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Abstract
Garment sewing patterns are fundamental design
elements that bridge the gap between design con-
cepts and practical manufacturing. The generative
modeling of sewing patterns is crucial for creat-
ing diversified garments. However, existing ap-
proaches are limited either by reliance on a sin-
gle input modality or by suboptimal generation ef-
ficiency. In this work, we present GarmentDiffu-
sion, a new generative model capable of produc-
ing centimeter-precise, vectorized 3D sewing pat-
terns from multimodal inputs (text, image, and in-
complete sewing pattern). Our method efficiently
encodes 3D sewing pattern parameters into com-
pact edge token representations, achieving a se-
quence length that is 10× shorter than that of
the autoregressive SewingGPT in DressCode. By
employing a diffusion transformer, we simulta-
neously denoise all edge tokens along the tem-
poral axis, while maintaining a constant number
of denoising steps regardless of dataset-specific
edge and panel statistics. With all combina-
tion of designs of our model, the sewing pat-
tern generation speed is accelerated by 100× com-
pared to SewingGPT. We achieve new state-of-the-
art results on DressCodeData, as well as on the
largest sewing pattern dataset, namely Garment-
CodeData. The project website is available at https:
// shenfu-research.github.io/Garment-Diffusion/ .

1 Introduction
Digital garment modeling has emerged as a pivotal research
area for fashion design, with garment sewing patterns being
essential in transforming design concepts into tangible gar-
ments. Many studies have been conducted on sewing pat-
tern modeling and generation, either by scaling up the size
of datasets [Korosteleva and Lee, 2021; Korosteleva et al.,
2024] or by proposing new parametric and learning-based
approaches [Korosteleva and Lee, 2022; Korosteleva and
Sorkine-Hornung, 2023; Liu et al., 2023; Chen et al., 2024a;
He et al., 2024].

The first attempt [Korosteleva and Lee, 2021] was made
to build a synthetic garment sewing pattern dataset using a

Figure 1: 3D garment pattern generation with multimodal in-
puts. As illustrated on the left, our model supports various input
modalities, including brief and detailed text descriptions, images
(garment sketches), and incomplete patterns. The generated patterns
can be draped on human models and utilized for practical produc-
tion. Our model supports both simple and complex pattern genera-
tion, e.g., DressCodeData and GarmentCodeData. As indicated by
the “lightning” icon, our model demonstrates an ultra-fast pattern
generation speed (within a second using a single A10 GPU), which
is comparable to the discriminative model (SewFormer).

parametric approach, with ˜20K sewing patterns. However,
both the complexity of sewing pattern geometries and the
quantity of sewing patterns are insufficient to meet the in-
creasing data demands of advanced data-driven models. Sub-
sequently, in [Korosteleva et al., 2024], the authors built
a large-scale garment dataset, i.e., GarmentCodeData, us-
ing component-oriented garment programs [Korosteleva and
Sorkine-Hornung, 2023]. It introduces more complex de-
sign prototypes and scales up the number of sewing pat-
terns by 5×, with ˜115K sewing patterns in total. How-
ever, learning-based models typically require paired sam-
ples for conditional training, such as (sewing pattern,
modality-specific input). The unimodal nature of
these datasets restricts the development of generative mod-
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eling approaches. SewFactory [Liu et al., 2023] has recog-
nized this problem and provides approximately 1M image-
and-sewing-pattern pairs for training. Since its design proto-
types are derived from [Korosteleva and Lee, 2021], the com-
plexity of sewing pattern geometry is still limited.

Another challenge lies in efficiently modeling the gener-
ation of sewing patterns to make it more applicable to real-
time scenarios. SewFormer [Liu et al., 2023] introduces a
DETR-like [Carion et al., 2020] discriminative model to map
2D images to sewing patterns. The discriminative training of
SewFormer leads to the deterministic predictions of sewing
patterns given input images, which restricts the diversity of
garment designs compared to the generative approaches. A
pioneering work, DressCode [He et al., 2024], introduces
a GPT-like autoregressive model (SewingGPT) to generate
vector-quantized sewing patterns, conditioned on the text de-
scriptions via cross-attention. While this method is effective
in generating simple sewing patterns, it faces significant chal-
lenges when applied to GarmentCodeData [Korosteleva et al.,
2024]. For example, the token sequence length of Sewing-
GPT increases from ˜2K to over 18K, making its training and
inference infeasible in practice. Another issue is the coarse
sewing pattern descriptions generated by GPT-4V using its
data annotation pipeline, which lacks the precise control for
text-conditioned sewing pattern generation.

In this paper, we rethink the modeling paradigm of
sewing patterns, questioning whether the vector-quantized
encoding scheme and autoregressive next-parameter predic-
tion in DressCode are efficient for sewing pattern gener-
ation. Inspired by BRepGen [Xu et al., 2024], we en-
code edge-related parameters (such as 3D coordinates, stitch
tags, and free edge scores) into the embedding dimen-
sion, while denoising all edge tokens in parallel along the
temporal axis. By leveraging the parallel processing na-
ture of diffusion transformers [Peebles and Xie, 2023], our
approach accelerates the generation process by approxi-
mately a hundredfold without sacrificing the precision (in
centimeters) of sewing pattern geometries. Specifically,
with parameters set to #edge parameters/edge = 9
(endpoints, control points, arc), #edges/panel = 39,
and #panels/pattern = 37, SewingGPT requires
18, 135 + 2(SOS,EOS) tokens and steps to autoregressively
generate a sewing pattern. In contrast, our model only
needs 1,443 tokens for generation, with a constant denois-
ing step independent of dataset statistics. Furthermore, fol-
lowing [Khan et al., 2024], we redesign the data annotation
pipeline for both DressCodeData [Korosteleva and Lee, 2021;
He et al., 2024] and GarmentCodeData, to provide both brief
and detailed text descriptions for sewing patterns. To support
the image modality as input, we employ commonly used gar-
ment sketches as the interactive interface between users and
models. As a benefit of our modeling paradigm, we also sup-
port sewing pattern completion using user-provided incom-
plete patterns as input for controllable generation.

To sum up, our contributions to the community are as fol-
lows:

1. We present a new generative model, GarmentDiffu-
sion, pushing the limits of diffusion-based modeling
paradigm for multimodal sewing pattern generation.

2. We propose an efficient edge encoding scheme that sig-
nificantly reduces the token sequence length of sewing
patterns, achieving a substantial speedup compared with
the autoregressive approach, i.e., DressCode.

3. We validate the effectiveness of our model on SewFac-
tory, DressCodeData, as well as the largest and most
challenging GarmentCodeData, and establish a strong
baseline with comprehensive and quantitative evaluation
metrics.

4. We provide new multimodal data annotation pipelines
that can generate both brief and detailed text descrip-
tions, as well as garment sketches for sewing patterns,
enabling multimodal sewing pattern generation.

2 Related Work
2.1 Garment Sewing Pattern Generation
Existing research on garment generation can mainly be di-
vided into 3D-based and sewing pattern-based approaches.
The 3D-based methods generates garment models through
Gaussian splatting guidance [Li et al., 2024], unsigned dis-
tance function regression [Moon et al., 2022; Zheng et al.,
2024], neural volumetric rendering [Chen et al., 2024b], or la-
tent representation learning [Su et al., 2023; Shen et al., 2020;
Srivastava et al., 2025; Shao et al., 2024]. However, these
garment models often have topological imperfections that
make them unsuitable for manufacturing.

To generate production-ready sewing patterns, early meth-
ods included scanned model flattening [Bang et al., 2021] and
iterative panel parameter optimization [Wang et al., 2018].
With the release of large sewing pattern datasets [Korostel-
eva and Lee, 2021; Korosteleva et al., 2024], there has been
a shift toward data-driven approaches. SPnet [Lim et al.,
2024] predicts sewing patterns from generated T-pose im-
ages, while Neural Sewing Machine [Chen et al., 2022] uti-
lizes principal component analysis to create sewing pattern
masks. To reduce reliance on templates, Korosteleva and
Lee [2022] predict edges and stitches directly from 3D point
clouds. Liu et al. [2023] and Chen et al. [2024a] use hierarchi-
cal transformers to recover sewing patterns from images. He
et al. [2024] generate garment sewing patterns with textures,
guided by natural language descriptions. At the same time as
our work, Design2GarmentCode [Zhou et al., 2024] proposes
a DSL-oriented multimodal agent and leverage the garment
programs to generate sewing patterns. ChatGarment [Bian
et al., 2024] fine-tunes a VLM to generate garment speci-
fication files. AIpparel [Nakayama et al., 2024] builds on
top of LLaVA-1.5 [Liu et al., 2024a] and proposes to train
a multimodal pattern generation model using both discrete
and continuous training objectives. SewingLDM [Liu et al.,
2024b] applies a latent diffusion model with two-stage train-
ing to generate patterns, incorporating various handcrafted
losses. Our model adopts a single-stage training with MSE
loss, achieving improvements in modality diversity, perfor-
mance, and efficiency.

2.2 Conditional Diffusion Models
A large portion of current research on diffusion models origi-
nates from [Ho et al., 2020; Rombach et al., 2022], with a for-
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Figure 2: Token representations for the edge, panel and pattern.
GarmentDiffusion utilizes an edge-oriented compact representation
to encode the sewing pattern. After applying rotation and translation
transformations to the 2D panels, the edge parameters are encoded
along the embedding dimension. Each edge token is assigned an
edge-order index and a panel-order index to indicate its global posi-
tion within the sequence. The sequence is padded with zero tokens
to ensure uniform length.

ward chain that perturbs data into noise and a reverse chain
that converts noise back into data. Diffusion Transformers
(DiT) [Peebles and Xie, 2023] explore replacing the U-Net
backbone with a transformer that operates on latent patches,
achieving better scalability. IP-Adapter [Ye et al., 2023] in-
troduces the decoupled cross-attention mechanism to achieve
the image-prompt conditional generation.

Diffusion models have also proven successful in generat-
ing CAD models. For example, Xu et al. [2024] present a
diffusion-based approach that unconditionally outputs bound-
ary representation of CAD models. Wang et al. [2024] utilize
a vector-quantized diffusion model to generate command se-
quences from design concepts represented by text or sketches.
The success of diffusion models in synthesizing structured
CAD models suggests that similarly structured sewing pat-
terns could also be generated through a reverse diffusion pro-
cess.

3 Method
3.1 Sewing Pattern Representation
Edge representation. A 3D pattern consists of variable
number of panels, with each panel being a closed shape made
up of multiple edges. Since the edges are connected end-to-
end, we only need a start point ej ∈ R3 and control points
cj ∈ R3 of Bézier curves to represent the geometry of jth

edge Ej , where ej := (ex, ey, ez)j and cj := (cx, cy, cz)j
are the 3D point coordinates. The number of control points
depends on whether the Bézier curve is quadratic or cubic.
We represent the circular arc using another three parameters
aj ∈ R3, where aj := (ax, al, as)j represents the radius,
major or minor arc and sweeping orientation, respectively.
Note that if Ej is a linear curve, cj is identical to ej . Fur-
thermore, we use a per-edge stitch tag sj ∈ R3 and a binary
stitch flag fj ∈ {0, 1} to encode the stitch information of
edges. sj := (sx, sy, sz)j is calculated as the averaged 3D
midpoint between matched edge pairs. All coordinates are
calculated after performing 3D rotation and translation for
each panel. Ej is thus represented as ej ⊕ cj ⊕ aj ⊕ sj ⊕ fj

with the appropriate zero padding, where ⊕ represents the
concatenation along the embedding dimension. Note that the
number of parameters of Ej , denoted as |Ej |, could be vari-
able length depending on the dataset.

Pattern representation. Suppose that a dataset contains at
most M panels for all patterns, and each panel contains at
most N edges. We pad the pattern P ∈ R|m×n|×|Ej | that
has m panels (m ≤ M ) and n edges per panel (n ≤ N )
to the uniform M × N sequence length, which is denoted
as P′ ∈ R|M×N |×|Ej |. That is, all panels {Pi}Mi>m are set
to 0, and all edges {Ej}Nj>n are set to 0 as well, where i
and j denote the index of panel and edge, respectively. The
hierarchical pattern representation is illustrated in Figure 2.
This edge-oriented pattern representation largely shortens the
token sequence length compared to the coordinate-oriented
representation in DressCode. Different from the “token-by-
token” causal generation, all these tokens can be processed
by subsequent diffusion transformers in parallel.

3.2 Pattern Generation with GarmentDiffusion
Our model follows the design of DiT [Peebles and Xie, 2023]
architecture. It accepts multimodal inputs to control the gen-
eration of sewing patterns. During the training phase, all
edges are converted into token representations, followed by
random panel shuffling and noise corruption. The model is
trained to predict the noises added to the edge tokens. In the
generation phase, the edge tokens are initialized as random
Gaussian noises, and are iteratively denoised using the pre-
dicted noise. The entire framework is illustrated in Figure 3.

Pattern preprocessing. Suppose we have P′ ∈
R|M×N |×|Ej |, which consists of {Pi}Mi=1 with {Pi}Mi>m

being panel-level padding. Each Pi consists of {Ej}Nj=1

with {Ej}Nj>n being edge-level padding. We shift and scale
each dimension of Ej using respective parameter statistics to
ensure that the value range is between -1 and 1. To support
the pattern completion, we randomly shuffle {Pi}mi=1 to
break the predefined panel order, while keeping the order of
edges {Ej}nj=1 within a panel unchanged. We always place
the padding tokens after the shuffled edge tokens.

Token embeddings. To distinguish the edge tokens among
different panels, we construct a panel-level look-up embed-
ding table EmbP ∈ RM×C , where C is the embedding di-
mension of the model. We also construct an edge-level look-
up embedding table EmbE ∈ RN×C to encode the sequen-
tial edge order within a panel. To represent each time step
t, we use the conventional sine and cosine positional encod-
ing to construct the time embedding t ∈ RC . We employ
a DDPM noise scheduler to obtain the noise-corrupted edge
token, that is ddpm scheduler.add noise(Ej , ϵ, t) →
Ẽj with ϵ ∼ N (0, I). Finally, we compute the edge token
embedding as:

xj = φ(Ẽj) +EmbP (i) +EmbE(j) + T (t), (1)

where φ(·) and T (·) are the projections, each comprising two
linear layers with a non-linear activation function, to match
the model’s dimension.
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Figure 3: The framework of GarmentDiffusion. GarmentDiffusion accepts multi-level text descriptions, a garment sketch or an incomplete
sewing pattern as input conditions, and generates a sewing pattern through the denoising of random Gaussian noise. The text and image
features are extracted using a frozen CLIP and injected via decoupled cross-attention layers in each DiT block. The incomplete pattern
replaces the initial subsequence of the random noise sequence for controllable generation. The final output is a 3D-placed sewing pattern that
is consistent with the multimodal conditions.

Figure 4: Our multimodal data annotation pipelines. The up-left
pipeline illustrates the generation of text descriptions at both brief
and detailed levels, and the up-right pipeline represents the gener-
ation of garment sketches. The system and user prompts for LLM
and text descriptions examples are shown at the bottom.

Conditional training. To achieve both text-to-pattern and
image-to-pattern generation with fine-grained control, we in-
ject the conditions using cross-attention layers rather than
adaLN-Zero layers [Peebles and Xie, 2023]. Specifically,
we follow the practice [Ye et al., 2023] to employ decoupled
cross-attention layers that use separate key and value projec-
tion matrices to process text and image features, while using
shared query projection matrices among different modalities
to process edge features. The multimodal cross-attention op-
eration is defined as:

Z′ = Softmax
(
QK⊤

T√
C

)
VT + Softmax

(
QK⊤

I√
C

)
VI ,

(2)

where Z′ is the fused multimodal latent features; Q is the
edge features from Z after query projection; KT , VT , KI ,
VI are the text and image features after key and value projec-
tion. The text and image features are extracted using CLIP’s
text and image encoders [Radford et al., 2021]. We use both
class and patch embeddings before the last projection lay-
ers of CLIP for the conditional training. The image fea-
tures are projected into the same dimension as the text fea-
tures by a two-layer MLP before fed into the diffusion trans-
former. All the parameters of the diffusion transformer are
trainable. The training objective of our model is a simple L2
loss, which minimizes the mean-squared error between the
sampled Gaussian noise and the predicted noise. That is:

L(θ) = Ex,cT ,cI ,ϵ∼N (0,I),t

[
||ϵ− ϵθ(xt, cT , cI , t)||22

]
, (3)

where xt is the edge token embeddings at time step t; cT and
cI are the text and image conditions, respectively.
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Method & dataset PanelL2 ↓ #Panel ↑ #Edge ↑ RotL2 ↓ TransL2 ↓ Precision ↑ Recall ↑ F1 ↑
SewingGPT & original 1.02e1 0.754 0.887 7.51e-3 1.25e0 0.833 0.833 0.825
SewingGPT & brief 8.89e0 0.936 0.951 8.51e-3 9.85e-1 0.933 0.933 0.933
SewingGPT & detailed 8.35e0 0.979 0.946 8.34e-3 8.93e-1 0.973 0.974 0.973

Ours & original 8.24e0 0.794 0.969 9.21e-5 9.42e-1 0.856 0.857 0.849
Ours & brief 7.48e0 0.955 0.999 1.99e-4 7.79e-1 0.956 0.955 0.955
Ours & detailed 6.53e0 0.989 0.999 2.79e-4 7.30e-1 0.989 0.989 0.989

Table 1: Quantitative evaluation results on the DressCodeData (test set). The metrics are explained in Section 4.3. The L2 metrics are
measured in centimeters (except RotL2). The first three rows show SewingGPT’s evaluation results using its original captions (generated
by GPT-4V) and ours (brief and detailed descriptions). The last three rows show GarmentDiffusion’s evaluation results with the same text
conditions. Our model outperforms SewingGPT by a large margin on different levels of captions and captions generated by different pipelines.

Figure 5: Comparison of model performance with different de-
noising steps on the DressCodeData. Increasing the number of
denoising steps does not lead to improved model performance.

4 Experiments
4.1 Datasets
We use SewFactory [Liu et al., 2023], DressCodeData [Ko-
rosteleva and Lee, 2021; He et al., 2024] and GarmentCode-
Data (V2) [Korosteleva et al., 2024] for training and eval-
uation. For SewFactory, we employ off-the-shelf rendered
garments superimposed on diverse human poses as image
prompts (without text prompts). For DressCodeData and
GarmentCodeData, we designed multimodal data annotation
pipelines (depicted in Figure 4) to generate both text and
image prompts for sewing patterns. SewFactory consists of
13,707 sewing patterns, featuring a maximum of 14 panels
and 12 edges per panel. DressCodeData contains 19,683 pat-
terns, each with up to 10 panels and 10 edges per panel. Gar-
mentCodeData offers 115,195 patterns, with a maximum of
37 panels and 39 edges per panel. Since the official splits of
SewFactory are not available, we use our own version that
90% of randomly selected data points are used for training,
with the remaining 10% evenly divided for validation and
testing. For DressCodeData and GarmentCodeData (V2), we
adhere strictly to the official splits provided by the authors for
training, validation, and testing. Note that SewingGPT can-
not be trained on the entire GarmentCodeData due to its long
context length. To address this problem, we created a sub-
set of GarmentCodeData by filtering out those patterns with
#edges/panel > 12 and #panels/pattern > 10.

4.2 Multimodal Data Synthesis
Text-prompt generation. To enhance our model’s compre-
hension of multi-level design concepts from users, we design
two-level text descriptions for the sewing patterns: a concise
category-level summary with basic design features, and de-

tailed component-level descriptions. Leveraging LLMs’ in-
context understanding, our annotation pipeline first filters ir-
relevant information from garment specification files, then
prompts Llama-3.1-8B-Instruct [Grattafiori et al., 2024] us-
ing a unified prompt to generate the multi-level descriptions
automatically, as shown in Figure 4.

Image-prompt generation. We select the garment
sketches as the interactive interface between users and our
model. To generate the garment sketches that closely emulate
the hand-drawn style of professional garment designers, we
initially render the 3D garment models (in .obj and .ply
formats) of DressCodeData and GramentCodeData into 2D
garment images using Blender’s APIs [BlenderAuthors,
2024]. Subsequently, we utilize MistoLine [Zhang et al.,
2023] and Anything-XL fine-tuned from SD-XL [Podell et
al., 2023] to extract the garment sketches, followed by a
binarization operation.

4.3 Evaluation Metrics
We adopt the same evaluation metrics as [Liu et al., 2023]
and [Korosteleva and Lee, 2022] to assess the fidelity of the
generated sewing patterns. Specifically, Panel L2 denotes
the L2 distance of the coordinates of 2D panels (converted
from 3D coordinates) between predictions and ground truths,
with the centroids of panels shifted to the origin. #Panel and
#Edge represent the accuracy of correctly predicted patterns
within all patterns, based on the number of panels in each
pattern and the number of edges in each panel, respectively.
Rot L2 and Trans L2 represent the L2 distances of x, y, z
rotation Euler angles and universal x, y, z translations of pan-
els between predictions and ground truths. Precision, Recall,
and F1 Score are used to measure the false positives and false
negatives of paired stitches with respect to all edge relations.

4.4 Implemention Details
Architecture. We adopt OpenAI ViT-H/14 (336×) [Rad-
ford et al., 2021] as our text and image encoders. Since
the embedding dimensions of the text and image features
are 1,024 and 768, we project the image features into 768-
dimensional vectors to match the text feature dimension. The
main body of our model consists of 12 DiT blocks. Each
block consists of a self-attention layer, a multimodal cross-
attention layer and a feed-forward layer, all utilizing pre-layer
normalization [Ba et al., 2016; Xiong et al., 2020]. The num-
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Input PL2 ↓ #Panel ↑ #Edge ↑ RotL2 ↓ TrsL2 ↓ F1 ↑

SewingGPT & brief 1.52e1 0.708 0.686 1.52e-2 2.71e0 0.529
SewingGPT & detailed 1.34e1 0.762 0.733 1.52e-2 2.03e0 0.589

Ours & brief 1.37e1 0.738 0.706 2.26e-3 1.90e0 0.463
Ours & detailed 1.19e1 0.815 0.786 1.50e-3 1.74e0 0.553

Table 2: Quantitative evaluation results on the subset of Gar-
mentCodeData. Due to the high memory requirements for training
caused by excessively long sequences in SewingGPT, we filtered the
GarmentCodeData to retain only sewing patterns with no more than
10 panels and a maximum of 12 edges per panel (consistent with
SewingGPT) for training.

Input PL2 ↓ #Panel ↑ #Edge ↑ RotL2 ↓ TrsL2 ↓ F1 ↑

SewFormer† 3.76e0 0.859 0.956 2.01e-2 6.10e-1 0.946

Ours 3.73e0 0.883 0.978 3.51e-3 6.03e-1 0.942

Table 3: Quantitative evaluation results on the SewFactory (test
set). Note that the official training split of SewFactory is not pro-
vided by authors. Therefore, SewFormer† is retrained by us using
its official codebase with our split and evaluated on the same test set.

ber of heads for each attention layer is set to 8. The em-
bedding dimension of the DiT blocks is 768, while the feed-
forward layers have an embedding dimension of 1, 024.

Look-up embedding tables. The panel-level and edge-
level embedding tables contain M and N learnable positional
embeddings, where M is the maximum number of panels and
N is the maximum number of edges per panel in each dataset.
For SewFactory, M = 14, N = 12. For DressCodeData,
M = N = 10. For GarmentCodeData, M = 37, N = 39.

Training details. We adopt a DDPM noise scheduler for
diffusion training, with a maximum of 1, 000 denoising steps
and a linear beta scheduler (beta start = 1×10−4, beta end =
2 × 10−2). We use the AdamW optimizer [Loshchilov and
Hutter, 2019] with betas = (0.95, 0.999), a constant learning
rate of 1×10−4 and the weight decay of 1×10−2. The train-
ing epoch is set to 1, 000 with an early-stop criterion. We
evaluate the model at denoising steps of 50, 200, 500, and
1000 every 10 epochs. Based on the results shown in Fig-
ure 5, we select 50 denoising steps for inference. The mul-
timodal training is performed in a round-robin fashion, fol-
lowing the order of image prompts, text prompts and image-
and-text prompts. Our model is distributedly trained across
8 A10 GPUs (24GB) with the Hugging Face Accelerate li-
brary [Gugger et al., 2022].

4.5 Comparison with State-of-the-Art Methods
Compared with SewingGPT. Our evaluation metrics as-
sess the accuracy of geometric structures, panel placement in
3D space, and stitching relations. Table 1 shows the evalua-
tion results for SewingGPT and GarmentDiffusion, using text
prompts from two different annotation pipelines. The first
three rows show that the text descriptions generated by GPT-
4V with DressCode’s pipeline result in worse performance
than ours. This is expected, as we prompt the Llama3.1-8B-
Instruct (text-only) [MetaAI, 2024] with precise design speci-
fications, which are used to generate sewing patterns through

Figure 6: Visualization of patterns generated with SewingGPT,
SewFormer and ours. Major errors of the baseline approaches are
highlighted with red circles.

programs. Moreover, our method outperforms SewingGPT
when trained with the same captions, highlighting the advan-
tage of our approach.

We also evaluated SewingGPT on the subset of Garment-
CodeData. As shown in Table 2, our method outperforms
SewingGPT in panel and edge number accuracies, geometri-
cal shapes, and 3D placement of panels. However, it lags in
stitching edge prediction, likely due to the lack of stitching
information in the prompt.

As shown in Figure 7, our model also supports pattern
completion with incomplete patterns provided by users. It
achieves strong control even though the text descriptions are
not precise.

Compared with SewFormer. We also trained SewFormer
and GarmentDiffusion using our training split as described
in Section 4.1, while maintaining the same evaluation proto-
cols and test set to ensure fair comparison. Table 3 demon-
strates that our generative model achieves comparable perfor-
mance to SewFormer in terms of the geometrical shapes and
3D panel placement, while it surpasses SewFormer in terms
of panel and edge accuracies. These results confirm the effec-
tiveness of our method, even when using multi-pose rendered
images as prompts.

4.6 Ablation Study
Inputs of different modalities. To assess the impact of
training on model performance under different combinations
of input modalities, we trained three models using text, im-
age, and multimodal prompts on the GarmentCodeData, re-
spectively. As shown in Table 4, under the multimodal
training setting, evaluation metrics are gradually improved
when fine-grained conditions are incorporated for generation.
Specifically, the combination of detailed text descriptions and
sketches achieve the best performance. This conclusion is
also supported by the middle section of the table. Compared
with the model trained using text-only prompts, the model
trained with image-only prompts exhibits slightly better per-
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Train Modality Text Image PanelL2 ↓ #Panel ↑ #Edge ↑ RotL2 ↓ TransL2 ↓ Precision ↑ Recall ↑ F1 ↑
brief detailed sketch

MM (text&image) ✓ 1.31e1 0.388 0.600 2.26e-3 1.69e0 0.380 0.364 0.364
MM (text&image) ✓ 1.12e1 0.464 0.701 2.07e-3 1.53e0 0.472 0.457 0.460
MM (text&image) ✓ 1.08e1 0.537 0.713 1.70e-3 1.38e0 0.430 0.431 0.425
MM (text&image) ✓ ✓ 7.48e0 0.616 0.771 1.90e-3 1.00e0 0.516 0.506 0.509
MM (text&image) ✓ ✓ 6.68e0 0.670 0.819 1.85e-3 9.26e-1 0.564 0.561 0.560

Text-only ✓ 1.52e1 0.287 0.470 3.13e-3 2.00e0 0.270 0.239 0.244
Text-only ✓ 1.08e1 0.486 0.707 2.60e-3 1.61e0 0.474 0.473 0.469

Image-only ✓ 1.05e1 0.528 0.723 1.91e-3 1.31e0 0.443 0.436 0.435

Table 4: Quantitative evaluation results of GarmentDiffusion on the GarmentCodeData (test set). The first five rows are trained using
both text and image prompts and evaluated with different modality combinations. The two rows in the middle are trained with text prompts
only and evaluated with brief or detailed text descriptions. The last row is trained using image prompts. We use the whole GarmentCodeData
for training.

Figure 7: Visualization of pattern completion. Given a ground-
truth panel and a text prompt, our model is capable of generating a
consistent and complete sewing pattern.

formance. This is reasonable, as images may convey more
information than texts.

Condition injection method. In addition to employing
cross-attention for conditional training, we also experimented
with adaLN-Zero conditioning proposed in DiT [2023]. We
trained multimodal models (text & image) with both con-
ditioning methods on the augmented DressCodeData. For
cross-attention, we evaluate the model under text, image, and
text-and-image conditions, while for adaLN-Zero, we used
text and image conditions with equal probability. As shown
in Table 5, although adaLN-Zero exhibits advantages when
evaluated with brief text descriptions, it becomes less effec-
tive with detailed text descriptions and image inputs due to in-
sufficient conditional information extraction. Cross-attention
achieves the best overall performance when both detailed text
and image inputs are provided.

4.7 Limitations and Future Works
While current annotations provide detailed sewing pattern de-
scriptions, they still lack stitching information on edge and
panel connectivity, which can compromise garment simula-
tion. The annotation engine thus remains improvable. Addi-
tionally, current methods offer limited control via numerical
parameters (e.g., panel/edge count) or human body measure-
ments. From an efficiency standpoint, reducing denoising

Condition Scheme Text Image PanelL2 ↓ #Panel ↑ F1 ↑
brief detailed sketch

✓ 7.42e0 0.944 0.949
✓ 6.64e0 0.994 0.995

Cross-attention ✓ 2.47e0 0.978 0.985
✓ ✓ 2.41e0 0.994 0.994

✓ ✓ 2.39e0 0.994 0.995

✓ 7.49e0 0.958 0.949
AdaLN-Zero ✓ 7.54e0 0.970 0.959

✓ 3.25e0 0.968 0.979

Table 5: Quantitative evaluation results for different condition
injection methods. The first five rows present the evaluation re-
sults using the cross-attention method, while the last three rows cor-
respond to the conditioning using the adaLN-Zero method. Both
methods utilizes text and image prompts for training. We report
three metrics to save the space in the table.

steps is also desirable. Future work will target these chal-
lenges by enhancing controllability and generation efficiency.

5 Conclusion
In conclusion, we introduced GarmentDiffusion, a much
under-explored research direction for sewing pattern gener-
ation. Our model incorporates the design of diffusion trans-
formers with an efficient edge encoding scheme. The archi-
tecture and training of our model are simple yet efficient, en-
abling the end-to-end generation of centimeter-precise and
vectorized 3D sewing patterns. Our experimental results
demonstrate the effectiveness of our method, which bridges
the gap between creative garment design and manufactur-
ing through scalable, precise, and efficient generative mod-
eling. This work lays the foundation for advancing AI-driven
fashion technology, seamlessly connecting digital design with
practical garment production.
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