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Abstract

Transformers have demonstrated remarkable per-
formance across diverse domains. The key compo-
nent of Transformers is self-attention, which learns
the relationship between any two tokens in the in-
put sequence. Recent studies have revealed that
the self-attention can be understood as a normal-
ized adjacency matrix of a graph. Notably, from
the perspective of graph signal processing (GSP),
the self-attention can be equivalently defined as a
simple graph filter, applying GSP using the value
vector as the signal. However, the self-attention is
a graph filter defined with only the first order of
the polynomial matrix, and acts as a low-pass fil-
ter preventing the effective leverage of various fre-
quency information. Consequently, existing self-
attention mechanisms are designed in a rather sim-
plified manner. Therefore, we propose a novel
method, called Attentive Graph Filter (AGF), in-
terpreting the self-attention as learning the graph
filter in the singular value domain from the per-
spective of graph signal processing for directed
graphs with the linear complexity w.r.t. the input
length. In our experiments, we demonstrate that
AGF achieves state-of-the-art performance on vari-
ous tasks, including Long Range Arena benchmark
and time series classification. Code is available at
https://github.com/hyowonwi/agf.

1 Introduction

Transformers [Vaswani et al., 2017] have achieved great suc-
cess in many fields, including computer vision [Touvron et
al., 2021; Liu et al., 2021], time series analysis [Li et al.,
2019; Wu er al., 2021; Zhou et al., 2021], natural language
processing [Nangia and Bowman, 2018; Maas er al., 2011;
Radford er al., 2019; Devlin et al., 2019], and many other
works [Wang et al., 2020; Shin et al., 2024; Kim et al., 2024;
Yu er al, 2024]. Many researchers agree that the self-
attention mechanism plays a major role in the powerful per-
formance of Transformers. The self-attention mechanism
employs a dot-product operation to calculate the similarity
between any two tokens of the input sequence, allowing all
other tokens to be attended when updating one token.
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Figure 1: Illustration of the vanilla self-attention in Transformers
and graph signal processing: (a) shows the softmax operation after
the dot-product of query and key vectors, followed by the multipli-
cation with the value vector; (b) and (c) show graph signal process-
ing in undirected and directed graphs, respectively. For undirected
graphs, the signal is filtered in the eigenvalue domain, while for di-
rected graphs, the signal is filtered in the singular value domain.

Linear Transformers approximate the self-attention.
However, the self-attention requires quadratic complexity
over the input length to calculate the cosine similarity be-
tween any two tokens. This makes the self-attention diffi-
cult to apply to inputs with long lengths. In order to pro-
cess long sequences, therefore, reducing the complexity of
self-attention has become a top-priority goal, leading to the
proposal of approximating the self-attention with linear com-
plexity [Zaheer et al., 2020; Beltagy er al., 2020; Wang et al.,
2020; Katharopoulos et al., 2020; Choromanski et al., 2020;
Shen et al., 2021; Xiong et al., 2021; Qin et al., 2022;
Chen er al., 2023]. However, existing self-attention with lin-
ear complexity aims to create a matrix that is close to the
original self-attention map A.
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The self-attention is a low-pass filter (see Thm. 1). The
self-attention map is a matrix that represents the relation-
ship between every pair of tokens as scores normalized to
probability by softmax. Considering each token as a node
and the attention score as an edge weight, self-attention is
considered as a normalized adjacency matrix from the per-
spective of the graph [Shi er al., 2022; Wang et al., 2022;
Choi et al., 2024]. Therefore, the self-attention plays an im-
portant role in the message passing scheme by determining
which nodes to exchange information with. Given that the
self-attention operates as a normalized adjacency matrix, it is
intuitively aligned with graph signal processing (GSP) [Or-
tega et al., 2018; Marques et al., 2020; Chien et al., 2021;
Defferrard et al., 2016], which employs graph structures
to analyze and process signals. Fig. 1 illustrates the self-
attention in Transformers and signal filtering in GSP. As de-
picted in Fig. 1 (a), the original self-attention takes the soft-
max of the output from the dot product of the query vector
and the key vector, and then multiplies it by the value vec-
tor. Fig. 1 (b) illustrates a general GSP method that applies
the graph Fourier transform to the signal, conducts filtering
in the spectral domain, and subsequently restores it to the
original signal domain. In GSP, signals are filtered through
the graph filters, which are generally approximated by a ma-
trix polynomial expansion. The self-attention mechanism in
Transformers can be viewed as a graph filter H defined with
only the first order of the polynomial matrix, i.e., H = A.
Furthermore, since the self-attention is normalized by soft-
max and functions as a low-pass filter (see Theorem. 1), the
high-frequency information in the value vector is attenuated,
preventing the effective leverage of various frequency infor-
mation. Consequently, existing self-attention mechanisms are
designed in a rather simplified manner.

Our proposed linear Transformer learns an advanced
self-attention (see Thm. 2). Although the approximation
of linear Transformers is successful, what they are doing is
simply a low-pass filtering. Therefore, to increase the expres-
sive power of linear Transformers, we propose a more gener-
alized GSP-based self-attention, called Attentive Graph Filter
(AGF). We interpret the value vector of Transformers as a sig-
nal and redesign the self-attention as a graph filter. However,
the existing self-attention mechanism possesses two prob-
lems: 1) since the self-attention is based on directed graphs,
the graph Fourier transform through eigendecomposition is
not always guaranteed, and ii) the attention map changes for
every batch, making it too costly to perform the graph Fourier
transform every batch. In order to address the first problem,
therefore, we design a self-attention layer based on the GSP
process in the singular value domain (see Fig. 1 (c)). The sin-
gular value decomposition (SVD) has been used recently for
the GSP in directed graphs and can substitute the eigende-
composition [Maskey et al., 2023]. In order to address the
second problem, we directly learn the singular values and
vectors instead of explicitly decomposing the self-attention
map or any matrix. Since our proposed self-attention layer
directly learns in the singular value domain by generating
singular vectors and values using a neural network, our pro-
posed method has a linear complexity of O(nd?). Therefore,

our method efficiently handles inputs with long sequences.
Our contributions can be summarized as follows:

1. We propose an advanced self-attention mechanism
based on the perspective of signal processing on directed
graphs, called Attentive Graph Filter (AGF), motivated
that the self-attention is a simple graph filter and acts as
a low pass filter in the singular value domain.

2. AGF learns a sophisticated graph filter directly in the
singular value domain with linear complexity w.r.t. input
length, which incorporates both low and high-frequency
information from hidden representations.

3. The experimental results for time series, long sequence
modeling and image domains demonstrate that AGF out-
performs existing linear Transformers.

4. As a side contribution, we conduct additional experi-
ments to show that AGF effectively mitigates the over-
smoothing problem in deep Transformer models, where
the hidden representations of tokens to become indistin-
guishable from one another.

2 Background

2.1 Self-attention in Transformer

A key operation of Transformers is the self-attention which
allows them to learn the relationship among tokens. The self-
attention mechanism, denoted as SA: R"*? — R"*4_can be
expressed as follows:

XW,(XW)T

SA(X) = softmax( Va

)XWv — AXW,,
(D

where X € R™* is the input feature and A € R™*" is
the self-attention matrix. Wy € R¥xd W, e R¥*4 and

W, € R%¥9 are the query, key, and value trainable parame-
ters, respectively, and d is the dimension of token. The self-
attention effectively learns the interactions of all token pairs
and has shown reliable performance in various tasks.

However, in the case of the existing self-attention, a dot-
product is used to calculate the attention score for all token
pairs. To construct the self-attention matrix A € R™*", the
matrix multiplication with query and key parameters mainly
causes a quadratic complexity of O(n2d). Therefore, it is not
suitable if the length of the input sequence is large. This is
one of the major computational bottlenecks in Transformers.
For instance, BERT [Devlin et al., 2019], one of the state-
of-the-art Large Language Model (LLM), needs 16 TPUs for
pre-training and 64 TPUs with large models.

2.2 Linear Transformer

To overcome the quadratic computational complexity of the
self-attention, efficient Transformer variants have been pro-
posed in recent years. Recent research focuses on reduc-
ing the complexity of the self-attention in two streams.
The first research line is to replace the softmax operation
in the self-attention with other operations. For simplicity,
we denote softmax(XW g, (XWige,)T) as softmax(QKT).
[Wang er al,, 2020] introduce projection layers that map
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value and key vectors to low dimensions. [Katharopou-
los et al., 2020] interprets softmax as kernel function and
replace the similarity function with elu(x) + 1. [Choro-
manski et al., 2020] approximates the self-attention matrix
with random features. [Shen er al., 2021] decomposes the
softmax(QKT) into softmax(Q)softmax(KT), which allows
to calculate softmax(KT)V first, reducing the complexity
from O(n%d) to O(nd?). [Qin et al., 2022] replaces softmax
with a linear operator and adopts a cosine-based distance re-
weighting mechanism. [Xiong et al., 2021] adopts Nystrém
method by down sampling the queries and keys in the atten-
tion matrix. [Chen ef al., 2023] employs an asymmetric ker-
nel SVD motivated by low-rank property of the self-attention.
However, these approaches sacrifice the performance to di-
rectly reduce quadratic complexity to linear complexity.

The second research line is to introduce sparsity in the self-
attention. [Zaheer er al., 2020] introduces a sparse attention
mechanism optimized for long document processing, com-
bining local, random, and global attention to reduce compu-
tational complexity while maintaining performance. [Kitaev
et al., 2020] use locality-sensitive hashing and reversible feed
forward network for sparse approximation, while requiring to
re-implement the gradient back propagation. [Beltagy et al.,
2020] employ the self-attention on both a local context and a
global context to introduce sparsity. [Zeng et al., 2021] take
a Bernoulli sampling attention mechanism based on locality
sensitive hashing. However, since they do not directly reduce
the complexity to linear, they also suffer a large performance
degradation, while having only limited additional speed-up.

2.3 Graph Convolutional Filter

The graph signal processing (GSP) can be considered as a
generalized concept of the discrete signal processing (DSP).
In the definition of DSP, the discrete signal with length n is
represented by the vector x € R™. Then for the signal filter
g € R"” that transforms x, the convolution operation x * g is
defined as follows:

Yi = Z X;8i—js ()
i=1

where the index ¢ indicates the i-th element of each vector.
GSP extends DSP to signal samples indexed by nodes of ar-
bitrary graphs. Then we define the shift-invariant graph con-
volution filters H with a polynomial of graph shift operator S
as follows:

K
y = Hx = Z wyS*x, 3)
k=0

where K is the maximum order of polynomial and wy, €
[—o0, 0] is a coefficient. The graph filter is parameterized
as the truncated expansion with the order of K. The most
commonly used graph shift operators in GSP are adjacency
and Laplacian matrices. Note that Eq. (3) applies to any di-
rected or undirected adjacency matrix [Ortega et al., 2018;
Marques et al., 2020]. However, Eq. (3) requires non-trivial
matrix power computation. Therefore, we rely on SVD to use
the more efficient way in Eq. (5).

3 Proposed Method
3.1 Self-attention as a graph filter

The self-attention learns the relationship among all token
pairs. From a graph perspective, each token can be inter-
preted as a graph node and each self-attention score as an
edge weight. Therefore, self-attention produces a special
case of the normalized adjacency matrix [Shi er al., 2022;
Wang et al., 2022] and can be analyzed from the perspec-
tive of graph signal processing (GSP). In GSP, the low-/high-
frequency components of a signal x are defined using the
Discrete Fourier Transform (DFT) F and its inverse F~'.
Let x = JFx denote the spectrum of x. Then, X €
C¢ contains the ¢ lowest-frequency components of X, and
Xnte € C™¢ contains the remaining higher-frequency compo-
nents. The low-frequency components (LFC) of x are given
as LFC[x] = F}(xi.) € R™, and the high-frequency com-
ponents (HFC) are defined as HFC[x] = F~1(Xue) € R™.
Here, the DFT F projects x into the frequency domain, and
F~! reconstructs x from its spectrum. The Fourier basis
fi = [e2mi=1)0 e2mi(i=1)-1 " 2mi(=1)(n=1]T/\ /s
used in computing F, where j denotes the j-th row. In GSP,
the adjacency matrix functions as a low-pass filter, using the
edge weights to aggregate information from nodes attenuates
the high-frequency information of the nodes. In other words,
the self-attention also acts as a low-pass filter within Trans-
formers, and it is theoretically demonstrated below.

Theorem 1 (Self-attention is a low-pass filter). Let M =
softmax(Z) for any matrix Z € R™*". Then M inherently
acts as a low pass filter. For all x € RY, in other words,
limy—,o0 |HFC[M' (x)] |2 /| LFC[M* (x)] ]2 = 0

The proof of Theorem 1 is in [Wi et al., 2025, Appendix
D]. As the self-attention is normalized by softmax, the self-
attention functions as a low-pass filter. Hence, Transform-
ers are unable to sufficiently leverage a various scale of fre-
quency information, which reduces the expressive power of
Transformers.

Inspired by this observation, we redesign a graph filter-
based self-attention from the perspective of GSP. As men-
tioned earlier, since the adjacency matrix can serve as a
graph-shift operator, it is reasonable to interpret the self-
attention as a graph-shift operator, S = A. Moreover, the
self-attention block of the Transformer is equivalent to defin-
ing a simple graph filter H = A and applying GSP to the
value vector, treated as a signal. Therefore, in Eq. (3), we can
design a more complex graph filter through the polynomial
expansion of the self-attention.

Note that when we interpret the self-attention A as a graph,
it has the following characteristics: i) The self-attention is an
asymmetric directed graph, and ii) all nodes in the graph are
connected to each other since the self-attention calculates the
relationships among the tokens. Then we can derive that the
self-attention is a special case of the symmetrically normal-
ized adjacency (SNA) as A = D~'A where A is an ad-
jacency matrix and D is a degree matrix of nodes. In par-
ticular, SNA is one of the most popular forms for directed
GSP [Maskey et al., 2023].
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Figure 2: The proposed AGF performs the directed GSP in the singular value domain by learning U (X), 3(X), and V(X) (cf. Egs. (8)
to (10)). The n different sets of singular values in 3(X) are used for token-specific processing. In other words, n different graph filters are
used for n different tokens in order to increase the representation learning capability of AGF.

3.2 Polynomial graph filter

When approximating the graph filter with a matrix polyno-
mial, £ — 1 matrix multiplications are required to calculate up
to the k-th order (cf. Eq. (3)), which requires a large com-
putational cost. Therefore, to reduce the computational com-
plexity, we avoid matrix multiplications by directly learning
the graph filter in the spectral domain. In the case of an undi-
rected graph, a filter can be learned in the spectral domain
by performing the graph Fourier transform through eigende-
composition. In general, however, the eigendecomposition is
not guaranteed for directed graphs. The GSP through SVD,
therefore, is often used [Maskey et al., 2023] if i) a directed
graph A is SNA and ii) its singular values are non-negative
and within the unit circle, i.e., ||A| < 1. For A and its SVD
A = UXVT, an a-power of the symmetrically normalized
adjacency is defined as:

A% .= UZOVT, 4)
where o € R [Maskey et al., 2023]. Therefore, we can define
the graph filter H as follows:

K
y = Hx = gg(A)x = Ugp(B)VTx = U(Z 0, XF)VTx,

k=0
()

where 0 € R" is a vector for singular value coefficients.
Therefore, a spectral filter can be defined as a truncated ex-
pansion with K-th order polynomials. In other words, un-
like directly performing the matrix polynomial as in Eq. (3),
the computational cost is significantly reduced by K times
element-wise multiplying of the singular values, which are
represented as a diagonal matrix.

However, the polynomial expansion in Eq. (5) is parame-
terized with monomial basis, which is unstable in terms of its
convergence since the set of bases is non-orthogonal. There-
fore, for stable convergence, a filter can be designed using
an orthogonal basis. Note that we have the flexibility to ap-
ply any basis when using the polynomial expansion for learn-
ing graph filters. In this work, we adopt the Jacobi expan-
sion [Askey and Wilson, 1985], one of the most commonly
used polynomial bases. Furthermore, Jacobi basis is a gen-
eralized form of classical polynomial bases such as Cheby-
shev [Defferrard et al., 2016] and Legendre [McCarthy et al.,
19931, offering strong expressiveness in the graph filter de-
sign. Detailed formulas are provided in [Wi er al., 2025,
Appendix F]. Therefore, we can define the graph polynomial

filter as follows:
K
90(2) = . Ok TH(Z), 6)
k=0

where T}, (+) is a specific polynomial basis of order k.

3.3 Attentive Graph Filter

In order to use Eq. (6), however, we need to decompose the
adjacency matrix A, which incurs non-trivial computation.
Therefore, we propose to directly learn a graph filter in the
singular value domain (instead of learning an adjacency ma-
trix, i.e., a self-attention matrix, and decomposing it). There-
fore, as shown in Fig. 2, we propose our attentive graph filter
(AGF) as follows:

AGF(X) = HXW, = U(X)S(X)V(X)TXW,, (7)

U(X) = p(XWy) eR™(8)
K
S(X) = ) 6:Ti(diag(c(XWy))) e R™? (9)
k=0
V(X)T = p(XWy)T) eR™,(10)
where Wy, Wy, Wy € R9*? are learnable matrices, p is a
softmax, and o is a sigmoid. Our proposed model does not
apply SVD directly on the computed self-attention or other
matrices. Instead, the learnable singular values 0 (XW7y;) and
orthogonally regularized singular vectors U(X) and V' (X)
are generated by neural network. The singular values are then
filtered by the graph filter, denoted as (X). To ensure that
the elements of the singular value matrix are non-negative and
within the unit circle, the sigmoid function is applied to the
matrix. Moreover, we observe that the softmax of singular
vectors enhances the stability of learning.

We construct our graph filter using the generated singu-
lar values, leveraging the Jacobi expansion as an orthogonal
polynomial basis. If the trainable coefficients 6y, is allowed
to take negative values and learned adaptively, the graph filter
can pass low/high-frequency components of the value vector.
Therefore, AGF functions as a graph filter that leverages var-
ious frequency information from the value vector. Further-
more, unlike the adjacency matrix that remains unchanged
in GCNs, the self-attention matrix changes with each batch.
To enhance the capacity for addressing these dynamics, AGF
incorporates a token-specific graph filter, characterized by n
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different sets of singular values. This allows to leverage the
token-specific frequency information in the singular value do-
main, increasing the capability to handle complex dynamics
in hidden representation.

3.4 Objective Function

In the definition of SVD, U(X) is column orthogonal, V' (X)
is row orthogonal, and Y (X) is a rectangular diagonal matrix
with non-negative real numbers. When we train the proposed
model, strictly constraining U(X) and V(X) to be orthogo-
nal requires a high computational cost. Instead, we add a reg-
ularization on them since these matrices generated by neural
network can be trained to be orthogonal as follows:

Lortno == (IWX)TUX) — 1] + |(VOVX)T 1)),
an

where I € R4*? is an identity matrix. Therefore, our joint
learning objective L is as follows:

L= ‘Ctransformer + Vﬁorthm (12)

where Lirqnsformer 1S an original objective function for
Transformers. The hyperparameters « controls the trade-off
between the loss and the regularization.

3.5 Time and Space Complexities of AGF

Since our AGEF is based on the concept of SVD, it is not re-
stricted by softmax for calculating attention scores. There-
fore, U(X), 3(X), and V(X) generated by neural network
can be freely multiplied according to the combination law of
matrix multiplication. First, since ¥(X) is a diagonal ma-
trix, by performing element-wise multiplication with U (X)
and the diagonal elements of ¥(X), (n x d) matrix is calcu-
lated with a time complexity of O(nd). Next, by multiplying
V(X)) and the value vector, (d x d) matrix is calculated with a
time complexity of O(nd?). Finally, by multiplying the out-
puts of steps 1 and 2, the final output is (n x d) matrix with a
time complexity of O(nd?). Therefore, the time complexity
is O(nd?) and the space complexity is O(nd + d?).

3.6 Properties of AGF

How to use high-frequency information. In GSP, the
characteristics of the graph filter are determined by the
learned coefficients 6j, of the signal. These coefficients al-
low the graph filter to function as a low-pass, high-pass,
or combined-pass filter, depending on the specific needs of
each task [Defferrard et al., 2016; Marques et al., 2020;
Chien et al., 2021], demonstrated by following theorem:
Theorem 2 (Adapted from [Chien ef al., 2021]). Assume that
the graph G is connected. If 0y, > 0 for Vk € {0,1,..., K},
ZkK:O 0 = 1 and 3k > 0 such that 0y, > 0, then go(-) is a
low-pass graph filter. Also, if O, = (—a)*, a € (0,1) and K
is large enough, then gy(-) is a high-pass graph filter.

The proof is in [Wi et al., 2025, Appendix E]. Theorem 2
indicates that if the coefficient 6y, of a graph filter can have
negative values, and learned adaptively, the graph filter will
pass low and high frequency signals appropriately. This flexi-
bility is crucial for effectively processing signals with varying

frequency components. Similarly, AGF operates as a filter
that modulates frequency information in the singular value
domain through the generated singular values and singular
vectors. This approach enables AGF to dynamically adjust
the frequency components of the signal, providing a more
tailored and efficient filtering process. Therefore, unlike con-
ventional Transformers, AGF can appropriately incorporate
both low and high frequencies for each task, thereby enhanc-
ing the expressive power and adaptability of Transformers.

Comparison with existing linear self-attention methods.
We explain that while our AGF addresses the computational
inefficiencies inherent in the vanilla self-attention like exist-
ing linear self-attention studies, we take a different approach
from them. Instead of using explicit SVDs, our AGF rein-
terprets self-attention through a GSP lens, using the learn-
able SVD to learn graph filters directly from the spectral
domain of directed graphs. Linformer [Wang er al., 2020],
the most prominent representative of linear self-attention, ap-
proximates the vanilla self-attention through dimensionality
reduction, and Nystromformer [Xiong et al., 2021], which
reduces to linear complexity with a kernel decomposition
method, also efficiently approximates the full self-attention
matrix with the Nystrom method. Singularformer [Wu er
al., 2023], a closely related approach, uses a parameterized
SVD and linearize the calculation of self-attention. However,
like existing linear Transformers, it approximates the original
self-attention, which is inherently a low-pass filter. Thus, to
the best of our knowledge, existing linear self-attention meth-
ods focus on approximating the self-attention and reducing it
to linear complexity, whereas our AGF approximates a graph
filter rather than the self-attention. This allows AGF to use
the token-specific graph filter to improve model representa-
tion within the singular value domain.

4 Experiments

4.1 Time Series Classification

Experimental settings. To evaluate the performance
of AGF, we employ UEA Time Series Classification
Archive [Bagnall et al., 2018] which is the benchmark on
temporal sequences. Strictly following [Wu et al., 2022], we
report accuracy for 10 multivariate datasets preprocessed ac-
cording to [Zerveas et al., 2021]. We adopt 2-layer Trans-
former as backbone with 512 hidden dimension on 8 heads
and 64 embedding dimension of self-attention. The experi-
ments are conducted on 1 GPU of NVIDIA RTX 3090. The
detailed descriptions are in [Wi er al., 2025, Appendix H.1].

Experimental results. Table 1 summarizes the test accu-
racy of AGF and the state-of-the-art linear Transformer mod-
els on the UEA time series classification task. We observe
that AGF achieves an average accuracy of 75.1, outperform-
ing the vanilla Transformer and other linear Transformers by
large margins across various datasets. This performance gap
underscores the effectiveness of our approach in leveraging
advanced graph filter-based self-attention to enhance the ex-
pressive power of Transformers.
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EC FD HW HB JV PEMS-SF SRSCP1 SRSCP2 SAD UWGL Avg
Transformer 327 673 320 76.1 98.7 82.1 92.2 53.9 98.4 85.6 71.9
LinearTransformer 319 67.0 34.7 76.6 99.2 82.1 92.5 56.7 98.0 85.0 72.4
Reformer 319 686 274 77.1 978 82.7 90.4 56.7 97.0 85.6 71.5
Longformer 323 626 39.6 78.0 98.9 83.8 90.1 55.6 94.4 87.5 72.0
Performer 312 67.0 321 756 98.1 80.9 91.5 56.7 98.4 85.3 71.9
YOSO-E 312 673 309 76.5 098.6 85.2 91.1 53.9 98.9 88.4 72.2
Cosformer 323 648 289 77.1 98.3 83.2 91.1 55.0 98.4 85.6 71.5
SOFT 335 67.1 347 756 99.2 80.9 91.8 55.6 98.8 85.0 72.2
Flowformer 338 67.6 338 77.6 989 83.8 92.5 56.1 98.8 86.6 73.0
Primalformer 33.1 67.1 29.6 76.1 98.3 89.6 92.5 57.2 100.0 86.3 73.0
AGF 36.1 699 335 79.0 99.5 91.3 93.5 58.9 100.0 894 751

Table 1: Performance comparison on UEA time series classification. Abbreviations are as follows: EthanolConcentration (EC), FaceDe-
tezction (FD), HandWriting (HW), HearBeat (HB), JapaneseVowels (JV), PEMS-SF, SelfRegulation SCP1 (SRSCP1), SelfRegulation SCP2
(SRSCP2), SpokenArabicDigits (SAD), and UWaveGesture Library (UWGL).

ListOps Text Retrieval Image Pathfinder Avg
Transformer 371 650 794 38.2 742 588

Reformer 19.1 649 786 433 694 551
Performer 188 63.8 78.6  37.1 699  53.6
Singularformer  18.7 61.8  76.7 353 55.8  49.7
Linformer 373 559 794 37.8 67.6 556

Nystromformer 37.2 655 79.6 41.6 709  59.0
Longformer 372 646 81.0 39.1 73.0 590

YOSO-E 373 647 812 39.8 72.9 59.2
Primalformer 373 612 778 43.0 68.3 57.5
AGF 38.0 647 814 424 74.0  60.1

Table 2: Performance comparison on LRA benchmark

4.2 Long Range Arena Benchmark

Experimental settings. We evaluate AGF on Long Range
Arena (LRA) [Tay et al., 2020] benchmark under long-
sequence scenarios. Following [Xiong er al., 20211, we train
2 layer Transformer with 128 hidden dimension, 2 heads, and
64 embedding dimension with mean pooling. The experi-
ments are conducted on 1 GPU of NVIDIA RTX 3090. The
details are in [Wi er al., 2025, Appendix H.2].

Experimental results. We report the top-1 test accuracy on
LRA benchmark in Table 2. Our model demonstrates the
highest average performance, achieving a score of 60.1 —
an improvement of 1.3 points over the vanilla Transformer.
In contrast, SingularFormer, a close approach that param-
eterizes SVD, only functions as a low-pass filter and thus
fails to achieve optimal performance. Compared with YOSO-
E, a state-of-the-art linear-complexity Transformer, AGF im-
proves the performance by a substantial margin.

4.3 Sensitivity Analyses

We conduct sensitivity studies on K and ~. Other sensitivity
studies are reported in [Wi ef al., 2025, Appendix K].

Sensitivity study on K. We test our model by varying K
on UEA time series classification, and the results are shown
in Table 3. As K increases, the performance improves. How-
ever, beyond a certain threshold, increasing K results in sat-
uration and diminished performance. Therefore, choosing an
appropriate K has a significant impact on performance.

K EC FD JV PEMS-SF SRSCP1 UWGL
3 323 682 98.9 86.7 91.1 84.1
4 316 68.8 99.5 89.6 922 84.1
6 36.1 683 989 83.8 91.1 84.4
9 30.8 69.9 99.2 83.8 93.5 86.2
10 323 67.5 98.9 87.3 91.1 89.4

Table 3: Effect of K on UEA classification

ol ListOps Text Retrieval Image Pathfinder

1x107' 380 643 814 408 73.1
1x1072 369 645 798 424 73.3
1x107% 372 647 795 420 74.0
1x107* 370 642 794 41.0 74.0

Table 4: Effect of v on LRA benchmark

Sensitivity study on . Table 4 summarizes the impact of
v on LRA benchmark. The optimal level of regularization
applied to learnable singular vectors varies depending on the
dataset, and we demonstrate that imposing a certain degree of
regularization can enhance training stability.

4.4 Empirical Runtime

Table 5 summarize the results of the runtime and peak mem-
ory usage during the training phase. AGF consistently im-
proves the efficiency of both time and space complexity
compared to the vanilla Transformer. Specifically, for Text
dataset, which have extremely long input sequences, the effi-
ciency of AGF stands out even more. When compared with
other linear complexity Transformers, our AGF shows com-
parable efficiency with longer sequences.

4.5 Ablation Studies

We conduct various ablation studies, and the additional re-
sults on T'(+) and p are in [Wi et al., 2025, Appendix L].

Effect on the graph filter. To analyze the impact of graph
filter, we conduct an ablation study on the following vari-
ants: i) Hyy+ refers to the graph filters with parameterized
singular vectors and the singular values are fixed as one; ii)
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ListOps(2K) Text(4K) Retrieval(4K) Image(1K) Pathfinder(1K) Avgerage
Transformer 194.5/5.50  694.8/21.24  1333.7/18.72  334.5/5.88 405.5/5.88 592.6/11.44
Nystromformer 68.3/0.89 52.3/0.48 187.5/1.93 227.9/1.93 232.6/3.29 153.7/1.70
Performer 90.3/1.67 55.9/0.84 230.7/3.34 296.7/3.34 344.8/6.28 203.7/3.09
Reformer 94.1/1.64 58.1/0.82 244.2/3.29 309.1/3.29 370.7/6.09 215.2/3.03
PrimalFormer 56.5/0.69 93.6/1.37 185.3/2.99 142.9/1.39 180.0/1.52 131.7/1.59
AGF 60.8/0.88 48.4/0.51 252.3/3.95 183.3/2.15 209.3/1.89 150.8/1.90

Table 5: Running time (s/1K-steps) and the peak training memory usage (GB) on LRA benchmark

EC FD HW HB PEMS-SF UWGL

Hyve 29.7 66.6 282 76.6  87.3 83.8
Hsvp 33.1 67.1 27.1 75.1 88.4 85.9
AGF  36.1 69.9 335 79.0 913 89.4

Table 6: Ablation study on the graph filter

Model ImageNet-100 ImageNet-1K
DeiT-small 80.6 79.8
+ AGF 81.3 80.3

Table 7: Comparison of performance for DeiT-small trained on
ImageNet-100 and ImageNet-1K

Hgsyv p initializes the singular values to one, allowing them to
be learnable from Hyy+; and iii) AGF refers to the proposed
method. Table 6 shows the result of the effect of the graph fil-
ter, and in general, these ablation models leads to suboptimal
performance. However, AGF processes the generated signal
through the graph filter, allowing the model to use various
scales of frequency information. The graph filter enhances
the capacity of the model, resulting in optimal performance
and demonstrating the effectiveness of AGF.

4.6 Additional Experiments on Deep Transformer

Experimental settings. We conduct additional experi-
ments for image classification task with ImageNet-100 [Rus-
sakovsky et al., 2015] and ImageNet-1K [Deng et al., 2009]
datasets and report top-1 accuracy. We adopt DeiT-small as
the backbone, and trained from scratch with 300 epochs [Tou-
vron et al., 2021] with 2 GPU of NVIDIA RTX 3090. The
detailed descriptions are in [Wi et al., 2025, Appendix H.3].

Experimental results. Table 7 shows the top-1 accuracy
on ImageNet-100 and ImageNet-1k. Our AGF effectively
learns the representation in deep layers model, which has
12 layers. Notably, plugging AGF improves the perfor-
mance marginally, from 80.6 to 81.3 trained on ImageNet-
100 datasets and from 79.8 to 80.3 on ImageNet-1K.

Analysis on mitigating over-smoothing problem. Deep
Transformers, like GCNs, suffers from over-smoothing prob-
lem, where hidden representations become similar and in-
distinguishable to the last layer [Kipf and Welling, 2017;
Velickovi¢ et al., 2018; Oono and Suzuki, 2020; Rusch
et al., 2023]. We previously demonstrated that the self-
attention in Transformers acts as a low-pass filter attenuat-
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Figure 3: Filter response and cosine similarity on ImageNet-1k for
DeiT-small and DeiT-small + AGF

ing high-frequency information, which is a major cause of
over-smoothing [Wang et al., 2022; Shi et al., 2022; Choi et
al., 2024]. AGF mitigates this issue by effectively leveraging
various scale frequency information through directly filtering
signals in the singular value domain. Fig. 3 (a) illustrates the
frequency information in both the vanilla DeiT (i.e., H = A)
and DeiT + AGF (i.e., H = UX)X(X)V(X)T). Unlike
the vanilla model, AGF better captures high-frequency infor-
mation. Additionally, Fig. 3 (b) shows the cosine similarity
among hidden vectors at each layer. While the cosine simi-
larity in DeiT increases to nearly 0.9 as layers deepen, it is
moderated to nearly 0.5 in DeiT + AGF. Thus, AGF prevents
over-smoothing in deep Transformers by effectively leverag-
ing diverse frequency information.

5 Conclusions

We presented AGF, which interprets the self-attention as
learning graph filters in the singular value domain from the
perspective of directed graph signal processing. Since the
self-attention matrix can be interpreted as a directed graph,
we designed a more expressive self-attention using signals
directly in the singular value domain. By learning the coeffi-
cients for various polynomial bases, AGF uses diverse fre-
quencies. Our experiments showed that AGF outperforms
baselines across various tasks, and the training time and GPU
usage of AGF are comparable to baseline models with linear
complexity. As a side contribution, AGF mitigates the over-
smoothing problem in deep Transformers.

Since our comparison scope is focused on linear Trans-
formers, a limitation is the exploration and comparison re-
garding the recent state-space models [Gu er al., 2021;
Gu and Dao, 2023]. Exploring the potential of our method
in enhancing state-space models is an intriguing avenue for
future work.
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