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Where and When: Predict Next POI and Its Explicit Timestamp in Sequential
Recommendation

Yuanbo Xu , Hongxu Shen , Yiheng Jiang , En Wang∗

MIC Lab, College of Computer Science and Technology, Jilin University
{yuanbox, wangen}@jlu.edu.cn, {shenhx23, jiangyh22}@mails.jlu.edu.cn

Abstract
Sequential point-of-interest (POI) recommendation
aims to recommend the next POI for users in ac-
cordance with their historical check-in information.
However, few attempts treat timestamps of check-
ins as a core factor for sequence models, leading
to insufficient insight into user behavior and sub-
optimal recommendations. To address these limi-
tations, we propose to assign equal importance to
both POIs and their timestamps, shifting the point
of view to recommend the next POI and predict the
corresponding timestamp. Along these lines, we
present the Time-Aware POI Recommender with
Timestamp Prediction (TAPT), a multi-task learn-
ing framework for explainable POI recommenda-
tions. Specifically, we begin by decoupling times-
tamps into multi-dimensional vectors and propose
a timestamp encoding module to encode these vec-
tors explicitly. Additionally, we design a special-
ized timestamp prediction module built on the tra-
ditional sequence-based POI recommender back-
bone, effectively learning the strong correlation be-
tween POIs and their corresponding timestamps
through these two modules. We evaluated the pro-
posed model with three real-world LBSN datasets
and demonstrated that TAPT achieves comparable
or superior performance in POI recommendation
compared to the baseline backbone. Besides, TAPT
can not only recommend the next POI, but predict
the corresponding timestamp in the future.

1 Introduction
The rapid growth of location-based social networks (LBSNs)
has sparked significant interest in personalized location rec-
ommendation services [Wang et al., 2019b]. One key ap-
proach within these services is sequential point-of-interest
(POI) recommendation, which focuses on recommending the
next POI that a user might explore based on his or her pre-
vious visit sequence [Manotumruksa et al., 2018]. With ad-
vancements in information technology, researchers have de-
veloped numerous deep learning methods in this field [Wang

∗ Corresponding author.
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Figure 1: Illustration of three recommendation scenarios. Two iden-
tical POI sequences with different timestamps yield three distinct
recommendation results. Scenario 1: Recommend the same POIs.
Scenario 2: Take timestamps into account, recommending different
POIs. Scenario 3: Explicitly utilize timestamps to recommend dif-
ferent POIs and their respective timestamps.

et al., 2022; Lian et al., 2020; Xu et al., 2025]. These methods
include Multi-Layer Perceptron (MLP) [Zhou et al., 2022;
Jiang et al., 2024], Recurrent Neural Networks (RNN) [Hi-
dasi et al., 2016a; Yang et al., 2020], Convolutional Neu-
ral Networks (CNN) [Tang and Wang, 2018; Yuan et al.,
2019], and Transformer-based models [Lian et al., 2020;
Luo et al., 2021; Devlin et al., 2019]. Researchers have
recognized the potential of these architectures and extended
them to sequential POI recommendations, leveraging both
spatial and temporal information to capture user preferences
and predict the next POI based on previous visits.

Despite the commendable performance achieved by exist-
ing methods, they exhibit two main limitations when mod-
eling POI transitions, as shown in Scenario 1 and Scenario
2 in Figure 1. Scenario 1: Recommend POIs based on
sequential correlations. By prioritizing sequential correla-
tions, these methods overlook the specific timestamp infor-
mation embedded within sequences and, therefore, lead to an
incomplete modeling of user behavior, producing suboptimal
recommendations [Rendle et al., 2010; Kang and McAuley,
2018; Sun et al., 2019; Xu et al., 2024]. Scenario 2: Rec-
ommend POIs with timestamps as auxiliary information.
Scenario 2 builds upon Scenario 1 by incorporating times-
tamps as auxiliary inputs, enabling the model to capture se-
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quential dependencies through temporal signals and produce
personalized recommendations. Nevertheless, both scenarios
concentrate exclusively on predicting the next check-in POI
while overlooking the associated timestamp, thereby com-
promising recommendation timeliness and impeding the real-
time deployment of LBSN services.

To resolve the bottlenecks in the aforesaid scenarios, we in-
troduce a new scenario. Scenario 3: Recommend the next
check-in POI and predict the corresponding timestamp si-
multaneously. In this scenario, the recommendations possess
practical significance in terms of timeliness, facilitate timely
individual travel planning, and enhance the effectiveness of
LBSN applications. Since individuals tend to visit locations
based on specific temporal and spatial contexts, accurately
predicting their next destination at the most probable time
will enhance the relevance and usability of such services. As
shown in Figure 1, two users with the same POI sequence but
different timestamp sequences are shown on the left, and the
results of three scenarios are compared on the right. In Sce-
nario 1, the system recommends identical POIs to both users
due to identical input sequences. In Scenario 2, the times-
tamp information is an auxiliary input to the model, leading
to different POI recommendations, but without corresponding
time information. Our proposed Scenario 3 recommends per-
sonalized POIs for users while predicting timestamps for their
next interactions, reflecting when and where users are likely
to go, and providing a holistic recommendation service.

To realize the above concept, we propose the Time-Aware
POI recommender with Timestamp prediction (TAPT) as a
multi-task learning framework. Our approach begins by de-
coupling timestamps into multidimensional vectors, which
are then encoded into trainable embeddings via a times-
tamp encoder, which explicitly leverages check-in times-
tamps. Next, we design a connection layer to combine POI
and timestamp embeddings into joint embeddings. We feed
this joint embedding into a POI recommendation backbone
and pass the output from the backbone into a designed times-
tamp predictor, enabling multitask learning through a unified
loss function. To validate the effectiveness of TAPT, we con-
duct extensive experiments on three public LBSN datasets.
The results demonstrate that TAPT achieves comparable or
even superior POI recommendation performance compared
to the baseline backbone. Besides, TAPT can recommend the
next POI and predict the corresponding timestamp in the fu-
ture. Our contributions are summarized as follows:

• This paper tackles the next check-in time prediction in
the sequential POI recommendation scenario, which has
been overlooked by previous works. It lights on a novel
approach for meaningful and timely recommendations.

• This paper proposes an end-to-end multi-target learning
framework, which attaches equal importance to both the
next POI classification and time prediction.

• Experimental results on three real-world datasets vali-
date its superior recommendation quality and temporal
prediction precision compared to baseline models. The
code for our work is available at: https://github.com/
MICLab-Rec/TAPT.

2 Related Work

2.1 Sequential POI Recommendation

Numerous excellent sequential POI recommendation meth-
ods have emerged with the advancement of information
technology and the increasing availability of user check-in
data. Traditional methods typically use Markov Chains [He
and McAuley, 2016] and Matrix Factorization [Twardowski,
2016] to model the transition patterns between POIs [Liu et
al., 2016]. For instance, FPMC [Rendle et al., 2010] linearly
combines the two to model transitions between POIs across
a series of baskets. With the advancement of deep learning
technologies, RNN-based [Hidasi et al., 2016b] and CNN-
based [Yuan et al., 2019] models have demonstrated high ef-
ficiency in sequence modeling. Among these, GRU4Rec [Hi-
dasi et al., 2016a] utilizes a modified gated recurrent unit to
learn the patterns of users’ dynamic preferences, while Caser
[Tang and Wang, 2018] employs horizontal and vertical con-
volutional kernels to capture sequential dependencies from
both local and global perspectives. Meanwhile, the success
of Transformer-based models [Vaswani et al., 2017] has also
inspired the development of Transformer-based sequence en-
coders. For example, SASRec [Kang and McAuley, 2018]
is the pioneering approach to incorporate self-attention net-
works into the sequential recommendation domain. Bert4Rec
[Sun et al., 2019] advances this by extending SASRec to cap-
ture bidirectional sequential dependencies. To account for
temporal factors, TiSASRec [Li et al., 2020] develops a time-
aware self-attention mechanism to examine how varying time
intervals impact predictions. Besides, the FMLP4Rec [Zhou
et al., 2022] method combines multi-head self-attention with
frequency domain modeling to enhance sequence modeling
capabilities in recommender systems. STAN [Luo et al.,
2021] is a transformer-based model that modifies the atten-
tion coefficients by incorporating temporal and spatial inter-
val information to capture sequential dependencies more ef-
fectively. However, these methods either overlook or only
implicitly consider the timestamp information of check-ins.
GeoSAN [Lian et al., 2020] introduces a novel self-attention-
based geography encoder, demonstrating state-of-the-art per-
formance in modeling precise locations.

2.2 Timestamp Encoding

Timestamp encoding has been extensively researched in both
academia and industry. Some previous works typically en-
code the time gaps in sequential models[Chang et al., 2023],
which captures the significance of sequential information but
fail to directly model time information. Other works divide a
day into morning, noon, evening, and night, applying differ-
ent graph models to takeaway recommendations at different
times of the day [Zhang et al., 2023]. However, this method
is clearly difficult to generalize to other tasks. Meanwhile,
the timestamp encoding method [Li et al., 2022] encodes
the hours of the day as hour embeddings, discretely perceiv-
ing timestamp information. However, these methods merely
use timestamp encoding as auxiliary information and do not
leverage this encoding to predict the next interaction times-
tamp.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/MICLab-Rec/TAPT
https://github.com/MICLab-Rec/TAPT


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0 2 4 6 8 10121416182022
Target Hour

0
2
4
6
8

10
12
14
16
18
20
22

So
ur

ce
 H

ou
r

Hour-Hour Transition Frequency

500

1000

1500

2000

2500

3000

3500

4000

(a) NYC.

0 2 4 6 8 10121416182022
Target Hour

0
2
4
6
8

10
12
14
16
18
20
22

So
ur

ce
 H

ou
r

Hour-Hour Transition Frequency

2500

5000

7500

10000

12500

15000

17500

(b) TKY.

Figure 2: The temporal distribution of sequential transitions on the
NYC and TKY datasets.

3 Preliminaries
3.1 Basic Definition
Definition 1: (Check-in) A check-in is represented as c =
(u, p, ℓ, t), where user u visits POI p at timestamp t, and ℓ
represents the geographical coordinates of p.
Definition 2: (Check-in Sequence) A check-in sequence
consists of a chronologically ordered set of check-in records.
Let Su = {c1, c2, · · · , cm} represent the check-in sequence
of user u, where ck denotes the k-th check-in in the sequence,
and m denotes the length of the sequence.
Definition 3: (Sequential POI Recommendation) Given
user u’s check-in sequence, the goal of sequential POI rec-
ommendation is to recommend the Top-K POIs that the user
will most likely be interested in at the next interaction.
Definition 4: (Sequential Timestamp Prediction) Given
user u’s check-in sequence, the objective of sequential times-
tamp prediction is to forecast the timestamp of the user’s next
visit to a specific POI.

3.2 Problem Definition
Given a user u’s historical sequence Su, the POI recommen-
dation and timestamp prediction problem can be formalized
as

F(Su) → Ru, t̃u, (1)

where Ru is the Top-K recommendation list and t̃u is the
predicted timestamp for the next check-in. F(·) represents
the multi-task learning framework we aim to learn.

3.3 Data Observations and Analyses
To address the proposed problem, we conduct data analyses
on the NYC and TKY datasets. We split all historical check-
in sequences into consecutive pairs and treat the former and
the latter check-in as source and target, respectively. Then,
we statistically analyze the distribution of time transferring
from sources to targets. Figure 2 shows these transitions,
with the X-axis representing the target hour and the Y-axis the
source hour. Each element indicates the frequency of transi-
tions between the corresponding hours. We observe frequent
transitions between adjacent hours, as shown by the diago-
nal dominance in the transition matrix. This indicates that
timestamps play an important role in POI recommendation

(a) NYC-Users. (b) NYC-POIs.

(c) TKY-Users. (d) TKY-POIs.

Figure 3: The temporal distribution of users and POIs on the NYC
and TKY datasets.

due to short-interval behavioral patterns. Secondly, we ana-
lyze the most active hour for each user and examine the peak
hour for each POI. The temporal distributions are plotted in
Figure 3, with the X-axis representing the hours of the day
and the Y-axis showing the number of active users (or pop-
ular POIs) during each time period. We can conclude a pat-
tern that the number of users performing check-in behaviors
and the number of POIs being accessed exhibit synchronized
changes over time. Specifically, both numbers achieve the
peak point at midnight and reach the lowest point at 8 p.m. in
NYC whereas the situation comes at 1 a.m. and 10 a.m. in
TKY, respectively.

Motivated by these observations, predicting the next check-
in time can be helpful in deploying LBSN services. This pa-
per proposes a simple and effective method to establish the
contact between POI recommendation and time prediction.

4 Methodology
4.1 Encoder Module
Figure 4 illustrates the overall architecture of TAPT. The en-
coder module of TAPT, consisting of the POI encoder and
the timestamp encoder, encodes the POI and timestamp se-
quences derived from a user’s check-in history. For the POI
sequence, we transform it into Ep ∈ Rm×d1 through POI em-
bedding techniques, where m represents the sequence length
and d1 represents the POI embedding dimension.

Ep = [e1, e2, . . . , em], (2)

where Ep denotes the encoded POI embedding, ei ∈ R1×d1

is the embedding vector of the i-th POI in the sequence. We
split each timestamp into three components to capture daily
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Figure 4: The overall framework of the proposed TAPT.

behavior patterns: hour, minute, and second. These discrete
values are transformed into embeddings, allowing the model
to capture the temporal aspects of each check-in with fine
granularity. For instance, the hour component has 24 discrete
values, ranging from 0 to 23.

T = [T1,T2, . . . ,Tm] =


h1 m1 s1
h2 m2 s2
...

...
...

hm mm sm

 , (3)

where T ∈ Rm×3 represents the decoupled timestamp se-
quence, and Ti ∈ R1×3 denotes the timestamp at the i-th
time step. Furthermore, hi, mi, and si represent the hour,
minute, and second of the i-th time step to capture the user’s
behavior within a single day. Next, we encode T into times-
tamp embeddings as follows:

Et = [t1, t2, . . . , tm], (4)
where Et ∈ Rm×d2 is the timestamp embedding, with d2 as
the timestamp embedding dimension, and ti ∈ R1×d2 is the
embedding of each timestamp Ti after encoding. We decom-
pose timestamps as discrete hour, minute, and second indices,
and embed them to high-dimensional representations hi, mi,
and si, where the vocabulary sizes are 24, 60 and 60, respec-
tively.

ti = (hi∥mi∥si), (5)
where ∥ denotes the concatenation operation. After obtaining
the POI embeddings and timestamp embeddings, we input
both into a concatenation layer to produce a joint embedding.
This joint embedding is used to learn the strong correlations
between POIs and timestamps and to facilitate subsequent
multitask learning. The process is as follows:

E = (Ep∥Et), (6)

where E ∈ Rm×d represents the joint embedding, with d =
d1 + d2, and ∥ denoting the concatenation operation.

4.2 POI Recommender Module
We feed E into the backbone of the POI recommendation
model, allowing it to learn time-aware POI preferences and
capture user behavior timestamp features.

Z = Backbone(E), (7)
where Z ∈ Rm×d represents the learned representation,
Backbone(·) denotes the backbone of the sequential POI rec-
ommendation model, and we extract the first d1 elements
from Z along the last dimension to form the POI-related rep-
resentation matrix Zp ∈ Rm×d1 . Therefore, the preference
score is calculated as follows:

yi,j = f(Zpi,Cj), (8)

where yi,j is the preference score of the j-th POI in the can-
didate set, f(·) is the inner product function, Zpi ∈ R1×d1

is the user preference vector at the i-th position in Zp, and
Cj ∈ R1×d1 is the embedding vector of the j-th POI in the
candidate set.

4.3 Timestamp Predictor Module
In the timestamp prediction branch, we employ a Transformer
to model the transition pattern of temporal information and
avoid the instability brought by various backbones. Given the
input Z, we calculate the linearly transformed features.

Q = ZWQ,K = ZWK ,V = ZWV , (9)

where WQ,WK ,WV ∈ Rd×d are learnable parameters and
Q,K,V ∈ Rm×d. We process the above features through a
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multi-head self-attention model:

MultiHead(Q,K,V) = Concat(head1, . . . , headi)WO,

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), (10)

Attention (Q,K,V) = softmax

(
QKT

√
d

)
V.

The outputs of the attention heads are merged via a linear
transformation Wo ∈ Rd×d, integrating information across
attention spaces. Next, we apply a residual connection and
layer normalization to the output.

Z1 = LayerNorm(MultiHead(Q,K,V) + Z). (11)

We feed Z1 ∈ Rm×d through the feed-forward network with
residual connections and normalization to enhance feature
transformation and capture nonlinear relationships.

Z′ = (LayerNorm (ReLU(Z1W1 + b1)W2 + b2) + Z1) ,
(12)

where W1 ∈ Rd×dh and W2 ∈ Rdh×d are the learnable
weight matrices, and b1 ∈ R1×dh and b2 ∈ R1×d are the bias
terms, while Z′ ∈ Rm×d is the further learned joint represen-
tation. Subsequently, we extract the last d2 elements from Z

′

along the last dimension to form the timestamp-related fea-
tures Zt ∈ Rm×d2 , where d = d1 + d2. Then, we decode
Zt through a decoder, translating the extracted features into
meaningful timestamp predictions.

Z′
t = ZtW + b, (13)

where Z′
t ∈ Rm×3 is the decoded representation, and the

parameters W ∈ Rd2×3 and b ∈ R1×3 are trainable param-
eters in the model. Finally, Z′

t is mapped back to discrete
values that reflect timestamp information through an activa-
tion function and scaling operation.

T̂i = Scale(Sigmoid(Z′
t)), (14)

where T̂i ∈ Rm×3 is the final predicted timestamp infor-
mation. Scale(·) and Sigmoid(·) represent the scaling and
activation operations, respectively. Equation (14) is designed
to predict the hour, minute, and second of the next check-
in. Since Sigmoid(·) restricts values in [0, 1], the Scale(·)
function maps the results into three ranges, i.e., [0, 23], [0, 59]
and [0, 59], corresponding to the hour, minute, and second in-
dex, respectively. After the above steps, we predict the final
hour, minute, and second to infer the timestamp of the user’s
next interaction.

4.4 Model Training
During the model training process, our proposed TAPT
framework functions as a multi-task learning system, incor-
porating two distinct loss functions:

L = λLp + (1− λ)Lt, (15)

where Lp denotes the loss function for the POI recommenda-
tion, such as Binary Cross-Entropy (BCE) [Li et al., 2020].

Lp = −
m∑
i=1

(
log(σ(yi,p)) + log(1− σ(yi,n))

)
, (16)

Dataset TKY NYC Gowalla

#user 2,293 1,083 36,371
#POI 7,873 5,135 129,939
#check-in 447,570 147,938 3,136,496
sparsity 97.52% 97.33% 99.93%
avg. seq. length 193.19 134.60 84.24

Table 1: Statistics of the three datasets.

where m denotes the length of the POI sequence, σ represents
the sigmoid function, yi,p is the logits for the i-th positive
sample, and yi,n is the logits for the i-th negative sample.

In equation (15), λ is a hyperparameter that balances the
two loss functions. We use the Mean Squared Error (MSE)
loss for optimizing Lt.

Lt =
1

m

m∑
i=1

(Ti − T̂i)
2, (17)

where Ti is the true timestamp of the i-th sample, and T̂i is
the predicted timestamp of the i-th sample.

5 Experiments
5.1 Datasets
We evaluate our framework using three publicly available
LBSN datasets from Foursquare (Tokyo and New York City)
[Yang et al., 2015] and Gowalla (California and Nevada)
[Cho et al., 2011]. We filter out inactive users (fewer than
20 POI visits) and unpopular POIs (fewer than 10 interac-
tions) to ensure data quality [Yang et al., 2022]. The check-in
records are organized in chronological order. The initial 80%
of the data is allocated for training, the subsequent 10% for
validation, and the final 10% for testing. Table 1 summarizes
the details of the three processed datasets.

5.2 Baselines
We choose the following sequential models for POI recom-
mendation as baseline backbones. 1) GRU4Rec [Hidasi et
al., 2016a]: Uses a Gated Recurrent Unit to model user in-
teraction sequences for recommendations. 2) Caser [Tang
and Wang, 2018]: Embeds POIs in user interaction history
as images, using convolutional filters to capture both local
and global sequential dependencies. 3) SASRec [Kang and
McAuley, 2018]: Leverages users’ long-term semantics and
recent actions simultaneously for accurate POI recommenda-
tions. 4) BERT4Rec [Sun et al., 2019]: Addresses the lim-
itations of unidirectional sequential recommenders by mod-
eling user behavior sequences under the BERT framework
[Devlin et al., 2019]. 5) TiSASRec [Li et al., 2020]: Uti-
lizes timestamps and time intervals between user-POI in-
teractions to improve next-POI prediction. 6) FMLP4Rec
[Zhou et al., 2022]: Proposes a full MLP model that adap-
tively reduces noise information in the frequency domain
through a learnable filter to perform POI recommendation.
7) STAN [Luo et al., 2021]: Models relative spatial-temporal
information among POIs with a bi-layer attention architec-
ture, creating a state-of-the-art sequential POI recommender.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset TKY NYC Gowalla

Metric H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

GRU4Rec 0.4588 0.3217 0.5717 0.3516 0.4903 0.3730 0.5688 0.3971 0.2445 0.1677 0.3355 0.1990
w. TAPT 0.4666 0.3226 0.5931 0.3649 0.4866 0.3707 0.5771 0.3944 0.2610 0.1823 0.3516 0.2113
Improv. 1.70% 0.27% 3.74% 3.78% -0.75% -0.61% 1.45% -0.67% 6.74% 8.70% 4.76% 6.18%

Caser 0.3764 0.2626 0.5207 0.3078 0.4257 0.2908 0.5309 0.3260 0.2903 0.2072 0.3739 0.2358
w. TAPT 0.3812 0.2636 0.5358 0.3154 0.4269 0.2887 0.5372 0.3246 0.2998 0.2148 0.3843 0.2428
Improv. 1.27% 0.38% 2.89% 2.46% 0.28% -0.72% 1.18% -0.42% 3.27% 3.66% 2.78% 2.96%

SASRec 0.4610 0.3242 0.5844 0.3636 0.4691 0.3356 0.5660 0.3688 0.2433 0.1672 0.3283 0.1946
w. TAPT 0.4719 0.3279 0.6066 0.3780 0.4875 0.3525 0.5873 0.3853 0.2565 0.1764 0.3435 0.2052
Improv. 2.36% 1.14% 3.79% 3.96% 3.92% 5.03% 3.76% 4.47% 5.42% 5.50% 4.62% 5.44%

BERT4Rec 0.4374 0.3268 0.5238 0.3529 0.4746 0.3538 0.5439 0.3684 0.3200 0.2399 0.3743 0.2513
w. TAPT 0.4416 0.3313 0.5312 0.3671 0.4820 0.3612 0.5568 0.3843 0.3276 0.2462 0.3857 0.2598
Improv. 0.96% 1.37% 1.41% 4.02% 1.55% 2.09% 2.37% 4.31% 2.37% 2.62% 3.04% 3.38%

TiSASRec 0.4422 0.3095 0.5608 0.3452 0.5078 0.3649 0.5956 0.3899 0.2143 0.1510 0.2954 0.1813
w. TAPT 0.4514 0.3119 0.5770 0.3562 0.5240 0.3791 0.6128 0.4035 0.2233 0.1576 0.3051 0.1883
Improv. 2.08% 0.77% 2.88% 3.18% 3.79% 3.89% 2.88% 3.48% 4.19% 4.37% 3.28% 3.86%

FMLP4Rec 0.4278 0.3001 0.5203 0.3304 0.4220 0.3004 0.4995 0.3259 0.3347 0.2426 0.3988 0.2634
w. TAPT 0.4396 0.3068 0.5255 0.3332 0.4303 0.3044 0.5014 0.3265 0.3376 0.2481 0.4083 0.2711
Improv. 2.75% 2.23% 0.99% 0.84% 1.96% 1.33% 0.38% 0.18% 0.86% 2.26% 2.38% 2.92%

GeoSAN 0.4736 0.3328 0.5874 0.3711 0.5129 0.3736 0.5960 0.3844 0.3117 0.2432 0.4011 0.2724
w. TAPT 0.4882 0.3419 0.6046 0.3816 0.5216 0.3772 0.6152 0.3937 0.3232 0.2486 0.4154 0.2830
Improv. 3.10% 2.74% 2.93% 2.84% 1.71% 0.99% 3.23% 2.42% 3.71% 2.26% 3.58% 3.92%

STAN 0.4921 0.3575 0.6023 0.3826 0.5243 0.3891 0.6097 0.4178 0.3034 0.2635 0.4112 0.2914
w. TAPT 0.5026 0.3594 0.6206 0.3914 0.5342 0.3933 0.6270 0.4324 0.3178 0.2799 0.4255 0.3062
Improv. 2.15% 0.55% 3.05% 2.32% 1.90% 1.10% 2.85% 3.50% 4.75% 6.25% 3.50% 5.10%

Table 2: Performance comparison of sequential POI recommendation methods with the proposed TAPT method across three datasets. Results
in bold indicate performance improvement, and “w. TAPT” represents TAPT using the respective baseline as the foundational framework.
H@5 and H@10 denote HR@5 and HR@10, respectively, while N@5 and N@10 denote NDCG@5 and NDCG@10.

8) GeoSAN [Lian et al., 2020]: Introduces a novel self-
attention-based geography encoder, demonstrating state-of-
the-art performance in modeling precise locations.

5.3 Evaluation Metrics
We evaluate the sequential POI recommendation task us-
ing two widely adopted Top-K metrics, Hit Ratio (HR@K)
and NDCG@K, with K ∈ {5, 10} [Wang et al., 2020;
Song et al., 2021; Sun et al., 2019]. Higher values indicate
better performance. All POIs are considered as candidates
during evaluation for stable and convincing results [Krichene
and Rendle, 2020; Qin et al., 2024].

For the timestamp prediction task, we select Mean Abso-
lute Error (MAE) as the evaluation metric to intuitively mea-
sure the difference between the predicted timestamps and the
actual values. A lower MAE indicates better predictive per-
formance [Dong et al., 2023].

5.4 Experiment Settings
We implement TAPT and all baseline models in Pytorch. The
POI and timestamp hidden dimensions are set to 128 and 30,
respectively. The maximum sequence lengths for TKY, NYC,

and Gowalla are 200, 150, and 100. We use the Adam opti-
mizer with a learning rate of 0.001, a dropout rate of 0.2,
and a batch size of 128. All baseline implementations are
either provided by the original authors or based on the orig-
inal papers. We set and tune the hyperparameters according
to the instructions in the original papers [Du et al., 2023].
TAPT and the baselines share the same backbone parame-
ters. During training, we set the number of negative sam-
ples to 1, following the previous settings [Huang et al., 2023;
Wang et al., 2020; Wang et al., 2019a; Wang et al., 2021].

5.5 Recommendation Performance Comparison
We compare the recommendation performance of each base-
line with TAPT, as shown in Table 2. The results demonstrate
that TAPT achieves comparable or superior performance,
which we attribute to the joint embeddings of POIs and times-
tamps, enabling richer contextual representations and captur-
ing fine-grained POI preferences tied to timestamps.

Specifically, our TAPT model demonstrates notable im-
provements on the Gowalla dataset over the TKY and NYC
datasets, attributed to the strong association between POIs
and timestamps in Gowalla, facilitating effective learning
of personalized POI preferences. Additionally, our TAPT
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Figure 5: Impact of parameter d2 and parameter λ on dual-task per-
formance for the NYC and TKY datasets, where we choose SASRec
as the backbone to implement TAPT.

achieves notable performance improvements across various
sequential backbones, demonstrating the effectiveness of
combining our timestamp encoding method with existing se-
quence recommendation models. However, TAPT achieves
a modest improvement over the next POI recommendation
methods, which already incorporate rich spatial-temporal in-
formation.

5.6 Prediction Performance
Currently, no methods predict the timestamp information cor-
responding to recommended POIs. Therefore, we present our
prediction results in Table 3 without comparisons, where each
time unit represents 1 hour. While TAPT successfully pre-
dicts the timestamp for the user’s next action, there remains
a considerable gap in accuracy. In real LBSN datasets, user
behavior exhibits significant randomness in the timestamp di-
mension, making it challenging to model.

Specifically, our TAPT achieves a low prediction gap on
the TKY dataset relative to the remaining datasets. We be-
lieve this dataset features regular and consistent check-in data
in the timestamp dimension, enabling the model to capture
timestamp variation patterns.

5.7 Parameter Sensitivity Analysis
We examine the effect of the timestamp embedding dimen-
sion d2 and the weight coefficient λ on the performance of the
dual-task model. As shown in Figure 5, the performance of
POI recommendation and timestamp prediction remains sta-
ble across variations in the timestamp embedding dimension
d2, demonstrating the robustness of our model. The param-
eter λ is crucial for balancing the loss functions of the two
tasks. When λ is small, POI recommendation performance
suffers due to insufficient optimization. However, when λ is

Backbone TKY NYC Gowalla

GRU4Rec 4.5033 5.1897 5.7957
Caser 4.5893 5.2072 5.7481
SASRec 4.6879 5.2472 5.7364
BERT4Rec 4.4372 5.0677 5.6935
TiSASRec 4.4536 5.1382 5.7245
FMLP4Rec 4.9103 5.3494 5.8527
GeoSAN 4.6274 5.2981 5.7556
STAN 4.5212 5.2138 5.7387

Table 3: The timestamp prediction results of TAPT with various
baselines across the three datasets are evaluated using the MAE met-
ric, with computation at the time-unit level.
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Figure 6: Visualization of the POI representations from model out-
puts on two datasets.

set to 0.75, TAPT achieves optimal and stable performance,
while timestamp prediction remains stable across λ values.

5.8 Visualization
To assess our method’s effectiveness, we visualize the POI
representations in Figure 6. The red points are scattered,
indicating that the original model struggles to cluster simi-
lar POIs. In contrast, the green points show strong cluster-
ing, particularly in key areas, suggesting that our method ef-
fectively captures POI similarities for accurate recommenda-
tions. Additionally, TAPT exhibits low variance along the
first principal component (horizontal axis), demonstrating ef-
fective separation of POIs in this dimension. Our method suc-
cessfully learns user behavior patterns across timestamps to
generate time-aware recommendations.

6 Conclusion
This paper proposes TAPT, a multi-task learning framework
for interpretable POI recommendation. Specifically, we de-
couple timestamps into multi-dimensional vectors and design
a timestamp encoding module to encode these vectors explic-
itly. Additionally, we design a specialized timestamp pre-
diction module that builds on the sequence-based POI rec-
ommender backbone to address both the POI recommen-
dation and timestamp prediction tasks. Extensive experi-
ments conducted on three public LBSN datasets consistently
demonstrate that TAPT achieves comparable or superior per-
formance in POI recommendation compared to the baseline
backbone.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported by the Natural Science Founda-
tion of China No. 62472196, Jilin Science and Technol-
ogy Research Project 20230101067JC, National Key R&D
Program of China under Grant No. 2021ZD0112501 and
2021ZD0112502, National Natural Science Foundation of
China under Grant No. 62272193, National Key R&D Pro-
gram of China under Grant Nos. 2022YFB3103700 and
2022YFB3103702.

References
[Chang et al., 2023] Jianxin Chang, Chenbin Zhang, Zhiyi

Fu, Xiaoxue Zang, Lin Guan, Jing Lu, Yiqun Hui, Dewei
Leng, Yanan Niu, Yang Song, and Kun Gai. TWIN: two-
stage interest network for lifelong user behavior modeling
in CTR prediction at kuaishou. In KDD, pages 3785–3794.
ACM, 2023.

[Cho et al., 2011] Eunjoon Cho, Seth A. Myers, and Jure
Leskovec. Friendship and mobility: user movement in
location-based social networks. In KDD, pages 1082–
1090. ACM, 2011.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understand-
ing. In NAACL-HLT (1), pages 4171–4186. Association
for Computational Linguistics, 2019.

[Dong et al., 2023] Jiaxiang Dong, Haixu Wu, Haoran
Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked
time-series modeling. In NeurIPS, 2023.

[Du et al., 2023] Hanwen Du, Huanhuan Yuan, Pengpeng
Zhao, Fuzhen Zhuang, Guanfeng Liu, Lei Zhao, Yanchi
Liu, and Victor S. Sheng. Ensemble modeling with con-
trastive knowledge distillation for sequential recommen-
dation. In SIGIR, pages 58–67. ACM, 2023.

[He and McAuley, 2016] Ruining He and Julian J. McAuley.
Fusing similarity models with markov chains for sparse se-
quential recommendation. In ICDM, pages 191–200. IEEE
Computer Society, 2016.

[Hidasi et al., 2016a] Balázs Hidasi, Alexandros Karat-
zoglou, Linas Baltrunas, and Domonkos Tikk. Session-
based recommendations with recurrent neural networks. In
ICLR (Poster), 2016.

[Hidasi et al., 2016b] Balázs Hidasi, Massimo Quadrana,
Alexandros Karatzoglou, and Domonkos Tikk. Paral-
lel recurrent neural network architectures for feature-rich
session-based recommendations. In RecSys, pages 241–
248. ACM, 2016.

[Huang et al., 2023] Chengkai Huang, Shoujin Wang, Xi-
anzhi Wang, and Lina Yao. Dual contrastive transformer
for hierarchical preference modeling in sequential recom-
mendation. In SIGIR, pages 99–109. ACM, 2023.

[Jiang et al., 2024] Yiheng Jiang, Yuanbo Xu, Yongjian
Yang, Funing Yang, Pengyang Wang, Chaozhuo Li,

Fuzhen Zhuang, and Hui Xiong. Trimlp: A founda-
tional mlp-like architecture for sequential recommenda-
tion. ACM Trans. Inf. Syst., 42(6):157:1–157:34, 2024.

[Kang and McAuley, 2018] Wang-Cheng Kang and Julian J.
McAuley. Self-attentive sequential recommendation. In
ICDM, pages 197–206. IEEE Computer Society, 2018.

[Krichene and Rendle, 2020] Walid Krichene and Steffen
Rendle. On sampled metrics for item recommendation.
In KDD, pages 1748–1757. ACM, 2020.

[Li et al., 2020] Jiacheng Li, Yujie Wang, and Julian J.
McAuley. Time interval aware self-attention for sequen-
tial recommendation. In WSDM, pages 322–330. ACM,
2020.

[Li et al., 2022] Yinfeng Li, Chen Gao, Xiaoyi Du, Huazhou
Wei, Hengliang Luo, Depeng Jin, and Yong Li. Automati-
cally discovering user consumption intents in meituan. In
KDD, pages 3259–3269. ACM, 2022.

[Lian et al., 2020] Defu Lian, Yongji Wu, Yong Ge, Xing
Xie, and Enhong Chen. Geography-aware sequential loca-
tion recommendation. In KDD, pages 2009–2019. ACM,
2020.

[Liu et al., 2016] Qiang Liu, Shu Wu, Liang Wang, and Tie-
niu Tan. Predicting the next location: A recurrent model
with spatial and temporal contexts. In AAAI, pages 194–
200. AAAI Press, 2016.

[Luo et al., 2021] Yingtao Luo, Qiang Liu, and Zhaocheng
Liu. STAN: spatio-temporal attention network for next
location recommendation. In WWW, pages 2177–2185.
ACM / IW3C2, 2021.

[Manotumruksa et al., 2018] Jarana Manotumruksa, Craig
Macdonald, and Iadh Ounis. A contextual attention re-
current architecture for context-aware venue recommen-
dation. In SIGIR, pages 555–564. ACM, 2018.

[Qin et al., 2024] Yifang Qin, Hongjun Wu, Wei Ju, Xiao
Luo, and Ming Zhang. A diffusion model for POI rec-
ommendation. ACM Trans. Inf. Syst., 42(2):54:1–54:27,
2024.

[Rendle et al., 2010] Steffen Rendle, Christoph Freuden-
thaler, and Lars Schmidt-Thieme. Factorizing personal-
ized markov chains for next-basket recommendation. In
WWW, pages 811–820. ACM, 2010.

[Song et al., 2021] Wenzhuo Song, Shoujin Wang, Yan
Wang, and Shengsheng Wang. Next-item recommenda-
tions in short sessions. In RecSys, pages 282–291. ACM,
2021.

[Sun et al., 2019] Fei Sun, Jun Liu, Jian Wu, Changhua Pei,
Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder represen-
tations from transformer. In CIKM, pages 1441–1450.
ACM, 2019.

[Tang and Wang, 2018] Jiaxi Tang and Ke Wang. Person-
alized top-n sequential recommendation via convolutional
sequence embedding. In WSDM, pages 565–573. ACM,
2018.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Twardowski, 2016] Bartlomiej Twardowski. Modelling
contextual information in session-aware recommender
systems with neural networks. In RecSys, pages 273–276.
ACM, 2016.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, pages 5998–6008, 2017.

[Wang et al., 2019a] Chenyang Wang, Min Zhang, Weizhi
Ma, Yiqun Liu, and Shaoping Ma. Modeling item-
specific temporal dynamics of repeat consumption for rec-
ommender systems. In WWW, pages 1977–1987. ACM,
2019.

[Wang et al., 2019b] Shoujin Wang, Liang Hu, Yan Wang,
Longbing Cao, Quan Z. Sheng, and Mehmet A. Orgun. Se-
quential recommender systems: Challenges, progress and
prospects. In IJCAI, pages 6332–6338. ijcai.org, 2019.

[Wang et al., 2020] Chenyang Wang, Min Zhang, Weizhi
Ma, Yiqun Liu, and Shaoping Ma. Make it a chorus:
Knowledge- and time-aware item modeling for sequential
recommendation. In SIGIR, pages 109–118. ACM, 2020.

[Wang et al., 2021] Chenyang Wang, Weizhi Ma, Min
Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma. To-
ward dynamic user intention: Temporal evolutionary ef-
fects of item relations in sequential recommendation. ACM
Trans. Inf. Syst., 39(2):16:1–16:33, 2021.

[Wang et al., 2022] En Wang, Yiheng Jiang, Yuanbo Xu,
Liang Wang, and Yongjian Yang. Spatial-temporal interval
aware sequential POI recommendation. In ICDE, pages
2086–2098. IEEE, 2022.

[Xu et al., 2024] Hangtong Xu, Yuanbo Xu, and Yongjian
Yang. Separating and learning latent confounders to en-
hancing user preferences modeling. In International Con-
ference on Database Systems for Advanced Applications,
pages 67–82. Springer, 2024.

[Xu et al., 2025] Hangtong Xu, Yuanbo Xu, Chaozhuo Li,
and Fuzhen Zhuang. Causal structure representation learn-
ing of unobserved confounders in latent space for recom-
mendation. ACM Trans. Inf. Syst., April 2025. Just Ac-
cepted.

[Yang et al., 2015] Dingqi Yang, Daqing Zhang, Vincent W.
Zheng, and Zhiyong Yu. Modeling user activity prefer-
ence by leveraging user spatial temporal characteristics in
lbsns. IEEE Trans. Syst. Man Cybern. Syst., 45(1):129–
142, 2015.

[Yang et al., 2020] Dingqi Yang, Benjamin Fankhauser,
Paolo Rosso, and Philippe Cudré-Mauroux. Location pre-
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