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Abstract

The rapid growth in feature dimension may in-
troduce implicit associations between features and
labels in multi-label datasets, making the rela-
tionships between features and labels increas-
ingly complex. Moreover, existing methods often
adopt low-dimensional linear decomposition to ex-
plore the associations between features and la-
bels. However, linear decomposition struggles to
capture complex nonlinear associations and may
lead to misalignment between the feature space
and the label space. To address these two criti-
cal challenges, we propose innovative solutions.
First, we design a random walk graph that in-
tegrates feature-feature, label-label, and feature-
label relationships to accurately capture nonlinear
and implicit indirect associations, while optimizing
the latent representations of associations between
features and labels after low-rank decomposition.
Second, we align the variable spaces by lever-
aging low-dimensional representation coefficients,
while preserving the manifold structure between
the original high-dimensional multi-label data and
the low-dimensional representation space. Exten-
sive experiments and ablation studies conducted on
seven benchmark datasets and three representative
datasets using various evaluation metrics demon-
strate the superiority of the proposed method.

1 Introduction
In recent years, with the exponential growth of feature dimen-
sion, feature selection in high-dimensional datasets has be-
come a critical task. By eliminating irrelevant and redundant
features while retaining important and relevant ones, feature
selection effectively reduces computational time and storage
costs [Li et al., 2017]. As a result, feature selection meth-
ods have been widely applied across various domains, includ-
ing text mining [Jin et al., 2023], image annotation [Kong et

∗Corresponding author

1
2

3

1
2

345

              Direct Relation         Indirect Relation(Target)

Feature Label

Figure 1: The diagram illustrates the direct and indirect associations
between feature subsets and label subsets. For example, the under-
lying indirect relationships between features and labels can be cap-
tured through the direct relationships of 1, 2 and 3 above.

al., 2012], music classification [Silla Jr et al., 2008], microar-
ray data analysis [Bommert et al., 2022], and biomarker dis-
covery in proteomics [Tang et al., 2021]. Generally, feature
selection methods can be categorized into three main types:
filter-based methods, wrapper-based methods, and embedded
methods [Yao et al., 2017].

Filter-based methods operate independently of the learn-
ing method [Zhang et al., 2021]. In contrast, wrapper-based
methods [Al-Yaseen et al., 2022] iteratively evaluate and se-
lect subsets of features to identify the optimal feature sub-
set. Embedded methods, on the other hand, integrate the fea-
ture selection process directly into the learning method [Ya-
mada et al., 2020]. Among embedded methods, many meth-
ods leverage sparse regularization to impose constraints that
enhance the structural information of the data, thereby cap-
turing the underlying structure more accurately and improv-
ing the generalization ability of the method. However, a key
challenge for feature selection methods in multi-label learn-
ing problems is computing the relevance between features
and labels.

The goal of multi-label learning is to assign multiple cor-
rect labels to a given instance [Zhu et al., 2018], which poses
new challenges compared to traditional single-label learning.
Some studies address multi-label problems by transforming
them into multiple single-label problems [Lee and Kim, 2015;
Lee and Kim, 2017], but these methods often overlook the
correlations between labels. Other methods handle multi-
label problems by creating label sets [Wang et al., 2021b],
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grouping related labels together and converting the multi-
label problem into a multi-class problem. However, these
methods struggle to accurately capture the complex high-
order correlations between features and labels in multi-label
datasets.

In the real-world scenarios, a label can be associated
with multiple other labels, making it inadequate to con-
sider only pairwise label correlations [Zhang and Gao, 2021;
Lim and Kim, 2020]. Consequently, the complex and deep
relationships between labels have become a key focus of re-
search [Yu et al., 2021; Li et al., 2024]. Traditional multi-
label feature selection methods primarily focus on the inter-
nal correlations within the feature set and the label set. Al-
though some methods attempt to consider the associations be-
tween features and labels, this consideration remains insuffi-
cient [Wang et al., 2021a]. For instance, linear decomposition
methods such as Non-negative Matrix Factorization (NMF)
may lead to the loss of nonlinear relationships within the data.
This issue becomes more pronounced in real-world scenarios
with complex dependencies. In the constructed composite di-
agram shown in Figure 1, indirect relationships between fea-
tures and labels are established through the propagation of
relevant nodes. Our method is specifically designed to focus
on capturing these indirect relationships. To more compre-
hensively capture the nonlinear and indirect relationships be-
tween subsets of features and subsets of labels, we propose a
novel multi-label feature selection method. The main contri-
butions of this work are as follows:

• We propose a random walk strategy on a feature-label
composite graph constructed using mutual information,
which captures both direct and implicit indirect associ-
ations between features and labels, thereby facilitating
a comprehensive representation of the high-dimensional
structures within the data.

• By aligning the low-rank representations of similar sam-
ples in the feature space and label space, we ensure that
the shared latent space after low-rank decomposition ef-
fectively captures the structural consistency between the
two spaces.

• Extensive experiments conducted on seven datasets val-
idate the effectiveness of the proposed method.

2 Related Work
In the field of multi-label feature selection, numerous meth-
ods have been proposed to capture the correlations between
features and labels [Sun et al., 2021]. With the increasing di-
mensionality of data, the diversity of labels also rises. Based
on the depth of consideration given to label correlations, these
methods are typically categorized into three types [Liu et
al., 2023], first-order strategies, second-order strategies, and
high-order strategies.

First-order strategies address multi-label problems using
single-label methods but ignore the correlations between la-
bels [Lee and Kim, 2015; Lin et al., 2015]. Although this
method simplifies the modeling process, it fails to capture la-
bel dependencies, making it challenging to identify key fea-
tures within label relationships. Second-order strategies ad-

dress this limitation to some extent by modeling pairwise re-
lationships between labels [Xiong et al., 2021; Qian et al.,
2022]. However, since label relationships often extend be-
yond simple pairwise connections, these methods only cap-
ture the associations between features and a subset of labels,
falling short of comprehensively reflecting the complex de-
pendencies between features and all labels.

In contrast, high-order strategies [Wu et al., 2020; Huang
et al., 2016] go further by considering the correlations be-
tween features and all possible label subsets, thus providing a
more comprehensive modeling of the complex dependencies
among labels. However, these methods focus on uncovering
the direct dependencies between variables and fail to effec-
tively capture implicit indirect correlations, which limits their
ability to characterize deep, latent relationships.

Manifold learning [Fan et al., 2021; Cohen et al., 2023]
has been employed to ensure the consistency between fea-
ture correlation and label correlation. This method assumes
that samples with similar features should have similar labels,
thereby achieving alignment between feature and label sim-
ilarity. The core idea is to uncover the intrinsic structure of
high-dimensional data through its low-dimensional latent rep-
resentations. [Tang et al., 2019] proposed a graph-based man-
ifold regularization method to capture the manifold structure
of the data, applying the resulting latent representations to un-
supervised feature selection. However, these methods fail to
adequately address the alignment problem between the low-
dimensional representations of the feature space and the label
space.

In recent years, random walk techniques have seen increas-
ing exploration and application in the field of feature selec-
tion. The Random Walk Feature Selection (RWFS) method
[Feng et al., 2017] is based on the Optimal Feature Selection
(OPFS) technique, which identifies feature subsets and inte-
grates random walk methods with predefined thresholds to
filter out redundant features. The Pattern-Based Local Ran-
dom Walk (PBLRW) method [Song et al., 2019] constructs
local random walk models through feature combinations and
assigns transition probabilities based on the strength of these
combinations. However, the random walk operations in these
methods remain limited to the feature space, neglecting la-
bel dependencies, and fail to fully leverage their capacity for
capturing higher-order relationships.

3 The Proposed Method
We propose a multi-label feature selection method based
on Graph Random Walk and Structured Correlation Matrix
Factorization (GRW-SCMF). By incorporating graph random
walk, the method captures both the direct correlations and im-
plicit indirect correlations between features and labels. Fur-
thermore, in the shared low-dimensional representation, it
aligns similar samples in the feature space and label space
to ensure consistency. The framework is shown in Figure 2.

3.1 Random Walk Graph
In this paper, we construct a composite graph G = (V,E),
where the vertex set V consists of two types of vertices: fea-
ture vertices Vf and label vertices Vl. The edge setE includes
the following three types of edges:
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1. Feature-feature edges Eff ,
2. Label-label edges Ell,
3. Feature-label edges Efl.
The adjacency matrices of the feature graph Afeatures and

the label graph Alabels are calculated using the Gaussian ker-
nel as follows:

Afeatures(i, j) = exp

(
−∥X:,i −X:,j∥2

2σ2

)
, (1)

Alabels(i, j) = exp

(
−∥Y:,i − Y:,j∥2

2σ2

)
. (2)

Here, ∥X:,i − X:,j∥2 and ∥Y:,i − Y:,j∥2 represent the Eu-
clidean distances between features and labels, respectively,
and σ is the scale parameter of the Gaussian kernel.

The association between features and labels is represented
by the mutual information matrix MI , which is defined as
follows:

MI(i, j) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (3)

where p(x, y) denotes the joint probability distribution of fea-
ture X and label Y , and p(x) and p(y) represent the marginal
probability distributions of X and Y , respectively.

To construct the transition probability matrices Pfeatures,
Plabels, and Plf (the transpose of which is Pfl), we normalize
the adjacency matrices of the feature graph Afeatures and label
graph Alabels, as well as the connection matrix MI between
features and labels.

3.2 Random Walk Method
The random walk starts from a randomly selected feature ver-
tex v ∈ Vf and updates its state according to the following
rules:

1. When the current node is a feature node (v ∈ Vf ):
• With a probability of pjump, it jumps to a label node u ∈
Vl. The target node is determined based on the transition
probability Pfl(v, u), which is calculated as follows:

P (v → u) = pjump · Pfl(v, u), u ∈ Vl. (4)

• Otherwise, with a probability of 1 − pjump, it jumps to
another feature node u ∈ Vf . The target node is deter-
mined based on the transition probability Pfeatures(v, u),
which is calculated as follows:
P (v → u) = (1−pjump) ·Pfeatures(v, u), u ∈ Vf . (5)

2. When the current node is a label node (v ∈ Vl):
• With a probability of pjump, it jumps to a feature node
u ∈ Vf . The target node is determined based on the
transition probability Plf (v, u), which is calculated as
follows:

P (v → u) = pjump · Plf (v, u), u ∈ Vf . (6)

• Otherwise, with a probability of 1 − pjump, it jumps to
another label node u ∈ Vl. The target node is determined
based on the transition probability Plabels(v, u), which is
calculated as follows:
P (v → u) = (1− pjump) · Plabels(v, u), u ∈ Vl. (7)
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Figure 2: Algorithm framework. First,X and Y are decomposed us-
ing low-rank matrix factorization. Next, the feature-label association
matrix is constrained by the random walk matrix Rw. Then, X and
Y are aligned in a shared space. Finally, feature importance is com-
puted via Q⊤B.

3.3 Feature-Label Relationship Update Rule
Implicit indirect relationships refer to the potential high-order
associations between feature nodes and label nodes that are
transmitted through intermediate nodes (other features and
labels). These relationships are difficult to capture using tra-
ditional linear decomposition methods. To address this issue,
RWMI leverages random walks to dynamically generate in-
teraction sequences between feature and label nodes, effec-
tively capturing such indirect relationships.

Specifically, during each random walk, we record each pair
of feature nodes f ∈ Vf and label nodes l ∈ Vl, and calculate
their distance d(f, l) in the walk sequence, which represents
the number of steps separating them. The association weight
RW (f, l) is updated according to the following formula:

RW (f, l)+ = decay factord(f,l) ·MI(f, l), (8)
where decay factor is a distance decay factor that controls the
influence of the number of steps on the weight, and MI(f, l)
is the mutual information between feature f and label l,
which mitigates uncertainties caused by randomness, ensur-
ing that the results of the RW matrix are more accurate and
robust.

Through multiple random walks, RW not only captures
the direct associations between features and labels but also
computes implicit indirect relationships via the intermedi-
ate nodes in the walk sequences. This process constructs
a feature-label association matrix that represents high-order
associations, which is further scaled to the [0, 1] range via
Min–Max normalization.

The procedure is detailed in Algorithm 1.

3.4 Objective Function
In multi-label data, the diversity of labels may introduce inac-
curate or noisy label information, making it prone to incorpo-
rating irrelevant and redundant information when directly uti-
lizing the original feature and label matrices for feature selec-
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Algorithm 1 Random Walk Mutual Information (RWMI)
Require: X (features), Y (labels), n walks, walk length,

jump prob, decay factor
Ensure: Normalized RWMI matrix
1: Construct adjacency matrices Afeatures, Alabels from X , Y .
2: Calculate and normalize mutual information matrix MI be-

tween X and Y .
3: Compute transition probability matrices: Pfeatures, Plabels,
Pfeature to label, Plabel to feature.

4: Initialize RWMI matrix.
5: for i = 1 to n walks do
6: Start random walk from a node.
7: for j = 1 to walk length do
8: Move between feature and label nodes based on probabil-

ities and jump prob.
9: end for

10: UpdateRWMI matrix using decay factor and steps between
feature-label pairs, and normalize it afterward.

11: end for

tion. To address this issue, we learn a shared low-dimensional
latent semantic space for both the feature and label spaces.
This low-dimensional space matrix condenses the critical in-
formation from features and labels while effectively reducing
the influence of redundancy and noise. The objective function
can be written as:

min
V,Q,B

∥X − V Q∥2F+∥Y − V B∥2F (9)

The feature matrix X ∈ Rn×d represents the high-
dimensional feature space of the samples, while the multi-
label matrix Y ∈ Rn×c describes the label distribution of
the samples. To uncover the shared distribution structure be-
tween the feature space and the label space, we introduce a
low-dimensional latent semantic matrix V ∈ Rn×k, which
captures the low-dimensional shared representations of both
spaces. The matrices Q ∈ Rk×d and B ∈ Rk×c are the low-
dimensional representation coefficient matrices for features
and labels, respectively, mapping the original data into the
shared representation V . Specifically, matrix V encodes the
embedding relationships of features and labels in k latent se-
mantic clusters. By applying non-negative matrix factoriza-
tion (NMF) on Y , the c labels can be effectively clustered,
revealing the complex internal distribution structure of multi-
label data.

min
V,Q,B

∥X − V Q∥2F+∥Y − V B∥2F+∥Rw −QTB∥2F (10)

The term ∥Rw −QTB∥2F introduced in the objective func-
tion (10) enhances the model’s ability to capture the com-
plex relationships between features and labels. Here, the ma-
trix Rw is the feature-label implicit association matrix com-
puted using the Random Walk Mutual Information (RWMI)
method, which effectively captures indirect relations and la-
tent dependencies in high-dimensional data. In contrast,QTB
is the feature-label association matrix learned based on the
low-dimensional shared semantic space. As it is derived from
low-dimensional linear decomposition, it primarily captures
linear relationships and direct associations. By combining

the explicit modeling capability of linear decomposition with
the implicit relationship mining power of random walks, this
term significantly improves the model’s ability to represent
high-order nonlinear relationships between features and la-
bels. Furthermore, this term ensures that the low-dimensional
representation space preserves the manifold structure of the
original high-dimensional data, aligning with the latest con-
cepts in manifold learning, which posit that high-dimensional
data often lie on a low-dimensional manifold.

min
V,Q,B

∥X − V Q∥2F+∥Y − V B∥2F+∥Rw −QTB∥2F

+ ∥XQT − Y BT ∥2F
(11)

This term can be regarded as an alignment constraint, aim-
ing to ensure the consistency between the feature space and
the label space in the low-dimensional representation. Specif-
ically, XQT represents the low-dimensional mapping of fea-
tures in the shared semantic space V , while Y BT represents
the low-dimensional mapping of labels in the same space
V . Furthermore, to preserve the associations between fea-
tures and labels, similar feature samples and label samples
should be mapped to locations close to each other in the low-
dimensional space. This ensures the learning of a common
low-dimensional space that effectively captures the relation-
ship between features and labels.

min
V,Q,B

∥X − V Q∥2F+∥Y − V B∥2F+∥Rw −QTB∥2F

+ ∥XQT − Y BT ∥2F+∥QTB∥2,1+∥V ∥2F
(12)

The Frobenius norm of V imposes a regularization con-
straint in the low-dimensional shared semantic space, reduc-
ing redundancy and unnecessary complexity, thereby enhanc-
ing the model’s ability to capture important low-dimensional
relationships between features and labels. Moreover, incorpo-
rating this term as a regularization on QTB effectively con-
trols the model complexity and reduces the risk of overfitting.
By smoothing the solution space, it further improves the gen-
eralization ability of the model. Additionally, computing the
row-wise ℓ2 norm of QTB provides a measure of feature im-
portance.

Thus, our final objective function is formulated as follows:

min
V,Q,B

α∥X − V Q∥2F+β∥Y − V B∥2F+γ∥Rw −QTB∥2F

+ δ∥XQT − Y BT ∥2F+ϵ∥QTB∥2,1+∥V ∥2F
s.t. {V,Q,B} ≥ 0

(13)

4 Solution Strategy
This section presents the optimization method for solving the
proposed objective function.

4.1 Optimization Scheme
Because the objective function includes an l2,1-norm regu-
larization term, which is non-smooth and cannot be directly
solved, and is also non-convex with respect to the variables V ,
Q, and B, it presents a significant challenge [Boyd and Van-
denberghe, 2004]. Theoretically, this is due to the fact that the
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Hessian matrix, composed of the second-order partial deriva-
tives of the objective function, is not positive semi-definite.
Therefore, to optimize the objective function, we have de-
signed a relaxation update method based on the alternating-
multiplier-based scheme [Nie et al., 2010] to achieve an ap-
proximate local optimum of the objective function.

min
V,Q,B

α∥X − V Q∥2F+β∥Y − V B∥2F+γ∥Rw −QTB∥2F

+ δ∥XQT − Y BT ∥2F+∥V ∥2F+2ϵTr(WTDW )
(14)

We use 2Tr(WTDW ) to approximate ∥W∥2,1, where
W = QTB. Here, D is a diagonal matrix whose elements
are iteratively computed during the method’s execution. The
parameter c is introduced to mitigate perturbations in non-
differentiable problems. The elements of D are defined as:

Dii =
1

2
√
WT

i Wi + c
, (c→ 0) (15)

To integrate non-negative constraint conditions into the ob-
jective function, we introduce Lagrangian multipliers ψ, φ,
and µ to constrain V , Q, and B respectively. Specifically,
ψ ∈ Rn×k

+ , φ ∈ Rk×d
+ , and µ ∈ Rk×c

+ . Consequently, the
original function (14) is equivalent to the following function:

min
V,Q,B

α∥X − V Q∥2F+β∥Y − V B∥2F+γ∥Rw −QTB∥2F

+ δ∥XQT − Y BT ∥2F+∥V ∥2F+2ϵTr(WTDW )

− Tr(ψV T )− Tr(φQT )− Tr(µBT )

(16)

Transform the squared Frobenius norm into the form of a
matrix trace:

Θ = αTr ((X − V Q)T (X − V Q))
+β Tr ((Y − V B)T (Y − V B))
+γ Tr ((Rw −QTB)T (Rw −QTB))
+δTr ((XQT − Y BT )T (XQT − Y BT ))
+Tr(V TV ) + 2ϵTr(WTDW )
−Tr(ψV T )− Tr(φQT )− Tr(µBT ).

(17)

We can obtain the following expressions by differentiating
with respect to V , Q, and B:

∂Θ

∂V
= 2(αV QQT + βV BBT + V − αXQT − βY BT )− ψ

∂Θ

∂Q
= 2(αV TV Q+ γBBTQ+ ϵBBTQD + δQXTX

− αV TX − γBRT
w − δBY TX)− φ

∂Θ

∂B
= 2(βV TV B + γQQTB + ϵQDQTB + δBY TY

− βV TY − γQRw − δQXTY )− µ
(18)

By employing the Karush-Kuhn-Tucker (KKT) conditions
for optimization, we derive the following set of equations:

(αV QQT + βV BBT + V − αXQT − βY BT ) ◦ V = 0

(αV TV Q+ γBBTQ+ ϵBBTQD + δQXTX

− αV TX − γBRT
w − δBY TX) ◦Q = 0

(βV TV B + γQQTB + ϵQDQTB + δBY TY

− βV TY − γQRw − δQXTY ) ◦B = 0
(19)

Dataset #Training set #Test set #Features #Labels #Distinct #Domain
Arts 2000 3000 462 26 321 ± 139 Web text
Business 2000 3000 438 30 321 ± 139 Web text
Education 2000 3000 550 33 321 ± 139 Web text
Health 2000 3000 612 32 321 ± 139 Web text
Yeast 1500 917 103 14 198 Biology
Flags 129 65 19 7 54 Image
Emotions 391 202 72 6 27 Music

Table 1: Elaborated information regarding the experimental datasets.

In the case of multiple variables with constraints on each
variable, we alternately update each variable to ensure that
each optimization step adheres to the constraint conditions.
We take the partial derivatives with respect to V , Q, and B
respectively.

V ← V ⊙ αXQT + βY BT

αV QQT + βV BBT + V
(20)

Q← Q⊙ αV TX + γBRT
w + δBY TX

αV TV Q+ γBBTQ+ ϵBBTQD + δQXTX
(21)

B ← B ⊙ βV TY + γQRw + δQXTY

βV TV B + γQQTB + ϵQDQTB + δBY TY
(22)

After obtaining each parameter of the objective function,
we can rank all features of X in descending order based on
the values of ∥(Q⊤B)i∥2 (for i = 1, . . . , d).

5 Experiments
5.1 Experimental Setup
Datasets. To validate the effectiveness of the proposed
method under complex relationships, our experimental evalu-
ation employs multi-label datasets from the MULAN library
[Tsoumakas et al., 2011], including the web text datasets
Arts, Business, Education, and Health. Additionally, the
datasets encompass the Emotions dataset for music genres,
the Flags dataset for image data, and the Yeast dataset for
biological data. The Arts, Business, Education, and Health
datasets feature a large number of distinct label combinations,
reflecting complex underlying relationships with the features.
Meanwhile, the Emotions, Flags, and Yeast datasets highlight
characteristics from different domains. Table 1 summarizes
the characteristics of the datasets used in the experiments.

Comparing Methods. We compare a broad and represen-
tative set of multi-label feature selection methods: (1) Sta-
tistical methods: PPT+MI [Doquire and Verleysen, 2011]
and PPT+CHI [Read, 2008], which perform feature selec-
tion based on mutual information and χ2 statistics, respec-
tively; (2) Latent representation learning: LRDG [Zhang
et al., 2024], which incorporates dynamic graph constraints;
(3) Label relevance-based methods: MIFS [Jian et al.,
2016], which selects features in a low-dimensional space, and
LRFS [Zhang et al., 2019], which leverages conditional mu-
tual information to capture label relationships; (4) Sparse
constraint-based methods: RALM-FS [Cai et al., 2013],
which employs the l2,0-norm for sparse solutions; (5) Latent
shared structure-based methods: SSFS [Gao et al., 2023],
which models the shared latent structure between features and
labels.
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Dataset GRW-SCMF PPT+MI PPT+CHI MIFS LRFS RALM-FS SSFS LRDG

Micro-F1

Flags 0.7403±0.010 0.6646±0.040 0.6632±0.038 0.7225±0.050 0.6659±0.041 0.6315±0.048 0.6520±0.034 0.7040±0.047
Emotions 0.5833±0.066 0.3442±0.175 0.2730±0.138 0.0684±0.059 0.2257±0.185 0.0082±0.030 0.4215±0.117 0.3223±0.147
Yeast 0.5900±0.028 0.5568±0.028 0.5622±0.032 0.5659±0.028 0.5523±0.030 0.5590±0.029 0.5395±0.033 0.5677±0.038
Arts 0.2823±0.061 0.0904±0.053 0.0981±0.055 0.1391±0.078 0.1041±0.045 0.1018±0.061 0.1878±0.092 0.0584±0.024
Business 0.6986±0.011 0.6729±0.004 0.6725±0.004 0.6835±0.008 0.6796±0.005 0.6696±0.001 0.6817±0.010 0.6723±0.005
Education 0.3135±0.060 0.1237±0.083 0.1199±0.085 0.0733±0.059 0.1495±0.081 0.1934±0.056 0.2500±0.084 0.2283±0.086
Health 0.5549±0.033 0.4017±0.074 0.3993±0.075 0.4681±0.080 0.4754±0.037 0.5157±0.044 0.4999±0.102 0.4419±0.065

Macro-F1

Flags 0.5992±0.015 0.5135±0.037 0.5174±0.046 0.5697±0.100 0.5106±0.044 0.4872±0.044 0.4987±0.048 0.5486±0.089
Emotions 0.5213±0.068 0.2825±0.145 0.1925±0.118 0.0409±0.037 0.1660±0.155 0.0051±0.018 0.2521±0.070 0.2798±0.142
Yeast 0.2830±0.038 0.2337±0.038 0.2435±0.046 0.2511±0.039 0.2280±0.045 0.2397±0.042 0.2084±0.044 0.2504±0.050
Arts 0.1162±0.030 0.0373±0.022 0.0397±0.023 0.0550±0.034 0.0433±0.019 0.0385±0.026 0.0790±0.038 0.0222±0.009
Business 0.1086±0.026 0.0385±0.008 0.0395±0.008 0.0564±0.011 0.0547±0.007 0.0320±0.001 0.0546±0.014 0.0424±0.010
Education 0.0855±0.019 0.0342±0.025 0.0345±0.026 0.0195±0.017 0.0485±0.028 0.0525±0.014 0.0647±0.020 0.0632±0.027
Health 0.1670±0.042 0.1023±0.044 0.1039±0.043 0.1181±0.046 0.1454±0.038 0.1592±0.042 0.1658±0.063 0.1038±0.055

Table 2: The classification performance of all methodologies, evaluated using the SVM classifier, is provided in terms of Micro-F1 and
Macro-F1 (mean±std).

Evaluating Methods. Analogous to method [Hu et al.,
2020], we select the top 20% of ranked features from each
dataset, with a step size of 1% (for the Flags dataset, all fea-
tures were used as it only has 19 features). Three commonly
used classifiers were employed: Linear SVM, k-Nearest
Neighbors (k=3), and MLkNN (k=10). Specifically, both the
Linear SVM and kNN classifiers provided Micro-F1 and
Macro-F1 scores, while the MLkNN classifier yields Ham-
ming Loss (HL) and Zero-One Loss (ZOL) [Kou et al., 2023;
Li et al., 2023].

Parameter Selection. In this method, we employ Bayesian
optimization to determine the optimal combination of param-
eters. The search range for the regularization parameters is
set to {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. For the random walk
method, the range for nwalks is set to {100, 1000, 10000}, the
range for walk length is set to {10, 20, 30}, and the ranges
for jump prob and decay factor are both set to {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

5.2 Experimental Results
Feature Selection Performance. We selected seven bench-
mark multi-label datasets for our experiments and compared
our method with seven state-of-the-art multi-label feature se-
lection methods. The experimental results are presented in
the tables, where our method outperforms the others. In Ta-
bles 2 and 3, the best-performing method for each dataset
is highlighted in bold. Clearly, our method is not limited
to any specific type of dataset and demonstrates outstand-
ing performance across image, music, text, and biological
datasets. Except for the Macro-F1 score of the 3NN classifier
on the Health dataset, where our method slightly underper-
forms compared to the RALM-FS method, our method out-
performs the seven other methods in all other scenarios. In
Figure 3, we present the performance of different methods on
a specific dataset. From the early stages, the proposed method
demonstrates its ability to select highly discriminative fea-

(a) SVM Macro-F1 (b) SVM Micro-F1

(c) MLkNN HL (d) MLkNN ZOL

Figure 3: Eight methods on Arts.

(a) α (b) β (c) γ

(d) δ (e) ϵ

Figure 4: Parameter sensitivity studies on the Arts dataset.
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Dataset GRW-SCMF PPT+MI PPT+CHI MIFS LRFS RALM-FS SSFS LRDG

Micro-F1

Flags 0.6871±0.012 0.6150±0.011 0.6154±0.011 0.6615±0.030 0.6157±0.018 0.6057±0.012 0.6133±0.014 0.6632±0.037
Emotions 0.5977±0.061 0.5324±0.038 0.5276±0.049 0.4877±0.074 0.4771±0.032 0.5492±0.075 0.3701±0.048 0.4452±0.069
Yeast 0.5725±0.027 0.5494±0.025 0.5477±0.023 0.5547±0.021 0.5406±0.027 0.5477±0.024 0.3131±0.132 0.5553±0.032
Arts 0.2856±0.023 0.1812±0.037 0.1870±0.034 0.2016±0.052 0.1963±0.027 0.1824±0.044 0.2300±0.049 0.1272±0.040
Business 0.6745±0.011 0.6515±0.023 0.6556±0.023 0.6605±0.066 0.6700±0.009 0.6300±0.077 0.6626±0.020 0.6598±0.015
Education 0.3122±0.027 0.2301±0.043 0.2274±0.043 0.1827±0.055 0.2431±0.046 0.2605±0.051 0.2856±0.043 0.2769±0.054
Health 0.4878±0.012 0.3905±0.044 0.3870±0.045 0.4350±0.071 0.4365±0.020 0.4739±0.059 0.4537±0.052 0.4256±0.080

Macro-F1

Flags 0.5782±0.011 0.4480±0.011 0.4493±0.011 0.5265±0.078 0.4531±0.022 0.4386±0.011 0.4504±0.020 0.5179±0.069
Emotions 0.5824±0.064 0.5143±0.040 0.4997±0.051 0.4746±0.075 0.4551±0.030 0.5355±0.076 0.1751±0.028 0.4274±0.072
Yeast 0.3718±0.030 0.3404±0.027 0.3376±0.025 0.3407±0.022 0.3287±0.028 0.3421±0.025 0.1380±0.049 0.3287±0.059
Arts 0.1261±0.027 0.0879±0.022 0.0912±0.022 0.0951±0.034 0.1006±0.025 0.0714±0.025 0.1186±0.035 0.0534±0.016
Business 0.1146±0.022 0.0810±0.019 0.0785±0.015 0.1075±0.023 0.0958±0.017 0.0654±0.018 0.0985±0.025 0.0931±0.026
Education 0.1002±0.015 0.0816±0.019 0.0829±0.022 0.0426±0.018 0.0870±0.020 0.0838±0.023 0.0959±0.020 0.0865±0.029
Health 0.1703±0.024 0.1329±0.029 0.1327±0.027 0.1570±0.041 0.1611±0.023 0.1859±0.032 0.1738±0.037 0.1302±0.053

Table 3: The classification performance of all methodologies, assessed using the 3NN classifier, is presented in terms of Micro-F1 and Macro-
F1 (mean±std).

RW FLA Emotions Yeast Arts

✓ 0.5532 0.5808 0.2820
✓ 0.5027 0.5846 0.2084
✓ ✓ 0.5833 0.5900 0.2823

Table 4: Ablation experimental results.

tures. The outstanding results in HL and ZOL metrics validate
its effectiveness in capturing both direct and indirect relation-
ships between features and labels. Furthermore, the superior
performance in Macro-F1 and Micro-F1 scores clearly high-
lights the efficacy of low-dimensional alignment.

Parameter Analysis. In our proposed method, there exist
five weight parameters, α , β , γ , δ and ϵ, that influence
performance outcomes. The Figure 4 illustrates how these
five parameters affect the Micro-F1 scores computed using
SVM on the Arts dataset. We initially divided the dataset
into seven equal parts and then individually adjusted each
parameter while keeping the other parameters fixed at 0.5
[Jian et al., 2018], conducting a grid search over a predefined
range. It is evident that the results exhibit an upward trend
and become increasingly stable as the number of selected fea-
tures increases. However, due to different parameter config-
urations, slight variations may occur under the same number
of selected features, leading to minor discrepancies in the re-
sults. Therefore, we can infer that our method demonstrates
stability, provided there is a sufficiently large number of in-
stances.

Ablation Study. To evaluate the effectiveness of the newly
introduced components, we conducted ablation experiments
on the Emotions, Yeast, and Arts datasets, considering var-
ious combinations of these components, as shown in Table
4. In these experiments, the random walk component (RW)
captures implicit indirect relationships through random walk,

(a) Arts (b) Business

Figure 5: Convergence curves on Arts and Business datasets.

while the feature-label alignment component (FLA) aligns
features and labels in a low-dimensional common space.
The results demonstrate that removing either component ad-
versely affects the SVM’s Micro-F1 performance, underscor-
ing the importance of both introduced components. There-
fore, it can be inferred that the contribution of each compo-
nent is crucial for achieving optimal model performance.

Convergence. Figure 5 illustrates the convergence of our
method on the Arts and Business datasets. The chosen stop-
ping criterion is: |zt − zt−1| < c or

∣∣∣ zt−zt−1

zt−1

∣∣∣ < c. The X-
axis represents the number of iterations, and the Y-axis is sim-
ilar to the stopping criterion but uses absolute values. It is ev-
ident from the figure that the optimization process converges
quickly.

6 Conclusion
We propose a random walk method based on a feature-label
composite graph and incorporate it into a multi-label fea-
ture selection method. Through random walks on the feature-
label composite graph, we capture direct and indirect corre-
lation between features and labels. Additionally, we lever-
age low-dimensional representation coefficients to align the
low-dimensional variable space while preserving the mani-
fold structure. Experimental results demonstrate the effective-
ness and robustness of our method.
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