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Abstract

Infinitely repeated games support equilibrium con-
cepts beyond those present in one-shot games (e.g.,
cooperation in the prisoner’s dilemma). Nonethe-
less, repeated games fail to capture our real-world
intuition for settings with many anonymous agents
interacting in pairs. Repeated games with restarts,
introduced by Berker and Conitzer, address this
concern by giving players the option to restart
the game with someone new whenever their part-
ner deviates from an agreed-upon sequence of ac-
tions. In their work, they studied symmetric games
with symmetric strategies. We significantly ex-
tend these results, introducing and analyzing more
general notions of equilibria in asymmetric games
with restarts. We characterize which goal strategies
players can be incentivized to play in equilibrium,
and we consider the computational problem of find-
ing such sequences of actions with minimal cost for
the agents. We show that this problem is NP-hard
in general. However, when the goal sequence maxi-
mizes social welfare, we give a pseudo-polynomial
time algorithm.

1 Introduction

Social dilemmas often arise when individuals aim to satisfy
their own incentives, which often may prohibit cooperation.
In fact, in many games, although cooperating could yield bet-
ter payoffs for both players, it does not yield a Nash equi-
librium and is hence unlikely to occur. Repeated games can
circumvent this concern by capturing more complex and re-
alistic notions of equilibria, where mutual cooperation can be
incentivized. For example, consider the game in Table 1.
Notice that in the single-shot version of the game, actions
Cy and Cs (“cooperate”) are strictly dominated by action

Ci. [ Co | D
Ci | 8,8 ] 0,8 0,17
Cy | 8,0 | 2,2 |0,11
D | 17,0 | 11,0 | 1,1

Table 1: Symmetric repeated game

D (“defect”). This leads to (D, D) being a dominant strat-
egy Nash equilibrium, even though each player could obtain
more value by cooperating. However, when playing this game
repeatedly, cooperation ad infinitum can be an equilibrium
given that players are sufficiently patient: both players can
agree to cooperate by playing C until their opponent defects,
at which point they start playing action D forever [Friedman,
1971]. In this case, no player is incentivized to deviate from
(1, since any additional payoff they could receive from devi-
ating would be offset by the subsequent punishment.

However, this type of collaboration fails in many real-
world anonymous settings, in which players can choose to
leave the game and restart with someone new. Consider an
infinite collection of agents playing a repeated game in pairs
either forever or until one of the players chooses to leave, in
which case they are assigned a new partner. If there is no
way for a player to check their new partner’s history, a mali-
cious agent could hop from partner to partner, defecting and
then immediately leaving before suffering any punishment.
In real-life relationships, such as ones between colleagues,
freelancers with clients, or among romantic partners, agents
tend to more gradually build up trust to avoid repeated ex-
ploitation. How can we formalize this game-theoretically?

One way is to consider repeated games with restarts
[Berker and Conitzer, 2024], in which pairs of anonymous
agents play an infinitely repeated game with the option to
restart the game with a new player at any point. Consider
then the strategy of everyone agreeing on a common sequence
of actions to take, and if either player in a pair ever deviates
from the sequence, the sequence is restarted. This simulates
the agent punishing a defector by leaving the relationship and
seeking a new partner. Ideally, such a sequence would incen-
tivize agents to follow it at the risk of initiating a relationship
with a new partner, which might come at a high cost.

Concretely, consider again the game in Table 1 and let
(D, D), (Cy,Cy),(C1,Ch),(C1,Ch),... be a sequence of
action pairs that both players commit to playing. Notice that
the first action pair (D, D) is a dominant strategy Nash equi-
librium, so no player has an incentive to deviate. In the sec-
ond round, an agent can guarantee an additional payoff of
+9 by deviating to action D. However, this results in their
partner ending the relationship, at which point the deviat-
ing player will have to restart the sequence. This results in
a (1+ 11)/2 = 6 per-round average payoff, whereas that



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

player could have eventually guaranteed an average payoff of
8 by choosing to follow the sequence as is. Deviating to D
on round three yields an additional payoff of 9, but this only
amounts to a (1+2+17)/3 ~ 6.66 average, compared to the
8 they could have gained following the existing sequence. A
similar reasoning applies for future rounds, ensuring stability.
In previous work, Berker and Conitzer [2024] formal-
ize this subclass of Nash equilibria in repeated games with
restarts and analyze its computational complexity, in the re-
stricted setting of symmetric games and symmetric strategies.
However, even in a simple example such as the one above,
having players alternate between two actions (an asymmet-
ric strategy) can yield a higher per-round average payoff.
For example, say from the third round onward, players fol-
low the strategy (C1, D), (D,C1),... (alternating between
actions C' and D). Then, each will receive a per-round aver-
age payoff of (0 + 17)/2 = 8.5, compared to the 8 that the
best symmetric strategy (C7, C1) could yield. This sequence
is also stable: when each player plays action D, they receive
a payoff of 17 and have no incentive to deviate. When play-
ing C1, they could deviate to D for a +1 additional payoff,
but this is once again offset by the cost of restarting the se-
quence. This shows that, even in symmetric games, equilibria
with asymmetric strategies improve outcomes for both play-
ers. Therefore, in our work we aim to answer the following:

How can we optimize payoff of a (possibly asymmetric)
equilibrium sequence in (possibly asymmetric)
repeated games with restarts?

1.1 Related Work

Infinitely repeated games without restarts are well studied
in the literature. For a thorough treatment, see Mailath and
Samuelson [2006] and Mertens et al. [2015]. In particular,
there are numerous characterizations of equilibria, referred to
as Folk Theorems (see, for example, Friedman [1971] and
Fudenberg and Maskin [1986]). One interpretation of a Folk
theorem is that, for each action pair (a(!), a(?)) where players
receive strictly more utility than their minmax payoff, there is
a strategy and a sufficiently large discount factor such that
(a™,a(?) is repeated forever in equilibrium. (Recall that
in repeated games it is typical to introduce a discount factor
B € (0,1) such that the round 1 utility is scaled by 3°.) Here,
the minmax payoff refers to the maximum payoff a player
gets if their opponent plays the action minimizing the first
player’s maximum payoff. The key idea is that either player
can punish their opponent for deviating by playing the action
minimizing the opponent’s (maximum) utility.

The Folk theorem result most relevant to our work is that
of Fudenberg and Maskin [1986]. In their setting, the mere
threat of punishment motivates players to adhere to Nash
equilibria, since leaving your partner is not allowed. In com-
parison, as we will see, agents in our setting must be hazed
upfront to prevent serial defectors. This distinction arises as
a result of our model capturing anonymity among players, a
feature common to many interactions in the real world. An-
other difference between our works is that our focus is not
whether equilibria with a given stable sequence exist (the di-
rect analogue of typical Folk theorem guarantees), but, given

that they do, we aim to find the “best” such equilibrium
among them. We view this as finding the “least severe” pun-
ishment for deviation that still ensures an equilibrium.

The negative impacts of anonymity on establishing co-
operative outcomes are well-documented and have garnered
significant scientific interest. For example, see Adar and
Huberman [2000] and Hughes et al. [2005] for discussions
of the rise of free-riding agents ultimately resulting in the
decline of the peer-to-peer file sharing network Gnutella.
This can be viewed as an instance of the Tragedy of the
Commons [Hardin, 1968]. Several research strands have
consequently analyzed game-theoretic approaches to encour-
age cooperation in anonymous settings [Ngan et al., 2010;
Yang et al., 2012]. We take a different perspective, focusing
not necessarily on how to incentivize cooperation, but, rather,
how to understand and compute the most cooperative stable
outcome under the restrictions imposed by the game at hand.

Cooperation among near-anonymous agents interacting in
pairs has also been studied in repeated games in the context of
partner selection rules [Zhang er al., 2016; Rand et al., 2011,
Wang et al., 2012]. In prior work [Anastassacos et al., 2020;
Leung and Turrini, 2024; Leung et al., 2024], they find the
emergent dominance of “equivalent retaliation rules” akin
to Tit-for-Tat. The latter two works demonstrate that learn-
ing agents both learn and (as a majority) adopt the Out-for-
Tat rule, in which players leave partners who deviate against
them. This provides strong empirical support for our model,
which assumes this behavior.

Our starting point is a framework introduced by Berker
and Conitzer [2024], who study repeated symmetric games
with restarts in which all agents follow an identical sequence
of moves. They prove several fundamental results on equilib-
rium sequences in this restricted setting.

Theorem 1. (Informal version of Proposition 1, Lemma 1,
and Lemma 2 of Berker and Conitzer [2024]) In repeated
symmetric games I with restarts and discount factor 3, where
all agents follow an identical sequence of actions (i.e., the
strategy is symmetric), we have each of the following:

1. If there is some equilibrium sequence for I, then there
exists an equilibrium sequence maximizing the agents’
payoffs, which we call an optimal sequence.

2. Any optimal sequence will eventually reach a step in
which both agents achieve a single payoff for the rest
of the sequence. Call that payoff the goal value.

3. For large enough B, the goal value of any optimal se-
quence will be the highest payoff of an action in T'.

Theorem 1 has a number of implications. It is natural to
seek equilibria where the agents have the best cumulative out-
comes. The first property says that such equilibria in fact exist
(at least, for example, in any game with a pure Nash equilib-
rium), making it reasonable to study such equilibria. The sec-
ond and third properties characterize the general structure of
optimal equilbrium sequences for sufficiently large discount
factor 3. They begin with a hazing period, in which the agents
sacrifice utility to build mutual trust, followed by the agents
reaping the reward of their camaraderie by receiving the goal
value utility in each round thereafter.
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Among such equilibrium sequences, some sequences re-
quire less hazing than others. Consider the game shown in
Table 1. It is easy to check that both (D, D), (Cs,Cs),
(Cl, Cl), (Cl, Cl), ...and (D, D), (027 02)7 (Cg, 02), ey
(Cs,C3), (C1,C4), (C1,C4), ... are equilibrium sequences
for sufficiently large 5. However, the latter sequence delays
the socially optimal action C; unnecessarily.

Therefore, Berker and Conitzer [2024] define an equiv-
alence relation among sequences, yielding a more granular
view of optimality and capturing the notion of optimality of
a sequence also with respect to the amount of required haz-
ing (see Section 4 of Berker and Conitzer [2024], limit-utility
equivalence classes). This in turn motivates a natural compu-
tational problem: given a symmetric game, compute an opti-
mal symmetric strategy sequence with minimal hazing. They
show that this problem is (weakly) NP-hard, while also giv-
ing a pseudo-polynomial time algorithm.

In showing these results, the authors utilize a number of
properties of optimal sequences in this restricted setting. For
instance, they exploit the so-called “threshold monotonic-
ity” (see Lemma 3 of [Berker and Conitzer, 2024]) prop-
erty, which intutively states we can restrict our attention to
sequences that order actions in terms of how much hazing
they need before they can be played. This does not hold when
extending to asymmetric strategies, as playing an action pair
might require different amounts of hazing for each player.

In this work, we significantly relax the structural assump-
tions of [Berker and Conitzer, 2024], considering repeated
games in which the players need not play the same action in
each round and in which the game itself may be asymmetric.
In the case of symmetric games and asymmetric strategies,
this raises the question of which strategy each player will be
assigned to when rematching. We primarily consider the case
in which players follows the same strategy every time they
rematch with a new partner. In Section 6 we permit players
to switch roles when rematching. Our main complexity and
algorithmic results easily extend to this setting.

1.2 Motivating Examples

We begin by giving several examples to motivate our results,
differentiate them from those in [Berker and Conitzer, 20241,
and highlight the complex behaviors that arise in this setting.

Symmetric games with asymmetric strategies. Consider
the game of two agents working on a series of group projects.
Two distinct tasks must be done to complete each project, T}
and T5, and the agents only get utility 1 if the project is com-
plete. This symmetric game is represented in Table 2. Note
that, even though this is a symmetric game, no sequence of
pairs of actions with both players always playing the same
action will be stable: both players are incentivized to deviate
when playing (T3, T5) or playing (77,77). Hence, no sta-
ble sequence exists in this game under the model considered
in [Berker and Conitzer, 2024]. However, (T1,T5) is a pure
strategy Nash equilibrium, and, hence, repeating this action
pair forever is a stable sequence in our model.

Some (even symmetric) games are unfair. Can we always
distribute the hazing cost or utility fairly between agents? It

T | Ty
T: (0,0 | L1
T, [1,1]0,0

Table 2: Group Project

C D | H, |
C 199,99 [ 0,100 | 0,0 | 0,0
D [100,0 | 0,0 | 0,0 | 0,0
H; [ 0,0 | 0,0 | 0,0 |5,50
o, | 0,0 | 0,0 | 50,5 0,0

Table 3: Nose Goes

turns out that sometimes agents must be hazed unequally to
achieve minimum total hazing.

Consider the game in Table 3. The maximum social wel-
fare outcome consists of (C, C') repeating ad infinitum, and,
for large enough discount factor, it is possible to haze enough
to disincentivize deviation from (C, C) in only a single round.
However, the minimum hazing sequence must include only
one of either (Hy, Hy) or (Hsy, Hy), leading to uneven total
hazing. Inherently unfair games are perhaps less surprising in
the asymmetric setting, but which games this holds for is not
immediately obvious. We explore this question in Section 3.

Due to the complexity of characterizing the “fairness” of
stable sequences, we focus on formulating and solving corre-
sponding optimization problems, the focus of Section 5.

1.3 Organization of the Paper

In Section 3, we formalize the notions of (possibly asymmet-
ric) equilibrium sequences in repeated games with restarts. In
Section 4, we characterize the conditions under which finite
sequences of action pairs can form the “goal sequences” of
stable sequences. In Section 5 we consider this problem in
the limit as the discount factor becomes negligible. In this
regime, we define two optimization problems related to find-
ing minimum hazing stable sequences and show that both
are NP-hard. We also show that when the goal sequence is
composed of maximum social welfare action pairs, there is a
pseudo-polynomial time algorithm for solving the problem.
Section 6 addresses an alternative model where agents can
change roles after restarting the game. In Section 7, we dis-
cuss several directions for future work. All omitted proofs
can be found in the appendix of the full version of the paper.

2 Preliminaries

Say I' is a two-player normal-form game, with a set of action
pairs A = AM x A®) where A®) = {agl),ag), . .,afz()i)}
is the set of actions available to player .

« We let p() : A — Z be the payoff function of player 1,
taking as input a pair of actions of the two players and
outputting an integer value. As shorthand, we also let
pM+2) denote p(M) 4 p(2).

* Let 5 € (0,1) be the discount factor such that if player

1 receives payoff pgi) in timestep ¢, then her total dis-

counted utility will be > Btpgi).
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R C
T 1,0 —100, —100
¢ | =100, —100 0,1

Table 4: Tightrope walking

We will denote a game as a tuple, I' = (p1),p(?) A).
When ¢ refers to a player, we use —i to refer to their opponent.
The sequences of action pairs are 0-indexed for consistency
with the powers of the discount factor 5. With N we denote
the non-negative integers.

3 Equilibrium Sequences

We focus on strategies corresponding to sequences o =

(at(l), at@))teN, where o € AN is a sequence of action pairs
in T" such that player ¢ commits to playing (at(l))teN. Player
1 will restart the sequence if player 2 deviates from o(?) and
vice versa. We also allow either player to restart the game af-
ter any round (even without deviating). This is a subtlety that
does not arise in [Berker and Conitzer, 2024]. We illustrate
the possibility of agents wanting to restart the game without
deviating through the following example.

Example 1 (Restarting without Deviating). Consider the
game in Table 4. Consider any sequence (tightrope) o €
{(r,R), (¢, C)}N. Neither player can ever deviate or they
receive —100 utility (fall off the tightrope). Hence, if play-
ers could only restart upon deviations of their opponents, any
such o would be stable. However, if the players are permit-
ted to restart after any round, one of the players can always
ensure they receive utility 1. Namely, if o = (r, R), the row
player can restart the game after the first round and similarly
for the column player if oy = (¢, C). We view the options for
players to restart after any round as akin to typical assump-
tions of individual rationality.

Below we formally define the notion of a stable sequence
of action pairs (i.e., a Nash equilibrium), in which no player
can gain more utility by deviating or restarting.

Definition 2 (Stable Sequences). We call a sequence o =

(at(l), O't(z))teN € AN stable for discount factor /3 if no player
can increase their discounted utility by deviating or restarting
the game at any timestep. Concretely, for player 1 we have,

forall k € Nand o) € AM):

Y% B0 o) + 8D (0, 0}

+ X A (0 0) < T2 8900 o),
The analogous inequalities must also hold for player 2.

Remark 3. A careful reader might notice that Definition 2
only seems to consider players deviating a single time. This
is because, if deviating only once cannot increase a player’s
utility, deviating more than once cannot either (this is an ap-
plication of the “one-shot deviation principle”). An analo-
gous observation was made in [Berker and Conitzer, 2024].

Proposition 4. It benefits a player to deviate at least once if
and only if it benefits a player to deviate once.

The proof follows by a simple inductive argument, using
that, post-deviation, the remaining game becomes a scaled
version of the initial game.

Notice that there can be infinitely many stable sequences
for a given game (e.g., stable sequences of the form (D, D),
(Co,C3), (Cq,C), ..., (C1,C1), (C1,C4), ... in the game
in Table 1). Therefore, we would like to be able to (1) dis-
tinguish these sequences and (2) compute the most desirable
among them. To do so, we formalize the notions of Pareto-
optimality, welfare maximization, and limit-utility fairness. In
Section 4, we describe stable sequences in symmetric games
with asymmetric strategies that satisfy all three properties.

Remark 5. In our study of stable sequences, we restrict our
attention to sequences of the following form: a finite length
prefix followed by an infinite periodic sequence of action
pairs. We call the initial prefix the hazing period and the finite
sequence repeated infinitely thereafter the goal sequence. A
finite description length is a prerequisite for efficient compu-
tation, and general sequences need not necessarily admit one
—there is an uncountably infinite number of sequences but
only a countably infinite number of finite descriptions. More-
over, periodicity allows us to take limits of the sums of differ-
ences of payoffs in sequences without concern for sequence
convergence issues. This permits a natural way to compare
the “quality” of sequences and formally define the related op-
timization problems of finding “optimal” stable sequences.

Definition 6 (Pareto-Optimal Sequence). Given a game I =
(pM),p® A) and 0,6 € AN, we say that o surpasses & if
there exists ¢ € [2] such that:

lim Y., B (p(i) (o¢) — p(i)(&t)) > 0, while

B—1
éiﬂ Sz B (P (o) —p(61)) > 0.

A sequence o € AN is Pareto-optimal (in § — 1) if (1) it is
stable for all sufficiently large /3 and (2) it is not surpassed by
any other stable sequence.

A notion stronger than Pareto optimality is welfare maxi-
mization, which we define for our context below.

Definition 7 (Welfare maximization). Given a game I' =
(p™M),p?), A), a stable sequence o € AN is welfare maxi-
mizing (in the 5 — 1 limit) if, for any other stable sequence
& € AN it holds that:

lim Y%, 84 (60 (o) = pO (@) > 0.
—

We give a final desirable property of stable sequences.

Definition 8 (Limit-utility fairness). Given a game
I = (pM,p® A), a stable sequence 0 € AV is
limit-utility fair if there exists 7' € N such that
limg 1 Y527 B (pV(00) — p® (01)) = 0.
Remark 9. Limit-utility fairness is not always possible in
asymmetric games. For example, it is not possible in games
where one player always receives strictly more utility than
the other. Even when the players’ utilities are normalized to
be between 0 and 1, say by shifting their minimum utilities to
each be 0 and then scaling down, there are inherently “unfair”
examples, such as the one shown in Table 5.
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Pl S
00,1
0,101

P
S

Table 5: Doomed to suffer

In this game, if either player plays S, the row player “suf-
fers,” receiving utility 0. Indeed, the row player only receives
utility 1 if both players play P (“seek and receive pity”). But,
the sequence repeating (.5, .S) forever is stable, and no sta-
ble sequence can ever include (P, P) since the column player
will always be incentivized to deviate to (P, S).

4 Existence Results
Our starting point is the following:

For which pairs (T, ), for T a game and v € A", can v
be the goal sequence of a stable sequence of I'?

Not all (even symmetric) games admit stable sequences,
e.g., Rock-Paper-Scissors. Moreover, although all 2 x 2 sym-
metric games have a stable sequence, this does not hold for
asymmetric games. We discuss these nuances in the appendix
of the full version of the paper.

Theorem 12 characterizes which goal sequences can arise
in stable sequences. For convenience, we define the goal
value of a goal sequence ~ as the average per-round payoffs
obtained in the goal sequence when 5 — 1. We also intro-
duce notation for the deviation payoffs for an action pair.

Definition 10 (Goal value). Givena game T = (p1), p(?), A)
and a goal sequence v € A", its corresponding goal value is

vy = 0, 0f) = (252590, 2 5 0P ().

Definition 11 (Deviation payoff). Given a game I' =
(pM, p?), A), and action pair a = (a1, a(?) € A, define

4D = maxpM (G0, a®), d2 = maxp® (@D, a?).

a(h) a(2)

Theorem 12. Let T = (pM),p®) | A) be a game and v € A.

1. Suppose there exists a € A such that d((ll) < vgl) and
d((f) < U’(YQ). Then, for large enough 5 € (0,1) and

T € N, the sequence o repeating a for T’ time steps and
then repeating vy forever is stable.

2. Ifforall a € A we have s > v»(yl) ord? > v£,2) then,
for any B, no stable sequence has -y as its goal sequence.

The proof of the first part is inspired by the Folk theorem.

The second part follows from considering stability at the first
action pair in a candidate stable sequence.
Corollary 13. Let I' be symmetric and suppose there ex-
ists a, = (aS}) (2)) a € A with a, maximum social wel-
fare and dV,d? < (pW(a,) + p@(a,))/2. Then v =
((afk ), (2)) (aiz), ail))) is the goal sequence of some stable
sequence in I by Theorem 12. Moreover, this stable sequence
is Pareto-optimal, limit-utility fair, and welfare-maximizing.

5 Computing Minimum Hazing Sequences

We next consider the problem of computing stable sequences
with minimum hazing in the 8 — 1 limit. We begin by defin-
ing the hazing cost and threshold for a given action pair.

Definition 14 (Hazing Cost, Threshold). For a game I' =
(p™M), p?), A), goal sequence v € A", a € A, and i € [2], we
define the hazing cost S := v{” — p(®) (a) and the threshold

) = q — v,(f) for player 1.

The hazing cost of an action pair for a player defines how
much utility that player loses in the long run by playing that
action compared to her average utility in the goal sequence.’
Intuitively, we want the hazing sequence to have a sufficiently
high cost for both players to disincentivize them from taking
an action that would result in restarting the sequence. As we
will see, the threshold of an action pair for a given player de-
fines the amount of total hazing that that player must have
accumulated before playing that action in order to guarantee
that they will not deviate. In Theorem 17, we will make use
of these two definitions to give a sufficient and necessary con-
dition for stability in the 8 — 1 limit.

For conciseness, we also define notation for total hazing
and the threshold for a goal sequence.

Definition 15 (Total Hazing). Let 0 € AN be a stable
sequence with goal sequence v € A" for a game ' =
(p™),p?) A). For each k € N, define the total hazing up
to time k, Hj, := (H(l) ,E2)) =3 B, to be the sum of
hazing costs of the first £ + 1 actions in the hazing period.

Definition 16 (Threshold for a goal sequence). For a goal
sequence v € A" and ¢ € [2], define its threshold as:

05 = maxye ) (t“) hg hg>) . (1)

In words, for each k € [r], we need to surpass the threshold
for 74 upon reaching it, which is only possible by accumulat-
ing 0%1) hazing for each player ¢ by the time the goal sequence
is reached. The summation in equation (1) accounts for the
change in total hazing (after the goal sequence begins) up to
the (k — 1)™ action pair in the goal sequence.

Finally, Theorem 17 defines the stability of a sequence in
the 8 — 1 limit.

Theorem 17. LetT' = (p(V), p(?)| A) be a game. A sequence
o € AN with finite hazing period and goal sequence v € A"
is stable for all sufficiently large 5 € (0,1) if and only if, for

allk € Nandi € [2], wehaveH(l)1 >t,(,,3

The intuition for the strict inequality here is that ties break
in favor of deviating, since the deviation payoff comes earlier.

We can also characterize stability in the limit 5 — 1 using
the language of thresholds of the goal sequence.

Corollary 18. A sequence o formed by a hazing period of
length T' and a repeated goal sequence v € A" is stable in
the 8 — 1 limit if and only if o is stable in the hazing period

in the 8 — 1 limit and, for i € [2], Hg) > 9&1)

"Note that the hazing cost could be negative for some actions.
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Using the necessary and sufficient conditions for stability
from Corollary 18, we now define the computational problem
of finding sequences inducing the minimum possible hazing.

Definition 19 (MINHAZING). Denote the hazing and thresh-
old tuples for each action pair and each player in a game

[A]
as {(h((ll), h,gZ),t(gl),t(gZ)) } AG ((1/7" . Z)4> . Also let
ac

(01,0 € (L - Z)? be the thresholds for a goal sequence
for each player. Given A > 0, MINHAZING asks to find a se-
quence o € A (for any finite /) such that the sum of the total

hazings satisfies Héi)f@) = f;é hc(,lt)+(2) < A, subject to:

1L HY, > 00, vie[2

2. H”, > %), wke{o,---, -1}, Vie[2

Notice that, by Theorem 12, in some games it is easy to
compute hazing sequences that induce stable sequences with
goal sequence . In fact, if there exists some action pair
a € A that satisfies the conditions of Theorem 12, repeating
a sufficiently many times makes for such a hazing sequence.
Moreover, the sum of the players’ total hazing will be at most:

B =0 + 0 +n) + h?) < (r +2)r,

where « is the difference between the largest and small-
est possible payoff values in I'. However, this trivial upper
bound, B, could be arbitrarily larger than the minimum haz-
ing possible, which is what we explore in this section.

Remark 20. In the instance of MINHAZING induced by
I' and a finite length goal sequence v € A", we have

(059,65)) € (2 - 2)* and {(h§",h$7 1S 4)}oen €
((2 - z)" Al This follows directly from Definitions 14
and 16. We make heavy use of this fact in Algorithm 1.

Theorem 21. MINHAZING is (weakly) NP-hard.

Proof Sketch. The key idea is to reduce from the Un-
bounded Subset-Sum Problem with non-negative integers.
We define a symmetric game in which: all but the threshold
for the goal sequence action pair are trivially met and only
the main diagonal action pairs are viable in a minimum haz-
ing stable sequence. The payoffs on the main diagonal can
then be chosen such that their hazing costs correspond to the
integers from the instance of Unbounded Subset-Sum.

Although MINHAZING is well-defined in broad generality,
we are mostly interested in the problem of computing min-
imum hazing sequences for welfare-maximizing stable se-
quences with infinitely repeated finite-length goal sequences.
So, we define the following computational problem.

Definition 22 (MAXWELFAREMINHAZING). Consider a
game, I' = (p(M,p? A), and a goal sequence, v € A",
where for each ¢t € [r], v € A is a maximum social wel-
fare action pair. Suppose also that v is the goal sequence of
a stable sequence, o, that achieves total sum of hazings B.
Then MAXWELFAREMINHAZING(T', v, B) is the instance
of MINHAZING induced by T, 7, and total hazing bound B.
Remark 23. Since v; € A is maximum social welfare for
each t € [r], we know that each a € A has h,(ll) + hg) > 0.
Indeed, if not, then a would induce higher social welfare than
the per-round average payoff in -, a contradiction.

We will use the structure of MAXWELFAREMINHAZING
to show that for any stable sequence with goal sequence v €
A", there exists another highly structured stable sequence
with goal sequence vy and minimum hazing (Lemma 24). This
insight will allow us to solve MAXWELFAREMINHAZING in
pseudo-polynomial time (Theorem 27).

Lemma 24. For a game I, let v € A" be a maximum so-
cial welfare goal sequence, such that there exists a stable
sequence with goal sequence ~y and total hazing B. Then,
there exists a minimum hazing stable sequence o with goal
sequence vy, such that for k and k1 < ks in the hazing period:

1. Total hazing bound: 0 < H\", H{” H"*®) < B.
2. Monotonicity of total hazing: H,giH(Q) — H,gi)ﬂz) > 0.
3. Injectivity of total hazing: (H,S)7 Hg)) # (H,S)7 ng))

Proof Sketch. The first two properties follow from stability
and the fact that each 7, €  is maximum social welfare. The
third property exploits the observation that we can remove
segments of the hazing period between repeated pairs of total
hazing values without compromising stability.

Although MINHAZING is not obviously in NP in general
(e.g., optimal stable sequences can have exponentially long
hazing periods), MAXWELFAREMINHAZING is indeed in
NP under some weak additional structural assumptions.

Theorem 25. MAXWELFAREMINHAZING(T', v, B) (in its
decision version) is in NP for classes of games T, goal se-
quence vy € A” with |A| = n and r = poly(n), and B such
that either one of the following conditions is satisfied.:

1. There is a stable sequence with goal sequence ~y with
total hazing poly(n), e.g., B = poly(n).

2. There exists a stable sequence with at most poly(n) ac-
tion pairs with negative hazing value for either player.

Proof Sketch. The first sufficient condition follows from
the second and third properties of Lemma 24 (or Theo-
rem 27). The second condition follows from the fact that, as
long as the threshold for some a € A is met at some time step
t and it does not contribute negative hazing to either player, it
can be inserted at time step ¢ without disrupting stability. This
allows for clustering all such a € A into consecutive runs,
yielding hazing sequences with succinct representations.

Remark 26. The first part of Theorem 25 holds when the
utilities in T" are bounded by poly(n) and there exists a € A

such that UE,Z) > d((f) fori € [2]. Indeed, by Theorem 12, since
the threshold for « is poly(n), repeating a € A for poly(n)
iterations, followed by cycling through +, results in a stable
sequence with goal sequence ~y and poly(n) total hazing.

Finally, we give a dynamic programming algorithm
for solving MAXWELFAREMINHAZING (Algorithm 1) and
prove that it runs in pseudo-polynomial time (Theorem 27).

We start by giving an overview of Algorithm 1. Given as
input the tuples of thresholds and hazing costs for each action
pair, the threshold for the goal sequence, and the upper bound
B on the total hazing, the algorithm will first construct an
empty queue, (), and a matrix, memo, indexed by all possible
pairs of hazing values (rationals with denominator r between
0 and B from Remark 20). The algorithm will start with a
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total hazing value of O for each player (i.e., starts at the upper
left entry of memo), and, from that pair of hazing values, it
will consider all possible action pairs available to the agents.
For each action pair that satisfies the conditions of Lemma
24 and whose threshold is met, the algorithm will compute
the new reachable total hazing for each player by adding the
hazing cost of that action pair to the the total hazing of each
player so far. That will “move” the algorithm to a different
entry in memo, and the algorithm will enqueue that entry to
be explored later. The algorithm then proceeds in a breadth-
first-search manner, dequeuing pairs of hazing values from
Q@ (i.e., “visiting” entries in memo) and considering all other
entries in memo that can be reached by taking “valid” action
pairs. While visiting each entry in memo, the algorithm keeps
track of the minimum total hazing value pair encountered so
far that satisfies the goal threshold, as well as the appropri-
ate information to reconstruct the minimum hazing sequence.
The algorithm terminates when () is empty. Recall that we
use hW+(2) ag shorthand denoting R+ 12 (see Section 2).

Theorem 27. MAXWELFAREMINHAZING(T, v, B) is solv-
able in O(poly(n)r?B?) time and O(r?B?) space, where
|A| =nand~ € A".

Proof Sketch. We use the structure of the min-hazing se-
quence shown in Lemma 24 to upper bound the size of memo
that needs to be searched to find that sequence. This allows
us to bound the time and space complexity of the algorithm.

Note that while Algorithm 1 minimizes H()+ () as writ-
ten, it can be modified to minimize any function of the hazing
costs H1) | H2) by modifying Steps 10 and 24 accordingly.

6 Random Player Reassignment

In this section, we consider a variant of our framework, where
the roles of players may switch after a rematch. Indeed, in
other settings, it has been shown that such role-switching can
promote cooperation [Moon and Conitzer, 2016]. As before,
we assume each player is required to play at least one round
of the game with their partner, and can choose to leave after
any round. When reassigned to a new relationship, they take
on each of the two possible player roles with probability 1/2.
We introduce the analogous notion of stability below.

Definition 28 (Stable Sequences, Random Player Reassign-
ment). We call a sequence ¢ = (g§1>,o§2))t€N e AN
stable if no player can increase their expected discounted
utility by deviating at any timestep. This means for all
k € Nand i € [2] we have S35 8'p)(0y) + gkal) +
S0 gt p‘”(oz)+2p(*"’(at) <%, BtpD (o).

With Definition 2, defecting multiple times was profitable
only if defecting once was as well. This remains true here and
follows from an argument similar to Proposition 4.

Just as before, instances of MAXWELFAREMINHAZING
and MINHAZING are induced by this variant of the re-
peated games framework (each action pair has a thresh-
old value, hazing value, etc.). It is not hard to show
that the same NP-hardness result holds (by the same con-
struction as in Theorem 21), and Algorithm 1 still solves
MAXWELFAREMINHAZING in pseudo-polynomial time.

Algorithm 1 Dynamic Programming Algorithm for
MAXWELFAREMINHAZING
1: Input: (1.) Goal sequence threshold 8 := (#(1),9(?)) ¢
(% - Z)2, (2.) action pair hazing costs and threshold
(B B2 40 4 aea € (X -2)%)4), and (3.) ini-
tial total hazing bound B.
2: Output: Hazing sequence, o, € A’ and total hazing
HY +HP e 1.7,
Create an emptquueue, Q
memo « [| x [| {Indexed by pairs in [0, B] x [0, B]}
(H,El), H,Ez)) + (B, B) {Min. hazing above 6 so far}
Enqueue(0, 0, none, none) {Hazing pairs to process }
while @ is not empty do
(H®D, H® p, ap) < Dequeue(Q) {H® is current
hazing for player i}
9:  memo[HM H®)] = (p,a,) {Parent (hazing, action)}

e AN A

10: if HO > 09 Vi € [2] and HO+@) < gH*T@

then
11: HY, H?) « (HV, H®) {Update optimal}
12: continue

13:  fora:= (aM,a®) c Ado
14: ifJie[2st HO <& or (HO 4+ piY HO 4
h((f)) € memo then

15: continue {Thresh. unsatisfied or redundant}

16 i HOF@ L WA S BorJie 2] st HO +
RS < 0 then

17: continue {Invalid or irrelevant hazing pair}

18: Enqueve((H®D +nSY, HO +1P (HO, H®), a)

19: 04 < ()

20 (HW,H®) « (HYM, H?)

21: while memo[H ™), H®)][2] # none do

22:  o..prepend(memo[HY), H?)][3]) {Rebuild o, }
23: (HW, H?) + memo[HM, H?][2)

24: return: o, H£1)+(2)

7 Directions for Future Work

There are several interesting directions for future work. One
avenue is to permit mixed strategies. How would agents ver-
ify whether their opponent adhered to their assigned strategy
or deviated to another strategy with the same support? Cryp-
tographic protocols, such as those in Blum [1983], are a good
candidate approach for strategy verification.

Another direction is to extend our algorithmic results be-
yond maximum social welfare goal sequences. The main dif-
ficulty in this general setting is that net “unhazing” is now
possible, so total hazing is no longer monotonic.

A third direction is to extend our work to fixed discount
factors 5. While some of our results hold for large enough
B (e.g., Theorem 12 and Corollary 13), our algorithmic ap-
proach does not; for fixed 3, the thresholds for actions depend
on the time they are played.

Our results extend to games with any number of players,
although Algorithm 1’s runtime scales exponentially.
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