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Abstract
Considerable attention has been paid to predict-
ing student performance on exercises. The perfor-
mance of prior studies is determined by the quality
of the trait features of students and exercises. Nev-
ertheless, most of the prior study primarily exam-
ines simple pairwise interactions in learning trait
features, like those between students and exercises
or exercises and concepts, while disregarding the
complex higher-order interactions that typically ex-
ist among these components, which in turn hinders
the prediction results. In this paper, we using an in-
novative Multi-Channel Graph Contrastive Learn-
ing (MCGCL) framework that integrates various
high-order interactions for predicting student per-
formance. MCGCL characterizes graph structures
reflecting various high-order relationships among
students, exercises, and concepts through multiple
channels, thereby enhancing the trait features of
both students and exercises. Moreover, graph con-
trastive learning is employed to enhance the repre-
sentation of trait features acquired from high-order
graph structures in diverse views. Extensive exper-
iments on real-world datasets show that MCGCL
achieves state-of-the-art results on the task of pre-
dicting student performance. The code is available
at https://github.com/sunlitsong/MCGCL.

1 Introduction
Student performance prediction has been the key to intel-
ligent web education systems that provide personalized in-
structions for student learning. Existing cognitive diagnosis
methods are mainly based on IRT [Lord, 2012] and Multi-
dimensional IRT (MIRT) [Reckase, 2009], which model stu-
dent performance as a result of interactions between student
trait vectors and exercise trait vectors (e.g., exercise diffi-
culty and discrimination). However, these methods usually
rely on hand-crafted interaction functions, which often fail to

∗Corresponding author

Question:
What is the perimeter and 
area of the shaded part?

Knowledge concepts:
1) Perimeter calculation;
2) Area calculation.

:response    :examine   :master

(a) Heterogeneous graph of S-E-K

4cm 2cm

Co-examine

(b) Hypergraph

Student ConceptExercise

𝑘1 𝑘2

𝑘1

𝑘2

𝑘3

𝑘4

𝑒1

𝑒2

𝑒3

𝑒4

𝑠1

𝑠2

Proficiency

Figure 1: Examples of complex composite interactions based on
metapath and high-order interactions in student exercising process.

capture the complex relationships between student traits and
exercise traits. To address this, some works [Wang et al.,
2020] introduce complex student-exercise interactions into
student performance prediction using Deep Neural Networks
(DNN). The effectiveness of DNN-based interaction model-
ing is heavily dependent on the quality of the trait features
of the students and the exercises. To improve trait feature
learning, some researchers [Gao et al., 2021] explore pair-
wise relationships within the three-level hierarchy of student-
exercise-concept graphs. However, existing works focus only
on pairwise relations, which are not enough to capture higher-
order or composite interactions among students and exercises,
and thus are not beneficial for improving trait learning.

The higher-order relations pertain to interactions that in-
clude more than two entities at the same time, surpassing the
conventional pairwise connections. For example, as shown
in Fig. 1a, interactions between exercises and students or
knowledge concepts are usually beyond just pairwise, e.g.,
multiple students do the same exercises or one exercise ex-
amines multiple concepts simultaneously. For example, in
Fig. 1b, one exercise examines two knowledge concepts, rep-
resenting a higher-order relationship that cannot be fully cap-
tured by pairwise edges. These relations encode composite
semantics, reflecting inter-dependencies among multiple en-
tities, whereas pairwise edges focus only on two-node inter-
actions. These high-order relations are still underexplored,
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leading to a significant loss of information and thus hinder-
ing the learning of trait vectors [Liu et al., 2023]. Several
hypergraph neural networks (HNNs) have been developed to
model these high-order relations, where hypergraph convolu-
tions are applied to graph structures of hyperedges connect-
ing more than two nodes [Bai et al., 2021]. However, the data
sparsity in such networks hinders high-quality feature learn-
ing, making it challenging to directly apply HNNs to student-
exercise-knowledge networks to improve trait learning.

To address the above issue, we propose a novel Multi-
Channel Graph Contrastive Learning (MCGCL) framework
for student performance prediction. Unlike existing methods
that focus only on simple pairwise interactions between stu-
dents and exercises, MCGCL improves trait learning for stu-
dents and exercises by incorporating structure information of
diverse high-order relations via a multi-channel graph con-
trastive learning framework. The technical contributions of
our work can be summarized as follows.

1. MCGCL can effectively incorporate higher-order inter-
actions among students, exercises, and concepts into
performance prediction, which helps to enrich the trait
features of students and exercises.

2. A new graph contrastive loss is introduced to constrain
the trait feature learning for students and exercises,
which helps to distinguish the differences of these trait
features learned from different graph views.

3. We conduct extensive experiments to evaluate the per-
formance of our MCGCL. The experimental results
show that it outperforms all competing baseline meth-
ods on the task of predicting student performance.

2 Related Work
2.1 Student Performance Prediction
Previous works modeling student performance are mainly un-
der the framework of cognitive diagnosis, which models the
interactions between students’ proficiency vectors (i.e., stu-
dent trait vectors) and exercises’ trait vectors by a logistic-
like function. How to improve trait learning and interac-
tion modeling is the key for these cognitive diagnosis mod-
els to improve their prediction results. In recent years, due
to the powerful representation learning ability of DNN, re-
searchers have developed a series of deep neural cognitive
diagnosis methods. For example, [Wang et al., 2022] pro-
posed deep neural cognitive diagnosis frameworks to model
the complex non-linear interactions by the MLP. To improve
trait learning, [Gao et al., 2021] designs a relation map-
driven framework to learn relation-aware representations for
students and exercises based on a three-layer relation map
of the student-exercise-concept hierarchy. Subsequent re-
search has focused on enhancing trait learning by examin-
ing the quantitative connections between exercises and con-
cepts [Qi et al., 2023] and the diverse interactions between
students and exercises [Wu et al., 2023]. And [Liu et al.,
2024] leverages student-centered graph-based relationships
for fast new students’ mastery levels inference, while [Ma
et al., 2024] models the higher-order connectivity in group-
level cognitive diagnosis by constructing a Group-Student-

Graph HyperGraph

hypergraph group 1      ……     hypergraph group N

……

Figure 2: Examples of graphs with pairwise relations connecting
two nodes and hypergraphs with high-order relations connecting
multiple nodes.

Exercise graph based on binary relationships. Although these
methods show promising results, they only focus on pairwise
relations among students, exercises, and knowledge concepts.
This ignores the high-order relations that inherently exist,
which could reduce the ability of the learned trait vectors to
represent high-level composite semantics.

2.2 Graph Structure Modeling
The Heterogeneous Information Network (HIN) consists of
multiple types of entities and relationships, and its powerful
ability to learn structural representations has led to extensive
research in data mining and artificial intelligence tasks. Ex-
isting methods can be roughly divided into two groups: 1)
traditional network embedding methods [Dong et al., 2017];
2) GNN based methods[Liu et al., 2023]. For more complex
relations, hypergraphs offer a flexible approach to modeling
higher-order relationships. In Fig. 2, a hyperedge can con-
nect multiple nodes, extending beyond simple pairwise in-
teractions. To model hypergraph structures effectively, HNN
usually implicitly transforms hypergraphs into simple graphs
and then applies existing GNN algorithms. Most existing
HNNs are mainly focused on homogeneous hypergraphs [Sun
et al., 2021]. HyperGAT [Ding et al., 2020] utilizes the atten-
tion mechanism for heterogeneous hypergraph representation
learning to achieve text classification.

Recent advancements in contrastive learning, particularly
Graph Contrastive Learning (GCL), enable self-supervised
training on graph data. The consistency between instances
is usually measured by mutual information. GCL techniques
[Kumar et al., 2022] contrast congruent views (positive pairs)
from the same graph instance with incongruent views (neg-
ative pairs) from different instances to learn rich graph/node
representations. These methods usually learn one or more en-
coders to make the representations of positive view pairs con-
sistent with each other, while those of negative pairs are dis-
similar. Most of the existing GCL methods [You et al., 2020;
Xu et al., 2021] focus only on local or global structures of
pairwise relations, neglecting the effect of high-order rela-
tional structures on contrastive learning. To address this is-
sue, some work [Xia et al., 2021; Yu et al., 2021] intro-
duce contrastive learning into hypergraph learning by de-
veloping multi-channel hypergraph convolutional networks.
These networks use multiple channels to learn hypergraph
encodings, with each channel representing a different graph
view. The different channels can acquire new information
from each other to improve their ability in feature learning.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Student

Exercise

Knowledge

Concept

E-K-E

E-S-E

Metapath

𝑠1

𝑠2

𝑒1

𝑒2

𝑘1

𝑘2

𝑘3

𝑠1

𝑠2

𝑘1
𝑘2

𝑘3

Metapath S-E-KHeterogeneous GraphNode Type

Figure 3: Examples of several metapaths that connect nodes of stu-
dents, exercises, and knowledge concepts.

3 Preliminaries
Suppose that there are N students, J exercises, and K knowl-
edge concepts. The performance of the n-th student on the
j-th exercise is denoted by rnj , where rnj = 1 for a correct
response and rnj = 0 otherwise. The relations between ex-
ercises and knowledge concepts are captured by the binary Q
matrix (qjk)J×K . If the j-th exercise assesses the k-th knowl-
edge concept, qjk = 1, otherwise qjk = 0. The embeddings
of students, exercises, and knowledge concepts are projected
into the d-dimensional feature space as:

S = X⊤
s W s, E = X⊤

e W e, K = X⊤
k W k, (1)

where Xs ∈ RN×N , Xe ∈ RJ×J and Xk ∈ RK×K are the
one-hot embedding matrices. The trainable parameter ma-
trices W s ∈ RN×d, W e ∈ RJ×d and W k ∈ RK×d ini-
tialize the embeddings for students, exercises, and concepts.
The embedding vector for each student is also called student
proficiency trait [Reckase, 2009], each dimension of which
indicates the proficiency degree on each concept.

Definition 1 (Heterogeneous hypergraph). Heterogeneous
hypergraphs Ghyper = (V,E) contain multiple types of nodes
or hyperedges, where V is the set of P unique nodes and E is
the set of M hyperedges. Each hyperedge ϵ connects at least
two nodes and is assigned a positive weight Wϵϵ. The inci-
dence matrix H ∈ RP×M is defined such that Hiϵ = 1 if ϵ
contains node vi, otherwise 0.

Definition 2 (Metapath). A metapath ϕ is a path of the form
A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1, which describes the compos-

ite relation R = R1◦R2◦· · ·◦Rl between the node types A1

and Al+1, where ◦ denotes the composition operator on rela-
tions. Fig. 3 shows some examples of metapaths connecting
nodes of students, exercises, and knowledge concepts.

Definition 3 (Metapath-based hypergraph). Given a metap-
ath ϕ, we construct a hypergraph Gϕ

hyper by treating the node
vi of one type as a hyperedge ϵi with nodes connected to vi
through ϕ as the member nodes of ϵi. The degree of each node
is Dϕ

ii =
∑M

ϵ=1 W ϵϵHiϵ and the degree of each hyperedge is
Bϕ

ϵϵ =
∑P

i=1 Hiϵ, where both of them are diagonal matrices.
And different metapaths correspond to different W ϕ

ϵϵ.

4 The Proposed Model
The proposed MCGCL framework, shown in Fig. 4, en-
hances trait learning for students and exercises through multi-
channel contrastive learning with hypergraphs and metapaths.
It consists of four main modules.

4.1 Module I: Hypergraph-Based Multi-channel
Trait Learning (HMT)

In this module, we learn trait vectors for students and ex-
ercises through a two-channel hypergraph convolution, with
each channel encoding one type of high-order relation derived
from the Exercise-Knowledge concept (E-K) and Student-
Knowledge concept (S-K) metapaths.
Channel E-K. Given the known Q-matrix, we construct a
hypergraph using the ϕE-K to capture the high-order relations
among exercises and knowledge concepts. This part involves
learning exercise traits and concept feature vectors.

We denote the hypergraph constructed by ϕE-K as GEK
hyper,

which contains two types of nodes and thus has two incidence
matrices: 1) HEK

vK
treats exercises as hyperedges and knowl-

edge concepts as nodes; 2) HEK
vE

treats knowledge concepts
as hyperedges and exercises as nodes. Using GEK

hyper, we
learn the feature representations for knowledge concepts by
the spectral hypergraph convolution used in [Bai et al., 2021]:

KEK (l+1)
= DEK−1

HEK
vK

WEK
ϵϵ BEK−1

HEK
vK

⊤
XEK (l)

, (2)

where KEK (l+1)
denotes the learned feature vectors for K

concepts at the l + 1 layer, DEK and BEK are degree ma-

trices of nodes and hyperedges. XEK (0)
is the initial fea-

ture of concept K. The convolution process can be seen as
a two-step process of performing the node-hyperedge-node
feature transformation. First, aggregating information from

nodes to hyperedges using HEK
vK

⊤
XEK (l)

; then aggregat-
ing from hyperedges to knowledge concept nodes by pre-
multiplying with HEK

vK
. Similar to KEK , exercise trait vec-

tors EEK = {eEK
j }J

j=0
based on GEK

hyper can be learned.

Channel S-K. Similar to Channel E-K, this part learns trait
representations for students and concepts based on the hy-
pergraph GSK

hyper constructed from the ϕS-K. This hypergraph
captures high-order relations among students and knowledge
concepts. Since the groundtruth for S-K is unavailable, we
obtain it from the Student-Exercise-Knowledge (S-E-K) meta-
path, using the exercise as the intermediate. This is reason-
able because a student’s mastery of a concept can be inferred
from their response to exercises that assess the concept.

The hypergraph GSK
hyper contains two types of nodes: stu-

dent and concept nodes, leading to two incidence matrices.
First, HSK

vK
treats student nodes as hyperedges and concept

nodes as their members. Second, HSK
vS

treats concept nodes
as hyperedges and student nodes as their members. Specifi-

cally, we can learn the feature matrix KSK (l+1)
by

KSK (l+1)
= DSK−1

HSK
vK

W SK
ϵϵ BSK−1

HSK
vK

⊤
XSK (l)

, (3)

where DSK and BSK denote the degree matrices of nodes
and hyperedges in the hypergraph constructed by ϕS-E-K. The

trait vectors for students SSK (l+1)
can also be learned by the

hypergraph convolution based on GSK
hyper.

Since the importance of the nodes in a hyperedge is usu-
ally different from each other, we impose an attention learn-
ing on the incidence matrix Hvz

to measure the connection
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Figure 4: The framework of our proposed MCGCL.

degree (or importance) of one node to a hyperedge. Specifi-
cally, we denote the attention weights of vi for hyperedge ϵj
by Hϕ

vz
(i, j), which can be learned by

Hϕ
vz
(i, j) =

exp(σ(b⊤[xiW a||ejW b]))∑
k∈Ni

exp(σ(b⊤[xiW a||ekW b]))
, (4)

where xi denotes the feature of node vi and ej is the feature
of the hyperedge ϵj it connects to. Ni is the set of all neighbor
nodes within ϵj connected to vi. || denotes the concatenation
to retain both sets of information, and b is a learnable vector,
allowing the model to flexibly capture intricate interactions.

Finally, we multiply Hϕ
vz
(i, j) and HEK

vK
in Eq. (2), and

with HSK
vK

in Eq.(3) to obtain non-binary incidence matrices.

4.2 Module II: Metapath-Based Multi-channel
Trait Learning (MMT)

This module integrates structural information from diverse
composite relations into trait representation learning through
three channels, each corresponding to a specific metapath.
Channel E learns exercise trait vectors based on the Exercise-
Knowledge-Exercise (E-K-E) metapath, Channel S learns stu-
dent trait vectors based on the Student-Exercise-Student (S-E-
S) metapath, and Channel K learns concept features.
Channel E. We first construct an exercise relation graph
GEE based on the ϕE-K-E. Then, we apply the heterogeneous
graph attention network [Wang et al., 2019] on GEE to learn
the exercise trait vectors, denoted by EEKE =

{
eEKE
j

}J

j=1
.

Specifically, for exercise node ej , we learn its trait vector
ej

EKE by aggregating the trait vectors of metapath-based
neighbors of ej with the corresponding attention coefficients

eEKE
j

(l+1)
= σ[

∑
i∈N EKE

j

αEKE
ji ei

(l)], (5)

where eEKE
j is the feature vector for exercise ej . The

N EKE
j denotes the set of metapath-based neighbors of ej ,

in which the nodes are connected to ej via the ϕE-K-E. αEKE
ji

denotes the importance of node ei to node ej , representing
the edge weights between them based on ϕE-K-E, which can
be learned through the metapath-based node-level attention
mechanism in [Wang et al., 2019].

Formally, given a node pair (i, j) connected via metapath
ϕ, the node-level attention uϕ

ij can be represented by

uϕ
ji = att(xj ,xi;ϕ) = σ

(
z⊤
ϕ [xj ||xi]

)
, (6)

where uϕ
ji denotes the importance weights of node i to node

j based on matapath ϕ. The att denotes the neural network
that performs attention learning. After obtaining uϕ

ji for all
meta-path based neighbors of node j, we normalize them to
get the weight coefficient αϕ

ji for node i via softmax function.

Channel S. Similar to Channel E, we first construct a stu-
dent relation graph based on ϕS-E-S, denoted by GSS . Then,
we learn exercise trait features by using the same graph con-
volution operations [Wang et al., 2019] on GSS . The feature
matrix for all N students is denoted by SSES =

{
sSES
n

}N

n=1
,

which can be learned as Eq. (5).
Channel K. This channel encodes the structure information
of knowledge concept graphs. We consider two types of clas-
sical concept dependency relations–prerequisite and similar-
ity relations–which have been widely used in concept graph
learning [Zhang et al., 2022]. Since these relations carry dis-
tinct semantics, learning features separately from each graph
is beneficial. Specifically, we apply graph attention convolu-
tions on prerequisite and similarity graphs to learn the con-
cept features Kpr and Ksr, and combine them to obtain the
final knowledge concept features Kcr = {kcr

c }Kc=1.
Different knowledge concepts have varying importance in

answering questions, and each dimension of these trait vec-
tors reflects the proficiency of students and discrimination
factors for each concept. In Fig. 5, we present the frame-
work for updating the trait features under the guidance of con-
cepts. We first learn comprehensive semantic features Kf

for knowledge concepts by combining the concept features
learned in different settings of graph structures. KEK and
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Figure 5: The illustrations for combining the concept features and
the trait features learned from different channels.

KSK capture the high-order relations based on ϕE-K and ϕS-K,
respectively. Kr learned in Module II captures the concept
dependency relations. The Kf = kf

c

K

c=1 can be obtained by

Kf = LeakyRelu
(
W f

(
KEK ||KSK ||Kcr

))
. (7)

With Kf , we learn the importance weight for each concept
by estimating the attention of exercise ej on each kc, denoted
by αjc. The computation of αjc can be formulated by

αjc = softmax

(
eEKE
j W eke

(
qjck

f
cW k

)⊤
)
, (8)

where qjc ∈ {0, 1} denotes the examination relations be-
tween exercises and concepts. The feature vector for exercise
eEKE
j , can be obtained by Eq. (5). Thus, the alignment be-

tween the features of exercises and concepts is measured via
a dot product. This score is then converted into an importance
weight. Considering the importance weight αjc of concept kc
for exercise ej , we update exercise features by

eKC
j = αj ⊙ eEKE

j , (9)

where αj = (αj1, αj2, · · · , αjK), EKC =
{
eKC
j

}J

j=1
and

eKC
j ∈ RK denotes the exercise feature after update. The

symbol ⊙ denotes element-wise product between vectors.
Similarly, by taking into account the importance of each

concept, we can also update student trait features SKC by
the way described in Eq. (8) and (9).

4.3 Module III: Graph Contrastive Learning
Inspired by GCL works [Tian, 2022; Huang et al., 2022], it is
beneficial to improve node feature learning by distinguishing
the differences among different graph views to obtain useful
structure information of each graph. Besides, GCL also helps
to alleviate the sparsity problem of the interactions among en-
tities by encouraging consistent features across graph views.

We use contrastive learning to pull together the different
views of the same node and push apart those of different
nodes. The loss for optimizing the features of the student
nodes and the exercise nodes is denoted by LS

ss and LE
ss:

LS
ss = −logσ

(
fD

(
sKC
n , sSK

n

))
− logσ

(
1− fD

(
s̃KC
i , sSK

n

))
, (10)

LE
ss = −logσ

(
fD

(
eKC
j , eEK

j

))
− logσ

(
1− fD

(
ẽKC
i , eEK

j

))
. (11)

The s̃Ki and ẽKi denote the features of the negative sample
nodes of the student node sn and the exercise node ej . For

example, the negative samples of si are the student nodes
other than sn. The fD(·) denotes the distinguisher used to
compute the consistency scores of the two vectors, which is
implemented as an inner product operation between vectors.

4.4 Module IV: Student Performance Prediction
This part predicts the student performance based on interac-
tions between students and exercises, where the ground truth
is binary: 1 for correct and 0 for incorrect responses. We first
fuse the features learned by Module I and II to obtain com-
prehensive trait features for both students and exercises.
Student feature fusion. We learn comprehensive student
trait features by combining the trait features learned from dif-
ferent channels, which can be formulated by

SM = σ
((

SSK ||SKC
)
·W⊤

SM

)
. (12)

The SSK and SKC encode different high-order student rela-
tions, which are derived from the corresponding hypergraph
structure in Module I and the metapath-based graph structure
in Module II, respectively. SM ∈ RN×d denotes the obtained
trait feature matrix for students, and W SM ∈ R denotes a
trainable parameter matrix.
Exercise feature fusion. Similarly, we learn comprehen-
sive exercise trait features EM ∈ RJ×d by combining the
trait features learned from different channels, i.e., EEK and
EKC . Specifically, the learning of EM can be formulated by

EM = σ
((

EEK ||EKC
)
·W⊤

EM

)
. (13)

Finally, we input the learned SM and EM into a multi-
layer perceptron to predict the probability of students giving
correct answers by

Y = MLP
(
SMW pE

⊤
M

)
, (14)

where W p ∈ RK×K is the trainable matrix and Y =
{ynj} ∈ RN×J are the predicted probability scores for all N
students on J exercises. During the training phase, a cross-
entropy is used to estimate the loss between predicted results
and the groundtruth, which can be formulated by
Ltr = −

∑N
n=1

∑J
j=1 ỹnj log (ynj) + (1− ỹnj)log (1− ynj), (15)

where ỹi denotes the groundtruth performance for the n-th
student on the j-th exercise.

Overall, we use both the above cross-entropy loss and the
contrastive loss for self-supervised feature learning . Specifi-
cally, the joint learning loss objective can be formulated by

L = Ltr + γLS
ss + βLE

ss, (16)
where γ and β are used to control the importance of the self-
supervised task in the overall task.

5 Experiments
5.1 Datasets
We conduct experiments on two benchmarks: Junyi1 [Chang
et al., 2015] and ASSIST2 [Razzaq et al., 2005], both of

1https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
2https://sites.google.com/site/assistmentsdata/home/

2009-2010-assistment-data
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Dataset Junyi ASSIST

#Students 10,000 2,493
#Exercises 835 17,746
#Knowledge concepts 835 123
#Response records 353,835 267,415
#Knowledge concepts per exercise 1.0 1.2
#Response records per student 35.38 107.27
#Prerequisite relations 988 1,164
#Similarity relations 1,040 1,256

Table 1: The statistics of datasets.

which provide students’ exercise performance records and
a Q-matrix indicating the relations between exercises and
knowledge concepts. To ensure sufficient data for diagno-
sis, we exclude students with fewer than 15 response records
in each dataset. The statistics of both datasets are shown in
Table 1. Junyi dataset provides the concept dependency re-
lations annotated by experts, which contain prerequisite and
similarity relations. Specifically, the prerequisite relations be-
tween concept pairs (ki, kj) indicate the former is the prereq-
uisite knowledge of mastering the latter. The similarity rela-
tion is annotated by the triplet (ki, kj , value), where value
denotes the strength of similarity between two knowledge
concepts. As ASSIST does not explicitly provide dependency
relations between knowledge concepts, we follow the base-
lines [Gao et al., 2021] to construct concept graphs with pre-
requisite and similarity relations based on certain statistics.

5.2 Experimental Setup
During training, the batch size for dataset is set to 9000 with a
node feature dimension of 200. The l2 regularization param-
eter is 10−5, and the learning rate is 0.0001. In our experi-
ments, we set γ = β = 1 to give equal importance to the over-
all loss function. All competing methods are implemented
with PyTorch, and experiments are conducted on an NVIDIA
RTX 4090 GPU. To evaluate the effectiveness of MCGCL,
we compare it against state-of-the-art performance prediction
methods, which can be divided into two groups. One group
of baselines is Cognitive Diagnosis Models (CDMs). An-
other group focuses on graph-based approaches, which uti-
lize structural and relational information embedded in graphs
to enhance performance.

5.3 Performance Comparison
In Table 2, we present the performance results of all compet-
ing methods. Several important insights can be drawn from
these results. First, MCGCL consistently outperforms both
previous CDMs and GNN-based baselines on all metrics. It
indicates that incorporating diverse high-order interactions
among students, exercises, and concepts into performance
prediction is beneficial for achieving the best results. This
demonstrates the effectiveness of our MCGCL in improving
trait learning for students and exercises by modeling the di-
verse high-order interactions under the framework of multi-
channel GCL. In contrast, existing methods usually treat each
student and each exercise independently when learning their
corresponding trait features. This weakens the ability of the

learned trait features to capture the high-order interactions be-
tween students and exercises and thus impedes performance
improvement. Second, almost all graph learning-based meth-
ods perform better than CDMs that do not consider complex
interactions. This is because these CDMs mostly only take
into account pairwise student-exercise interactions, overlook-
ing the diverse high-order interactions (e.g., student-exercise-
student and exercise-concept-exercise interactions) that carry
complex semantics.

5.4 Ablation Study
Effectiveness Analysis of MCGCL Modules
To explore the effectiveness of each module in our MCGCL,
we test the performance of our MCGCL with different config-
urations. MCGCL-P, MCGCL-H, and MCGCL-GC are ob-
tained by removing module I, II and III, respectively.

The experimental results of the variants are also re-
ported in Table 2. The performance of variant MCGCL-P
shows the largest performance degeneration, e.g., 1.29% on
AUC for ASSIST. This demonstrates the necessity to im-
prove trait learning by encoding high-order student interac-
tions and high-order exercise interactions through the hyper-
graph structures in Module HMT. Without encoding graph
structures of composite relations in Module MMT, variant
MCGCL-H witnesses a performance drop, which demon-
strates the effectiveness of encoding composite relations be-
tween students and between exercises. We also observe that
the performance of variant MCGCL-GC degenerates on all
datasets, which indicates the effectiveness of GCL in im-
proving trait learning. This is because contrastive learning
between different channels helps to distinguish node fea-
ture differences across various graph views, which enhances
node feature learning via useful structure information of each
graph.

Comparative Analysis of Different Prediction Modules
In our MCGCL, we predict student performance directly by
the inner product of the trait features of students and exer-
cises, which is different from the IRT-like scoring functions
used in previous cognitive diagnosis methods. Therefore, we
also conduct some experiments to investigate the effective-
ness of our scoring functions based on the inner product of
the trait features in predicting student performance. Specif-
ically, we test the performance of MCGCL with the follow-
ing configurations: MCGCL-IRT is obtained by replacing the
scoring function in Eq. (14) with the IRT function. MCGCL-
MIRT is obtained by replacing our scoring function with the
MIRT function. MCGCL-NCD is obtained by replacing our
scoring function with the diagnosis layer of NCD.

From Fig. 6, we can see that MCGCL outperforms all vari-
ant models, achieving at least 0.97% improvement in AUC
for Junyi and 1.86% improvement in AUC for ASSIST. This
is because the trait features of students and exercises learned
by our MCGCL can effectively capture rich high-order and
composite interactions between students and exercises. In
this case, MCGCL does not require manually designed IRT-
like linear functions to model student-exercise interactions,
which may degenerate the performance prediction results by
imposing ill-fitting linear interaction constraints.
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Methods
Junyi ASSIST

ACC AUC RMSE ACC AUC RMSE

IRT [Lord, 2012] 67.60 77.50 42.68 64.26 69.83 46.59
MIRT [Yao and Schwarz, 2006] 75.13 79.89 41.17 71.70 74.94 45.17
PMF [Mnih and Salakhutdinov, 2007] 68.34 76.44 43.73 67.12 76.45 44.51
NCD [Wang et al., 2020] 74.43 79.09 41.72 73.14 75.94 43.08
KSCD [Ma et al., 2022] 77.83 82.23 39.12 73.51 76.36 41.40
SCD [Shen et al., 2024] 74.86 76.69 43.91 - - -

Metapath2vec [Dong et al., 2017] 75.40 80.52 40.87 72.13 73.30 42.66
GTN [Yun et al., 2019] 74.63 79.30 41.43 73.01 76.58 42.43
HAN [Wang et al., 2019] 76.29 81.53 40.31 73.13 76.46 42.43
RCD [Gao et al., 2021] 77.16 82.62 39.63 73.55 77.21 42.13
KaNCD [Wang et al., 2022] 75.40 77.50 42.20 73.20 76.40 42.40
ICD [Qi et al., 2023] - - - 73.83 77.27 41.90

MCGCL-P 76.69 82.28 39.74 72.91 76.59 41.13
MCGCL-H 77.03 82.44 38.95 72.98 77.32 41.02
MCGCL-GC 77.86 83.06 38.83 73.62 77.51 40.79
MCGCL 78.02 83.29 39.41 74.02 77.88 40.35

Table 2: Experimental results on student performance prediction (%). The best results are denoted in bold.
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Figure 6: Ablation experiment results of the prediction module(%).

5.5 Hyper-Parameters Sensitivity Analysis
Key hyperparameters in MCGCL encompass the number of
graph convolution layers in Module II, the sizes of the stu-
dent and exercise embeddings as determined by Eq.(12) and
Eq.(13), along with the parameters γ and β, which serve as
the weighting factors for the loss outlined in Eq.(16). We
investigates how these hyperparameters affect MCGCL’s per-
formance and evaluates its robustness using the Junyi dataset.

As shown in Fig. 7a shows that altering the number of
layers in the neural network limitedly affects the model’s
performance on both datasets. Optimal results are achieved
with a two-layer structure, whereas more complex networks
often suffer from overfitting, leading to a decline of perfor-
mance. Fig. 7b, enlarging the embedding size enhances pre-
diction performance, suggesting that a larger embedding size
aids in encoding complex knowledge information effectively.
Nonetheless, this enlargement in embedding size also leads
to a substantial rise in the model’s number of parameters,
thereby requiring more computational power. Consequently,
selecting the embedding size involves balancing enhanced
performance against the need for resources. As illustrated
in Fig. 7c, setting γ and β to values less than 1 leads to inad-
equate utilization of graph contrastive learning by the model,
causing underfitting. Nevertheless, when γ and β take on
large values, the model is excessively oriented towards con-
trastive learning, resulting in bias and overfitting issues. Ad-
justing these parameters adequately is essential for achieving
an optimized balance.
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Figure 7: Experiment results on hyper-parameter sensitivity.

6 Conclusion
In this paper, we present an innovative MCGCL framework
that integrates a variety of higher-order interactions between
students and exercises to improve student performance pre-
diction. MCGCL employs diverse channels to encode nu-
merous high-order or composite relationships from differ-
ent graph views, while graph contrastive learning enriches
the trait features acquired from these views. Comprehensive
tests on actual benchmark datasets reveal that MCGCL attains
leading-edge performance with exceptional efficiency. In fu-
ture studies, efforts could could focus on enhancing computa-
tional efficiency and integrating temporal dynamics to better
reflect shifts in student learning over time.
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