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Abstract

Experience replay is widely used to improve learn-
ing efficiency in reinforcement learning by lever-
aging past experiences. However, existing ex-
perience replay methods, whether based on uni-
form or prioritized sampling, often suffer from
low efficiency, particularly in real-world scenarios
with high-dimensional state spaces. To address
this limitation, we propose a novel approach, Effi-
cient Diversity-based Experience Replay (EDER).
EDER employs a determinantal point process to
model the diversity between samples and priori-
tizes replay based on the diversity between sam-
ples. To further enhance learning efficiency, we
incorporate Cholesky decomposition for handling
large state spaces in realistic environments. Ad-
ditionally, rejection sampling is applied to select
samples with higher diversity, thereby improving
overall learning efficacy. Extensive experiments are
conducted on robotic manipulation tasks in Mu-
JoCo, Atari games, and realistic indoor environ-
ments in Habitat. The results demonstrate that our
approach not only significantly improves learning
efficiency but also achieves superior performance
in high-dimensional, realistic environments.

1 Introduction

In recent years, Deep Reinforcement Learning [Frangois-
Lavet et al., 2018; Wang er al., 2024a)] has surged in pop-
ularity, achieving remarkable success in complex decision-
making tasks. DRL has been successfully applied to
games [Schrittwieser et al., 2020; Silver ef al., 2017], robotic
control [Andrychowicz et al., 2020; Levine et al., 2016],
autonomous driving scenarios including traffic light con-
trol [Yang et al., 2023b; Yang er al., 2023a; Yang ef al., 2024],
and other domains, demonstrating its powerful learning and
decision-making capabilities.

However, DRL still faces significant challenges in practi-
cal applications, particularly in handling sparse reward sig-
nals [Hare, 2019], high-dimensional state spaces [Ibrahimi
et al., 2012], and low sample efficiency [Yarats et al., 2021;
Wang et al., 2024b]. Sparse reward signals make it diffi-
cult for agents to learn effective policies from limited positive

Replay Buffer

Figure 1: Sample distribution comparison of the replay buffer. Left:
Uniform sampling results in an imbalanced distribution, with some
data types overrepresented and others underrepresented. Right: Our
method achieves a more balanced and diverse selection of samples,
enhancing overall diversity and improving learning efficiency.

feedback, resulting in slow and inefficient learning processes.
Additionally, high-dimensional state spaces further compli-
cate the learning process and increase computational burdens,
making existing methods inefficient in large-scale and com-
plex environments.

To address these issues, Experience Replay (ER) has been
widely adopted as a key mechanism. ER improves sam-
ple efficiency and stabilizes the learning process by stor-
ing the agents’ past experiences and randomly sampling
them for training. Despite the improvements ER offers in
sample efficiency, existing methods still suffer from inef-
ficiency and suboptimal performance in high-dimensional
state spaces. Recent studies [Andrychowicz et al., 2020;
Levine et al., 2016; Todorov et al., 2012; Jiang et al., 2024;
Zhao and Tresp, 2018; Fang et al., 2019] have focused on
enhancing ER’s sampling strategies to improve their appli-
cability and efficiency in complex environments. For in-
stance, Hindsight Experience Replay (HER) [Andrychowicz
et al., 2017] generates more positive feedback samples to
enhance learning efficiency; Prioritized Experience Replay
(PER) [Schaul er al., 2015] assigns priorities to samples based
on their temporal difference (TD) errors; and Topological Ex-
perience Replay (TER) [Hong et al., 2022] builds a trajectory
graph and performs breadth-first updates from terminal states.
Large Batch Experience Replay (LaBER) [Lahire er al.,
2022] improves sample efficiency by sampling large batches
and performing focused updates. The Reducible Loss (ReLo)
method [Sujit et al.,, 2023] ranks samples based on their
learnability, measured by consistent loss reduction. How-
ever, these approaches generally struggle to efficiently select
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valuable samples in high-dimensional state spaces, leading to
persistent issues of low efficiency and high-dimensional state
space challenges in DRL.

To tackle these challenges, we propose a novel Experi-
ence Replay framework, Efficient Diversity-based Experi-
ence Replay (EDER). EDER utilizes Determinantal Point
Processes (DPP) [Kulesza et al., 2012] to model the diver-
sity among samples and determines replay priorities based
on this diversity, effectively avoiding the redundant sam-
pling of ineffective data points. Furthermore, to han-
dle high-dimensional state spaces in real-world environ-
ments, EDER employs Cholesky decomposition [Krish-
namoorthy and Menon, 2013], significantly reducing compu-
tational complexity. Combined with rejection sampling tech-
niques [Neal, 2003; Azadi et al., 2018], EDER selects sam-
ples with higher diversity for training, thereby further enhanc-
ing overall learning efficiency.

Our main contributions are as follows. Firstly, we propose
the Efficient Diversity-based Experience Replay (EDER)
framework, which prioritizes sample diversity and signif-
icantly enhances experience replay (ER) efficiency, espe-
cially in high-dimensional state spaces and environments
with sparse rewards. Secondly, we introduce Cholesky de-
composition and rejection sampling to effectively address
computational bottlenecks in large state spaces and optimize
the ER mechanism by selecting more diverse samples. Lastly,
we conduct extensive experimental validations across multi-
ple complex environments, including Habitat [Savva et al.,
2019], Atari games [Mnih, 2013], and MuJoCo [Todorov
et al., 2012]. The results demonstrate that EDER not only
significantly improves learning efficiency but also achieves
superior performance in high-dimensional, realistic environ-
ments, thereby validating its effectiveness and adaptability in
various complex settings.

2 Preliminaries

Reinforcement Learning. Reinforcement Learning (RL) is a
learning paradigm where agents autonomously learn to make
sequential decisions by interacting with an environment, with
the goal of maximizing cumulative rewards. The problem is
typically formalized as a Markov Decision Process (MDP),
which is defined by a tuple (S, A, P, R,~), where S repre-
sents the state space, A represents the action space, P defines
the state transition probabilities, R denotes the reward func-
tion, and ~y is the discount factor. At each discrete time step
t, the environment is in a state s;, and the agent selects an
action a; according to a policy 7. The environment then tran-
sitions to a new state s;4.1 based on the transition probability
P(st41 | st,a¢), and the agent receives a scalar reward 74 1.
The agent’s objective is to learn an optimal policy 7* that
maximizes the expected cumulative discounted reward start-
ing from any initial state s;:

o0
Vﬂ(St) =E Z'ykrt+k+1 | St =S8, ,
k=0
where V™ (s;) is the value function that estimates the ex-
pected return when following policy 7 from state s;.

Experience Replay. Experience replay is essential in deep

reinforcement learning, enabling agents to store and revisit
past experiences via a replay buffer. This mechanism miti-
gates the issue of correlated data in online learning and im-
proves sample efficiency. Two prominent techniques that en-
hance experience replay are Prioritized Experience Replay
(PER) and Hindsight Experience Replay (HER): PER im-
proves replay efficiency by prioritizing experiences based on
their learning value, typically measured by the temporal dif-
ference (TD) error 6; = 141 + YV (st41) — V(s¢), where v
is the discount factor and V' (s;) is the value function of state
s¢.In PER, an experience is assigned a priority p; = |d:| + €,
where € ensures non-zero priority. The probability P(i) of
sampling an experience is proportional to its priority:

P = P
> Pi

where « controls the degree of prioritization. By focusing on
experiences with higher TD errors, PER enhances learning
efficiency and accelerates convergence. HER addresses the
challenge of sparse rewards by augmenting the replay buffer
with re-labeled experiences, wherein failed attempts are rein-
terpreted as successes for alternative goals. Specifically, if
the agent fails to achieve the intended goal g at state s;, HER
re-labels this experience as successful for a new goal ¢/, such
as a subsequent state s;yx. The re-labeled reward function is
defined as follows:

1 if St+k = g’,
T = .
bt 0 otherwise.

This approach increases the number of successful experi-
ences, thereby enhancing learning efficiency in environments
with sparse rewards by effectively increasing the density of
positive samples.

Determinantal Point Processes. Determinantal Point Pro-
cesses (DPPs) are widely used probabilistic models that cap-
ture diversity within a set of points. For a discrete set Y =
{x1,%2,...,2N}, a DPP defines a probability measure over
all possible subsets of Y, where the probability of selecting a
subset Y C Y is proportional to the determinant of a positive
semi-definite kernel matrix L corresponding to Y. Specifi-
cally, the probability of sampling a subset Y is:

P(Y) _ det(Ly) 7
det(L + I)

where Ly is the principal submatrix of L indexed by the el-
ements in Y, and [ is the identity matrix. The determinant
det(Ly ) measures the diversity of Y by the volume spanned
by the vectors associated with Y. In practice, the kernel ma-
trix L is often the Gram matrix L. = X7 X, where each
column of X represents a feature vector of an element in
Y. The geometric interpretation of DPPs implies that sub-
sets with more orthogonal feature vectors—indicating higher
diversity—are more likely to be selected. This makes DPP
effective for sampling diverse trajectories and goals in rein-
forcement learning, where diversity in the experience buffer
is crucial for robust learning.
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Figure 2: In the EDER framework, we leverage the Determinantal Point Process (DPP) to compute diversity scores for trajectories via
Cholesky decomposition, enhancing the sampling process. Specifically, our method first uses these diversity scores to select the top m most
diverse trajectories. Next, we apply a rejection sampling technique to choose a subset of these trajectories for policy updates. The resulting
diverse samples facilitate more efficient learning, particularly in high-dimensional environments.

3 Methodology

In this study, we propose a novel approach named Efficient
Diversity-based Experience Replay (EDER), which enhances
exploration and sample efficiency in reinforcement learning
(RL) through a diversity-based trajectory selection module,
which selects transitions from each trajectory based on their
diversity rankings. The EDER algorithm leverages Determi-
nantal Point Processes (DPPs) to evaluate the diversity of tra-
jectories, enabling the exploration of a broader range of in-
formative data. Following exploration, high-quality data is
replayed to improve training efficiency. Furthermore, we em-
ploy Cholesky decomposition and rejection sampling to en-
hance computational efficiency, particularly in realistic envi-
ronments with high-dimensional state spaces.

Data Preprocessing. We define the state transition dataset
T as a collection of state transitions accumulated during
the agent’s interaction with the environment, represented as:
T = {{s0,81},{s2,83},...,{s7-1,s7}} where each ele-
ment {s;, $;41} represents a transition from state s; to state
Si+1. In our framework, we partition 7" into multiple partial
trajectories of length b, denoted as 7;, each covering a state
transition from ¢ = jstot = js + b — 1, where s represents
the sliding step length. The trajectories are quantified by slid-
ing the window of length s = b, where the meticulous seg-
mentation allows us to analyze and understand the behavioral
patterns of intelligent agents at different stages. The specific
formula is as follows:
_ 1}

Here, 7; denotes the partial trajectory of group j covering
the state transition from s;; to s;545—1. Each 7; is a sliding
window of length b, demonstrating the behavior of the agent
and its environmental adaptation during that time period.

T

T = {{Sjb+i}?_01 ‘.7: 0717"‘7 b (1)

3.1 Diversity-Based Trajectory Selection Module

The objective of this module is to select diverse trajectories
from the replay buffer, enhancing learning by utilizing a wide
range of experiences. A set of summary timelines describing
the key trajectory events is generated from the entire collec-
tion of trajectories, which involves the following steps:

Trajectory Segmentation. The entire sequence of state tran-
sitions during an interaction, denoted as 7, is segmented into
several partial trajectories 7; of length b. Each segment 7;
covers transitions from state s,, to s,+p—1, allowing for de-
tailed capture of dynamics between state transitions. For clar-
ity, we set a sliding window of b = 2 in this part, while other
values are explored in the ablation studies. Under this setting,
a trajectory 7 can be divided into IV,, partial segments.

T = {{50751}7{52a33}a{34755}7--~7{5T—175T}}
N—— N—— N—— N—_——
T1 T2 T3 TNP

Diversity Assessment.To effectively evaluate the diversity of
each partial trajectory 7;, we adopt the theoretical framework
of Determinantal Point Processes(DPPs). Specifically, the di-
versity metric d,, for a partial trajectory 7; is defined as the
determinant of its corresponding kernel matrix:

d., = det(L,,) )

Intuitively, the determinant quantifies the n-dimensional vol-
ume spanned by the embedded state transitions in 7;, assign-
ing higher values to sets of transitions that are more linearly
orthogonal and thus more diverse. Here, LT]. is the kernel ma-
trix constructed from the state transitions within trajectory 7;,
defined as:

L., =M™M 3)

The columns of matrix M are the ¢s-normalized vector rep-
resentations 5 of each state s in trajectory 7;.
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Theorem 1 (Correlation between Determinant and Diver-
sity). Let M € R be a matrix whose columns are the
la-normalized state vectors § in trajectory ;. The determi-
nant det(L-,) of the kernel matrix L, = M™ M reaches its
maximum value when the state vectors are mutually orthogo-
nal, indicating the highest diversity of the trajectory.

Proof in Appendix A. The choice of Determinantal Point
Processes is motivated by the ability of det(L,,) to effec-
tively measure the diversity of state vectors within trajectory
7;. Based on Theorem 1, a larger determinant indicates higher
diversity of the trajectory.

The determinant det(L,,) = det(MT M) is equal to the
square of the volume of the parallelepiped spanned by the
columns of matrix M. When the vectors are mutually orthog-
onal, the volume and thus the determinant reaches its maxi-
mum value, reflecting the highest independence and diversity
of the state vectors. Conversely, if the vectors are linearly
dependent, both the volume and the determinant decrease, in-
dicating reduced diversity. Additionally, in DPPs, the kernel
matrix LTJ. captures the similarities between state vectors, in-
herently favoring the selection of diverse and minimally re-
dundant subsets. Therefore, DPPs are an ideal choice for
evaluating the diversity of trajectories in reinforcement learn-
ing [Kunaver and Pozrl, 2017]. A larger d., indicates that
the state vectors are more uniformly distributed in the fea-
ture space with lower similarity, reflecting higher diversity.
This is crucial for policy training in reinforcement learning,
as diversified data facilitates better policy generalization and
adaptation to various environmental conditions.

Sampling Strategy. The total diversity of a trajectory 7, de-
noted as d,, is defined as the sum of the diversities of all its
constituent partial trajectories:

2

dT N de 4)
1

<.
Il

Equation (4) provides a comprehensive measure, effectively
reflecting the overall diversity of the trajectory. We employ a
non-uniform sampling strategy to prioritize trajectories with
higher diversity:

d.,
plri) = —r—, ©)
7 SN do,

where NN, is the total number of trajectories in the replay
buffer, this strategy enhances learning efficiency by increas-
ing the likelihood of selecting highly diverse trajectories,
thereby enabling the agent to effectively learn and adapt to
various environmental conditions.

Although the determinant effectively measures diversity,
its direct computation in high-dimensional state spaces is
computationally intensive, especially for large trajectory
lengths b. Therefore, we employ Cholesky decomposition
and rejection sampling to optimize computation speed in the
following section. The diversity metric d; quantifies the in-
dependence and diversity of state vectors within trajectory 7;
using the determinant.

3.2 Improving Computational Efficiency

Scaling to high-dimensional environments is crucial for the
applicability of deep reinforcement learning algorithms. Tra-
ditional approaches often fail due to computational inef-
ficiency, especially when dealing with large state spaces
where calculations become difficult and time-consuming.
Computing Determinantal Point Processes (DPPs) in high-
dimensional state spaces is computationally intensive due to
the complexity of calculating large kernel matrices. This
challenge is particularly acute in extensive state spaces where
traditional methods struggle to maintain efficiency. To ad-
dress this issue, we propose an optimized approach that inte-
grates Cholesky decomposition and rejection sampling into
our method. This approach reduces computational costs
while preserving the effectiveness of DPPs with theoretical
guarantees, making them applicable to complex reinforce-
ment learning scenarios.

Cholesky Decomposition. To simplify the determinant cal-
culation of the kernel matrix, a key operation in DPP, we em-
ploy Cholesky decomposition. For a window length b, given
state vectors 1, So, ..., S8, we construct the matrix M as
M = [31,52,...,5)]. The kernel matrix L, is then formed
as Equation (3). To efficiently compute the determinant of
L., we apply Cholesky decomposition, which decomposes
L;, into a product of a lower triangular matrix Lc and its

T.
transpose L :

L. =LcL¢ (6)
The determinant is then computed as the product of the
squares of the diagonal elements of L

b
det(L,) =[] 2 (7)
=1

Here, [;; denotes the i-th diagonal element. With Cholesky
decomposition, the time complexity of determinant computa-
tion for each segment is reduced from O(n?) to O(n?).

Rejection Sampling. Numerous trajectories are utilized in
training, resulting in high sampling inefficiency. To enhance
sampling efficiency, we introduce rejection sampling. This
method effectively filters trajectory segments before inser-
tion into the replay buffer, which is particularly useful in
high-dimensional state spaces where storing redundant seg-
ments incurs significant computational overhead. By priori-
tizing segments with higher diversity scores, rejection sam-
pling minimizes the retention of less informative segments.
Consequently, computational resources are focused on the
most diverse and relevant experiences, ensuring that the re-
play buffer contains the most valuable transitions.

The rejection sampling process is detailed as follows: First,
for each trajectory segment 7;, we compute its diversity score
Q; using Equation (2) and (7):

b
Qj = dr, =det(L,) =[] 12 (8)

i=1
Next, we determine a normalization constant M, defined as:
M = max(Q) )
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This ensures that for all trajectory segments 7;, the accep-

tance probability o = % remains in the valid range [0, 1].

During the rejection sampling process, we uniformly select a
candidate segment 7’ from the current batch of generated seg-
ments. Then we draw a uniformly distributed random number
u ~ U(0,1). If the sampled number satisfies:

u<a=— (10)

we accept the candidate trajectory segment 7’; otherwise, we
reject it and resample. This process yields a set of diverse
trajectory segments, which are then inserted into the replay
buffer. Subsequently, training batches are sampled from the
buffer according to Equation (5).

3.3 Time Complexity Analysis

Theorem 2. The time complexity of the EDER algorithm is
O(Nbd + Nb® + N log m +m) without employing Cholesky
decomposition and rejection sampling, and it is reduced to
O(Nbd + Nb? + N logm + m) after integrating these opti-
mizations. Here, N denotes the number of state transitions, b
the segment length, d the dimensionality of the state vectors,
and m the number of top trajectories selected.

The proof is in Appendix A. Based on Theorem 2, the in-
tegration of Cholesky decomposition and rejection sampling
significantly reduces the overall computational complexity of
the EDER algorithm, especially when dealing with large seg-
ment lengths b. This improvement makes the EDER algo-
rithm more efficient and scalable for high-dimensional rein-
forcement learning tasks, enhancing its applicability in com-
plex environments.

4 Experiments

Our experiments aim to rigorously evaluate the performance
of the proposed Efficient Diversity-based Experience Replay
(EDER) method across multiple environments, focusing on
its effectiveness compared to established baseline methods.
The experiments are conducted in Mujoco, Atari, and real-
life Habitat environments, each selected to highlight different
aspects of EDER’s capabilities. Detailed environment set-
tings are provided in Appendix C. Details are available at
https://arxiv.org/abs/2410.20487.

Baselines. We compare our method against the follow-
ing baselines. DDPG [Lillicrap et al., 2019]: a deep rein-
forcement learning algorithm for continuous action spaces,
combining deterministic policy gradients with Q-learning.
DQN [Mnih et al., 2013]: a widely used algorithm for dis-
crete action spaces, approximating the Q-value function with
deep neural networks. HER [Andrychowicz er al., 20171
Hindsight Experience Replay enables learning from alterna-
tive goals that could have been achieved, improving efficiency
in sparse reward settings. PER [Schaul et al., 2015]: Prior-
itized Experience Replay enhances learning by prioritizing
important transitions. TER [Hong er al., 2022]: Topological
Experience Replay builds a graph from experience trajecto-
ries to track predecessors, then performs breadth-first updates
from terminal states like reverse topological sorting. LaBER
[Lahire er al., 2022]: Large Batch Experience Replay sam-
ples a large batch from the replay buffer, computes gradi-
ent norms, downsamples to a smaller batch based on priority,
and uses this mini-batch to update the policy. Relo [Sujit et
al., 2023]: Reducible Loss (ReLo) is a sample prioritization
method that ranks samples by their learnability, measured by
the consistent reduction in their loss over time.

Algorithm 1 EDER Methods Residential Office Commercial
1: Initialize: Replay buffer D, diversity score list (), seg- DDPG 9.0+25 27519 23.0+2.0
ment length b DDPG+HER 35028 425+2.1 420+£23
2: while not converged do DDPG+PER 23.0+£3.0 450+23 34524
3 Initialize state s DDPG+TER 480£2.1 47.0£15  545%35
4 fort = 1to T do DDPG+LaBER 52.0+£3.0 54.0+£2.3 48.5+2.1
S 1_ . . li 9 DDPG+Relo 55013 53.0x29 59.5+1.8
> elect action a, via policy (s, 0) DDPG+EDER w/oRS.  58.0+3.1 508+21  555%33
6: Execute a;, observe s;1, receive ¢ DDPG+EDER w/o C.D.  60.1+2.6 68.0+39  585+2.7
7 Store (s, at, ¢, $t41) in D DDPG+EDER 64.0+33 745+24 68425
8 end for
9 for each trajectory 7 in D do Table 1: Success rates (%) across environments in HM3D.
10: Segment 7 into sub-trajectories 7; . . . .
11: Compute diversity score (); using det(L,;) via 4.1 High-dimensional Environment

Cholesky Decomposition
12: Append Q; to @
13:  end for
14:  Set M = max(Q)
15:  for each Q); in Q) do

> Equation (7)

16: Calculate acceptance o = %
17: Accept corresponding 7; if u < «, else discard
18:  end for

19:  Sample B ~ D using Eq. (5)
20:  Update 6 using B
21: end while

We utilize the Al Habitat platform to evaluate EDER’s scal-
ability and effectiveness in vision-based navigation tasks.
Specifically, the agent is randomly initialized in the environ-
ment and relies solely on its sensory inputs for navigation.
With no prior knowledge of the environment map, the agent
must autonomously explore the scene and locate the target
object. The success metric is defined as whether the agent
successfully reaches the target object. These tasks are con-
ducted in photorealistic 3D environments, where the high-
dimensional observation space poses significant challenges
for efficient exploration. We evaluate EDER in three envi-
ronments from the Habitat-Matterport 3D Research Dataset
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Method Alien Asterix BeamR. Breakout CrazyCli. Demo. H.E.R.O. Krull KungFu. MsPac.
Random 227.8 210.0 363.9 1.7 10,780 152.1 1,027.0 1,598.3 258.5 307.3
DQN 3,069.0 6,012.0 6,846.0 401.2 14,103.3 9,711.0 19,9503 3,805.2 23,270.3 27311.0
DQN+PER 4,204.2 31,527.3 23,384.0 3739 141,161.0 71,846.7 23,038.1 9,728.6 39,581.2 6,519.1
DQN+TER 4,298.5 24,798.5 24,432.1 420.3 142,321.5 73,3462 21,543.0 9,643.1 39,8329 6,587.0
DQN+LaBER 4,365.2 39,172.1 23,5434 462.2 145,672.2 75,128.0 24,495.0 9,764.7 41,823.0 6,691.4
DQN+Relo 4,312.9 38,432.4 26,064.0 4925 144,875.0 75,442.1 26,5353 9,7344 41,2320 6,613.1
DQN+EDER w/o R.S. 14,2929 44,823.9 25,032.0 438.8 140,274.0 74,9244 242643 9,3744 40,387.0 6,124.1
DQN+EDER w/o C.D. 4,689.4 50,283.7 25,731.0 481.9 142,328.6 75,326.1 25,214.8 9,353.4 40,983.0 6,493.1
DQN+EDER 4,723.1 54,328.5 26,543.0 516.0 147,305.0 76,150.1 26,246.0 9,805.0 43,310.0 6,722.2
Method Enduro Freew.  Frost. Hem Jamesb. Kangar. Pong  Qbert River. ZaxxPH.
Random 0.0 0.0 65.2 1,027.0 29.0 52.0 -20.7 163.9 1,338.5 32.5
DQN 301.8 30.3 328.3 19,950.0 576.7 6,740.0 189 10,596.0 8,316.0 4,977.0
DQN+PER 2,093.0 33.7 4,380.1 23,037.7 5,148.0 16,200.0 20.6 16,256.5 14,522.3 10,469.0
DQN+TER 2,208.0 352 4,7721.3 24,3324 5,032.4 16,632.0 21.0 17,281.3 19,232.5 10,834.0
DQN+LaBER 2,165.5 31.6 49235 24,2519 5,218.2 16,321.0 21.0 17,744.6 21,368.4 12,832.0
DQN+Relo 2,272.2 37.6 48927 25232.6 5,209.8 16,820.1 21.0 19,013.2 22312.7 14,123.0
DQN+EDER w/o R.S. 2,138.0 32.0 5,1454 242142 5,121.0 16,054.2 21.0 18,421.0 21,833.1 13,233.1
DQN+EDER w/o C.D. 2,332.7 38.1 5,483.1 25,970.3 5,240.1 16,192.1 21.0 19,192.5 23,382.0 14,523.7
DQN+EDER 2,340.0 39.0 5553.0 26,246.0 5,275.0 16,644.0 21.0 19,545.0 24,425.0 14,920.0

Table 2: Comparison of Atari Game Scores. Best results are bold.

(HM3D) [Ramakrishnan erf al., 2021], representing complex,
real-world indoor spaces. Specifically, we choose a residen-
tial setting (e.g., living rooms and bedrooms), an office en-
vironment (e.g., workspaces and corridors), and a commer-
cial space (e.g., shopping centers), each featuring open ar-
eas and diverse visual elements. Target- or topology-based
approaches (e.g., HER, TER) incorporate structured global
exploration strategies in complex environments to improve
efficiency, while loss- or priority-based methods (e.g., PER,
LaBER, ReLo) focus on refining transition sampling based on
loss or priority rules. However, whether by replacing goals
or leveraging topological structures for exploration or by ad-
justing sampling mechanisms, these methods often neglect
the importance of diverse trajectories and comprehensive ex-
ploration. In contrast, EDER emphasizes leveraging diverse
trajectories to enhance exploration efficiency. As shown in
Table 1, EDER consistently achieves higher success rates
across all experimental settings in high-dimensional visual
tasks, demonstrating its effectiveness and scalability.

4.2 Atari Games

The second set of experiments evaluates EDER in discrete-
action environments using the Atari benchmark, renowned
for its challenging exploration tasks. For instance, in Alien,
the agent navigates a maze, earns points by collecting bright
spots, and loses a life upon contact with monsters. We
test EDER+DQN across various Atari games, comparing it
against standard DQN, DQN+PER, and other replay variants.
The selected games, including Kangaroo and Jamesbond, are
particularly demanding in terms of exploration. As shown in
Table 2, EDER achieve the best performance in 18/20 games.
Other methods generally fall into two categories: those that
emphasize structured global exploration and those that prior-
itize samples based on local rewards or loss values. While
effective in certain scenarios, these methods often overlook
transitions that do not immediately yield high TD errors or

rewards. In contrast, EDER explicitly incorporates diverse
trajectories into its replay mechanism, promoting enhanced
exploration and ultimately improving overall performance.
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Figure 3: Success rates between EDER and other baselines

4.3 Mujoco Tasks

We also evaluate EDER in MuJoCo environments, focusing
on continuous control tasks with sparse rewards. These tasks
are particularly challenging due to their high-dimensional
state and action spaces. We select four representative tasks
from the FetchEnv, which involves a robotic arm with 7 de-
grees of freedom, and HandEnv, featuring the 24-degree-
of-freedom Shadow Dexterous Hand: FetchPickAndPlace,
FetchPush, HandBlockRotate, and HandPenRotate. As
shown in Figure 3, EDER significantly outperforms tradi-
tional DDPG and its variants in both learning speed and suc-
cess rates. Notably, EDER achieves exceptional performance
in the Shadow Dexterous Hand task, demonstrating its ability
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to navigate complex, high-dimensional spaces. This superior
performance is attributed to EDER’s capacity to enhance ex-
ploration through diverse trajectories, resulting in more effi-
cient learning.

4.4 Ablation Studies

In our ablation studies, we evaluate the impact of Rejection
Sampling (R.S.) and Cholesky Decomposition (C.D.) on the
training efficiency of EDER. As shown in Table 3, remov-
ing R.S. reduces exploration efficiency, slows convergence,
and lowers success rates. In contrast, excluding C.D. leads
to increased instability and longer training times, ultimately
diminishing learning efficiency. Moreover, when compar-
ing training times with HER-based baselines, EDER main-
tains competitive performance, especially in more complex
tasks like PickAndPlace, demonstrating favorable trade-offs
between computational cost and performance. Additional ex-
periments varying m (the number of diverse trajectories) and
b (the trajectory length) are provided in Appendix B. Our re-
sults indicate that increasing m promotes exploration by sam-
pling more diverse trajectories, helping to avoid local optima.
However, excessive m increases computational burden with-
out proportionate performance gains, leading to slower con-
vergence. Likewise, longer segments (b) provide richer con-
text and improve exploration in temporally dependent envi-
ronments, but overly long trajectories may introduce instabil-
ity and reduce overall training efficiency.

PickAndPlace Task (Training Time in Minutes)

Method Time Method Time
DDPG + HER (Buffer) 80.7 DDPG + LaBER  93.6

DDPG + PER (sum-tree) 63.4 DDPG + Relo 107.1
DDPG + TER 91.9 DDPG + EDER 103.1

Push Task: DDPG + EDER Variants (in Minutes)

Method Time Method Time
EDER (b=10) 1243 EDER (b=T) 156.0
w/o R.S. (b=10) 173.2  w/oR.S. (b=T) 182.7
w/o C.D. (b=10) 129.2  w/o C.D. (b=T) 171.3

Table 3: Training times (in minutes) for baseline methods and EDER
variants on PickAndPlace and Push tasks. R.S.: Rejection Sam-
pling; C.D.: Cholesky Decomposition.

5 Related Work

The concept of Experience Replay (ER) was first introduced
by [Lin, 1992], where past experiences are stored in a buffer
and replayed during training to break the correlation between
sequential data, which helps mitigate the non-stationarity
in RL. [Mnih er al., 2013] later incorporated ER into the
Deep Q-Network (DQN), where the use of randomly sam-
pled batches from the replay buffer was crucial in stabiliz-
ing the learning process and led to significant advancements
in the performance of RL algorithms. Prioritized Experi-
ence Replay (PER) [Schaul et al., 2015] enhances learning
by focusing on high TD-error samples and prioritizing infor-
mative experiences. Various extensions to PER have been
proposed, such as the actor-critic-based PER [Saglam et al.,

2022], which dynamically adjusts sampling priorities to bal-
ance exploration and exploitation; Attentive PER [Sun ef al.,
2020] uses attention mechanisms to replay experiences rel-
evant to the current learning phase, enhancing training effi-
ciency. Additionally, recent studies have introduced new pri-
ority criteria to enhance PER’s effectiveness. Relo [Sujit et
al., 2023] define the learnability of transitions as a priority
criterion, prioritizing samples that consistently reduce train-
ing loss.TER [Hong et al., 2022] builds a trajectory graph
and prioritizes updates breadth-first from terminal states;
LaBER [Lahire er al., 2022] enhances efficiency by leverag-
ing large batch sampling with focused updates. FSER [Yu ef
al., 2024] combines frequency and similarity indices to prior-
itize rare and policy-aligned experiences. [Wei et al., 2021]
integrates transition revisit frequency with TD error for more
effective replay buffer prioritization. Hindsight Experience
Replay (HER) [Andrychowicz et al., 2017], offers a novel ap-
proach to handling sparse rewards by retrospectively altering
the goals of unsuccessful episodes, thereby converting fail-
ures into valuable learning experiences. HER has been inte-
grated with techniques such as curriculum learning [Fang et
al., 2019] and multi-goal learning [Zhou et al., 2019] to en-
hance the generalization and adaptability of RL agents. Addi-
tionally, Contact Energy Based Prioritization (CEBP) [Sayar
et al., 2024] prioritizes replay samples based on contact-rich
interactions, selecting the most informative experiences. Dis-
tributed ER architectures like Ape-X [Horgan et al., 2018]
and IMPALA [Espeholt et al., 2018] have scaled experience
replay across multiple actors, significantly accelerating train-
ing while maintaining efficiency. Relay Hindsight Experience
Replay [Luo et al., 2023] decomposes tasks and employs a
multi-goal network for self-guided exploration. Hybrid ap-
proaches have also been explored, such as combining PER
and HER [Zhang et al., 20171, as well as introducing adap-
tive replay strategies [Peng et al., 20191, adjusting priorities
based on learning progress. These advancements enhance the
robustness and scalability of experience replay methods, en-
abling more efficient and effective learning across a range of
reinforcement learning tasks.

6 Conclusion

In this work, we present the Efficient Diversity-based Expe-
rience Replay (EDER) framework, which prioritizes sample
diversity to significantly enhance the efficiency of experience
replay (ER), particularly in high-dimensional state spaces and
environments with sparse rewards. To address computational
bottlenecks in large state spaces, we integrate Cholesky de-
composition and rejection sampling, enabling the selection
of more diverse and representative samples while optimizing
the ER mechanism. Extensive experiments on MuJoCo, Atari
games, and Habitat demonstrate the superiority of EDER
compared to existing approaches. EDER not only substan-
tially improves learning efficiency but also delivers superior
performance in high-dimensional and realistic environments.
These results validate the effectiveness and adaptability of
EDER across a variety of complex settings.
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