frequency
signals in medical image segmentation, an ablation study was
conducted to study the effect of different SWT components.
The results shown in Table 5 demonstrate that neither low-
frequency nor high-frequency components alone are suffi-

cient for optimal segmentation performance. Low-frequency
components (LLL) excel in capturing global structural infor-
mation but lack the details required for precise boundary de-
lineation. In contrast, high-frequency components (HHH) fo-
cus on local details but fail to provide the broader context
necessary to segment complex structures and are also suscep-
tible to noise.

Overall, the ablation study highlights the importance of
both WDPM and MEFM in enhancing the segmentation per-
formance of DVNet. WDPM strengthens feature representa-
tion and target structure recognition; while MEFM improves
boundary precision and inter-region consistency. In addition,
the full SWT-based DVNet effectively integrates both low-
frequency and high-frequency information, leveraging their
complementary strengths to achieve superior performance.
This highlights the importance of multi-frequency analysis in
medical image segmentation tasks, demonstrating DVNet’s
efficacy in tackling complex medical image segmentation
tasks.

4.6 Visualization
To explore the effectiveness of DVNet, we visualize the out-
puts of DVNet. We randomly selected some images and
performed visualization in the inference mode on the BraTS
2023 test dataset. Fig. 5 illustrates the intermediate and final
segmentation results of the proposed DVNet for some repre-
sentative cases. Each row corresponds to a single case, and
the columns represent (from left to right): the input image,
the outputs of the four branches (O1 to O4), the final pre-
diction by DVNet, and the ground truth (GT) segmentation
mask. The branch outputs highlight the model’s capability to
capture features at multiple levels, providing complementary
information for the final prediction. The final DVNet predic-
tions demonstrate strong alignment with the ground truth, ef-
fectively capturing the boundaries and internal details of the
target regions. However, subtle discrepancies in tiny struc-
tures indicate potential areas for further improvement. Over-
all, the visualization results validate the robustness and preci-
sion of the proposed multi-branch segmentation approach in
addressing complex segmentation tasks.

5 Conclusion
In this work, we are motivated to incorporate the principles
of scotopic vision into noninvasive medical image process-
ing and analysis tasks, with the aim of inspiring future re-
search endeavors. Specifically, we introduced DVNet, a novel
plug-and-play dark vision enhancement method that teaches
models to fully capture and learn key visual features in blurry
medical images. By utilizing the multi-scale frequency infor-
mation obtained from wavelet transform, DVNet can identify
lesions in low-contrast areas, using them as attention indices
for dense prediction tasks. Our approach refines these in-
dices, constructing global dependencies of visual features in
the manner of potential conduction in the optic nerve, reac-
tivating blurred areas and thereby achieving precise segmen-
tation of lesion regions. Extensive experiments demonstrate
that DVNet achieves SOTA performance in various medical
image segmentation tasks, highlighting its effectiveness and
generalizability.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported by grants from the National Natural
Science Foundation of China (NSFC 62322215, 62402488),
National Science Foundation (MRI-2018966) and South Car-
olina Research Authority (2331-241-2024811). This study
was supported in part by the high-performance computing
center of Central South University.

References
[Aglinskas et al., 2022] Aidas Aglinskas, Joshua K.

Hartshorne, and Stefano Anzellotti. Contrastive machine
learning reveals the structure of neuroanatomical variation
within autism. Science, 376(6597):1070–1074, 2022.

[Ankri et al., 2020] Lea Ankri, Elishai Ezra-Tsur, Shir R
Maimon, Nathali Kaushansky, and Michal Rivlin-Etzion.
Antagonistic center-surround mechanisms for direction se-
lectivity in the retina. Cell reports, 31(5), 2020.

[Chen et al., 2012] Xuehua Chen, Wei Yang, Zhenhua He,
and Wenli Zhong. Adaptive acquisition footprint suppres-
sion based on a 3d stationary wavelet transform: A case
study from china. Journal of Applied Geophysics, 77:1–6,
2012.

[Chen et al., 2023] Linwei Chen, Ying Fu, Kaixuan Wei,
Dezhi Zheng, and Felix Heide. Instance segmentation
in the dark. International Journal of Computer Vision,
131(8):2198–2218, 2023.

[Chen et al., 2024a] Jieneng Chen, Jieru Mei, Xianhang Li,
Yongyi Lu, Qihang Yu, Qingyue Wei, Xiangde Luo, Yu-
tong Xie, Ehsan Adeli, Yan Wang, Matthew P. Lungren,
Shaoting Zhang, Lei Xing, Le Lu, Alan Yuille, and Yuyin
Zhou. Transunet: Rethinking the u-net architecture design
for medical image segmentation through the lens of trans-
formers. Medical Image Analysis, 97:103280, 2024.

[Chen et al., 2024b] Tianrun Chen, Chaotao Ding, Lanyun
Zhu, Tao Xu, Deyi Ji, Yan Wang, Ying Zang, and Zejian
Li. xlstm-unet can be an effective 2d & 3d medical image
segmentation backbone with vision-lstm (vil) better than
its mamba counterpart. arXiv preprint arXiv:2407.01530,
2024.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International
Conference on Learning Representations, 2021.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014.

[Gu and Dao, 2024] Albert Gu and Tri Dao. Mamba: Linear-
time sequence modeling with selective state spaces, 2024.

[Hatamizadeh et al., 2021] Ali Hatamizadeh, Vishwesh
Nath, Yucheng Tang, Dong Yang, Holger R Roth, and
Daguang Xu. Swin unetr: Swin transformers for semantic
segmentation of brain tumors in mri images. In Interna-
tional MICCAI brainlesion workshop, pages 272–284.
Springer, 2021.

[Hatamizadeh et al., 2022] Ali Hatamizadeh, Yucheng Tang,
Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett
Landman, Holger R Roth, and Daguang Xu. Unetr: Trans-
formers for 3d medical image segmentation. In Proceed-
ings of the IEEE/CVF winter conference on applications
of computer vision, pages 574–584, 2022.

[He et al., 2023] Yufan He, Vishwesh Nath, Dong Yang,
Yucheng Tang, Andriy Myronenko, and Daguang Xu.
Swinunetr-v2: Stronger swin transformers with stagewise
convolutions for 3d medical image segmentation. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 416–426. Springer,
2023.

[Henry et al., 2021] Theophraste Henry, Alexandre Carré,
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