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Abstract

Sequence learning based tracking frameworks are
popular in the tracking community. In practice, its
auto-regressive sequence generation manner leads
to inferior performance and high latency com-
pared with latest advanced trackers. In this pa-
per, to mitigate this issue, we propose an efficient
and effective sequence-to-sequence tracking frame-
work named FastSeqTrack. FastSeqTrack differs
from previous sequence learning based trackers in
terms of token initialization and sequence gener-
ation manner. Four tracking tokens are appended
to patch embeddings and generated in the encoder
as initial guesses for the bounding box sequence,
which improves the tracking accuracy compared
with randomly initialized tokens. Tracking tokens
are then parallelly fed into the decoder in a one-
pass manner and greatly boost the forward infer-
ence speed compared with the auto-regressive man-
ner. Inspired by the early-exit mechanism, we in-
ject internal classifiers after each decoder layer to
early terminate forward inference when the soft-
max confidence is sufficiently reliable. In easy
tracking frames, early exits avoid network over-
thinking and unnecessary computation. Exten-
sive experiments on multiple benchmarks demon-
strate that FastSeqTrack runs over 100 fps and
showcases superior performance against state-of-
the-art trackers. Codes and models are available at
https://github.com/vision4drones/FastSeqTrack.

1 Introduction

Visual object tracking is a fundamental computer vision task
for estimating the continuous positions of an arbitrary target
in a video sequence given its initial location in the first frame.
Existing advanced trackers commonly employ powerful fea-
ture extraction backbones [Ye et al., 2022; Lin et al., 2022],
complicated feature fusion modules [Chen et al., 2021b;
Cui et al., 2022] and intricate head networks [Li ez al., 2018;
Yan et al., 2021a] to achieve impressive performance on pub-
lic benchmarks [Kristan et al., 2020; Huang et al., 2019].
However, those trackers come at high computation burden
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Figure 1: Comparison of tracking frameworks. (a) SeqTrack with a
randomly initialized start token inferencing in an auto-regressive se-
quence generation manner. (b) FastSeqTrack with initially guessed
tracking tokens inferencing in a one-pass sequence generation man-
ner.

and memory usage which results in tracking latency and de-
ployment challenges especially on resource-constrained edge
devices. Therefore, how to strike a good balance between
tracking accuracy and efficiency remains a critical problem
for the tracking community.

Recently, sequence learning based trackers model the
tracking task as a sequence generation task and enjoy wide
popularity due to the simple encoder-decoder architecture and
plain cross-entropy loss function. Taking SeqTrack [Chen et
al., 2023] as an instance (see Fig.1(a)), it contains: i) a trans-
former encoder for joint feature extraction and feature fusion
from the template and search regions, and ii) a transformer
decoder for generating the sequence of bounding box values
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from a randomly initialized start token in an auto-regressive
manner. Despite success on the visual tracking task [Chen et
al., 2023], SeqTrack is inferior to the latest advanced track-
ers in terms of both tracking accuracy and speed due to the
following two reasons. First, four values of the bounding box
sequence are generated token-by-token, which means the de-
coder must run four times per frame during forward inference,
inevitably leading to high computation latency. Second, to
predict the bounding box sequence, tracking tokens are ran-
domly initialized with word embedding and attend to visual
features in the decoder which are restricted to a limited num-
ber of layers due to efficiency reasons. Therefore, tracking
tokens are unable to fully interact with visual features and
accurately predict the bounding box values.

Given the above reasons, two natural intuitions emerge to
improve SeqTrack for high-speed and high-accuracy track-
ing: 1) four bounding box values can be parallelly generated
from four initial tokens through the decoder in a one-pass
manner to enhance the tracking speed and ii) the predicted
bounding box could be more accurate given better initialized
tracking tokens in the decoder.

Guided by these two intuitions, we propose FastSeqTrack
as illustrated in Fig.1(b), an efficient and effective sequence
learning based tracking framework designed for high-speed
and high-accuracy tracking. We divide the transformer archi-
tecture of FastSeqTrack into two stages: the encoder as the
first stage and the decoder as the second stage. At the first
stage, four learnable tracking tokens corresponding to four
bounding box values are added to the template and search
patch embeddings. The encoder takes these tracking tokens
and patch embeddings as input, refining the tracking tokens
alongside feature extraction. These tracking tokens can be
seen as analogous to the concept of anchors in object detec-
tion, roughly indicating the initial object locations. Notably,
the computational overhead introduced by the tracking tokens
is minimal compared to the patch embeddings. Four tracking
tokens and patch embedding of the search image are fed into
the decoder as queries and visual features respectively. At the
second stage, four tracking tokens acting as queries, attend to
visual features and predict four bounding box values in a one-
pass manner. While the original SeqTrack tracker generates
the bounding box sequence token-by-token from a randomly
initialized start token, FastSeqTrack parallelly generates four
bounding box values in a one-pass manner from four initially
guessed tracking tokens by the encoder. FastSeqTrack exe-
cutes forward propagation in the decoder only once, which
increases tracking speed by approximately four times during
forward decoder inference.

To further improve the tracking efficiency and avoid net-
work overthinking, motivated by the early-exit mechanism
[Kaya et al., 2019], we insert an embedding-to-word network
after each decoder layer of FastSeqTrack as an internal classi-
fier. The embedding-to-word network samples each bounding
box value from the vocabulary based on the maximum like-
lihood. Forward propagation in the decoder is early termi-
nated when the average maximum likelihood of four tracking
tokens exceeds a specific threshold, indicating that the track-
ing result from the current decoder layers is reliable enough
and further forward propagation in subsequent decoder lay-

ers is unnecessary. The embedding-to-word networks after
each decoder layer are parameter-sharing and thus add no ad-
ditional parameters compared with SeqTrack.

Our main contributions in this paper are summarized as
follows:

1. We propose a novel sequence-to-sequence tracking
framework for high-speed and high-accuracy single ob-
ject tracking, which parallelly generates the bounding
box sequence from four better initialized tracking tokens
in a one-pass manner.

2. We seamlessly integrate the early-exit mechanism into
the transformer decoder without additional parameters,
which boosts the tracking speed in easy frames and avoid
network overthinking.

3. Our proposal runs at 125 fps and demonstrates state-
of-the-art performance across multiple tracking bench-
marks.

2 Related Work

Sequence Learning. Sequence-to-sequence learning is ini-
tially proposed for natural language modeling [Sutskever
et al., 2014; Cho et al., 2014] and then introduced into
the object detection field. Pix2Seq [Chen et al., 2021a;
Chen et al., 2022b] casts object detection as a language
modeling task which takes the observed pixel inputs and
generates a sequence of tokens that correspond to multi-
ple bounding boxes and class labels in an auto-regressive
manner. Following a similar spirit with Pix2Seq, SeqTrack
[Chen et al., 2023] takes a template image and a search im-
age as input and generates a sequence of tokens that cor-
respond to one bounding box. ARTrack [Wei et al., 2023;
Bai et al., 2024] further adds the previous tracking results into
input to propagate preceding motion dynamics into succeed-
ing frames. It’s worth noting that the auto-regressive model-
ing in SeqTrack and ARTrack is expensive for real-time track-
ing because the decoder must run four times per frame during
forward inference. Different from Pix2Seq where the num-
ber of generated tokens is uncertain depending on the number
of predicting bounding boxes, SeqTrack and ARTrack gener-
ates a fixed number of tokens, i.e., four tokens (each for one
bounding box dimension) ignoring the end token. Therefore,
in terms of visual tracking, we argue that the auto-regressive
sequence generation manner is unnecessary and should be
changed into a plain one-pass manner for high efficiency.

Efficient and Effective Tracking. There exist many previous
works to achieve a good trade-off between tracking efficiency
and accuracy. ECO [Danelljan et al., 2017] is a pioneer corre-
lation filter based tracker which reduces model parameters by
factorized convolution operators and achieves a high track-
ing speed. LightTrack [Yan er al., 2021b] utilizes neural ar-
chitecture search (NAS) to find lightweight neural networks
for deep learning based object tracking. HiT [Kang er al.,
2023] introduces the bridge module and achieves both high
speed and precision on different devices. These aforemen-
tioned trackers achieve high efficiency by reducing flops or
network parameters in the tracking model. However, com-
pared with recent top trackers, these trackers has restricted
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tracking performance in challenging tracking sequences due
to limited parameters in the compact model. Therefore, how
to achieve both efficient and effective tracking remains a
crucial problem for visual tracking. Some integrated track-
ers [Fan and Ling, 2017; Li et al., 2020] are proposed ob-
serving the phenomenon that a simple network is sufficient
for easy frames in a video and more computation should
be added to difficult ones. By integrating a simple tracker
with a strong one, integrated trackers cope easy and difficult
frames with the simple and strong tracker respectively. How-
ever, because the simple and strong trackers cooperate on a
tracker level and are not integrated in an end-to-end man-
ner, the tracking performance of integrated trackers is inferior
to pure CNN or transformer based trackers [Li et al., 2018;
Ye et al., 2022].

Early Exits for Tracking. Recently, dynamic routing points
out a new direction for solving the speed-precision dilemma
with early exits [Kaya et al., 2019]. DyTrack [Zhu et al.,
2024] formulates instance-specific tracking as a sequential
decision problem in a dynamic transformer network. An IoU
token is appended after each encoder layer and predicts an
IoU Score with an extra decisioner network (a 3-layer MLP).
Forward inference is early terminated when the IoU score
is above a threshold. Despite extreme tracking speed, Dy-
Track achieves only average performance due to two draw-
backs. First, compared with features from the end layer,
features from intermediate encoder layers (e.g., ViT [Doso-
vitskiy et al., 2020]) is not discriminative enough for high-
accuracy tracking. Second, the IoU score derived from the
decisioner network for terminating forward inference is not
always consistent with the bounding box predicted by the
tracking head. Compared with DyTrack, our proposal main-
tains the integrity of the encoder and appends the embedding-
to-word network after each decoder layer as an internal clas-
sifier. The embedding-to-word network both decides the exit-
ing condition and predicts the bounding box. Compared with
the extra decisioner network in DyTrack, the embedding-to-
word networks in our proposal are parameter-sharing and add
no extra parameters to the decoder.

3 Method

This section presents a comprehensive description of FastSe-
qTrack in detail. First, we provide an overview of FastSeq-
Track. Next, we describe the model architecture, including
the encoder, the decoder, the early exits and the loss function.
Finally, we introduce the training and inference procedures.
The overall framework is shown in Fig.2(a).

3.1 Overview

FastSeqTrack mainly consists of an encoder for joint feature
extraction and tracking token generation, and a decoder for
interacting of visual features and tracking tokens. Due to
the one-pass sequence generation manner, the start token,
end token and the casual attention mask for the self-attention
modules in the decoder are all removed. During inference,
four tracking tokens are generated by the encoder and fed
into the decoder as queries. In each frame, four bounding
box values are simultaneously predicted in one pass.

3.2 Model Architecture

Encoder. Following SeqTrack, FastSeqTrack employs a stan-
dard vision transformer architecture (i.e., ViT) in the encoder.
The encoder takes a search image s € R**#*W and a tem-
plate images ¢t € R3*H*W a5 input. The search and tem-
plate images maintain the same size and are partitioned into

patches: s, € RNX(P*x3) and t, € RV*X(P*x3) \where
(P, P) is the patch size and N = HW/P? is the patch num-

ber. A linear projection E € R(P**3)%D is ysed to map the
image patches s, and ¢, to visual embeddings X, € RV*P
and X; € R¥*P_ Similar to the [cls] tokens in ViT, four
randomly initialized tracking tokens [track] € RP** are ap-
pended to visual embeddings X s and X;. Learnable position
embeddings P € RIVEN+49XD are added to all the input to-
kens [X; X;; track]. These combined embeddings are fed
into the encoder for feature extraction and interaction. Dur-
ing forward propagation, the encoder performs global self-
attention of all input tokens, which can be decomposed into
three different cross-attention operations, namely X, x X,
[track] x X, and [track] x X;. Among them, X x X,
performs feature fusion of the template and search images.
[track] x X, and [track] x X; capture the relationship
between tracking tokens and visual features. The tracking to-
kens [track] and visual features corresponding to the search
image X output by the last encoder layer are fed into the
decoder.

Decoder. The decoder of FastSeqTrack is a casual trans-
former consisting of NV transformer decoder layers. Each de-
coder layer consists of a mask-free multi-head self attention,
a multi-head attention and a feed-forward network (FFN) as
shown in Fig.2(b). Different from SeqTrack whose self atten-
tion network is masked, the self attention network in the de-
coder layer of FastSeqTrack is mask-free because four track-
ing tokens are parallelly fed into the decoder in an one-pass
manner. This allows each tracking token to attend to the other
three tracking tokens in a non-casual manner. Following the
[track] x X operation in the encoder, the multi-head at-
tention network in the decoder allows the tracking tokens
[track] to further attend to visual features X as queries and
learn robust representations for final bounding box prediction.
Compared with SeqTrack whose query token (i.e., start token)
in the decoder are randomly initialized with word embedding,
query tokens (i.e., tracking tokens) of FastSeqTrack are pre-
maturely initialized by the encoder before being fed into the
decoder. Therefore, similar to anchors in two-stage object de-
tectors, tracking tokens generated by the encoder contribute
to high-accuracy bounding box prediction in the decoder.
Embedding-to-word Network. FastSeqTrack adopts the
embedding-to-word network for bounding box regression.
Each continuous coordinate of the target bounding box
[, y,w, k] is uniformly discretized into an integer within a
vocabulary V' = [1,npins]. The embedding-to-word net-
work maps a high-dimensional tracking token to an inte-
ger between [1, np;ns] corresponding to a word in V.. The
embedding-to-word network is implemented as a multi-layer
perceptron (FCN) and a softmax function (SOFTMAX). FCN
aligns the dimension of the tracking tokens output by the last
decoder layer with the size of the vocabulary np;,s while
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Figure 2: (a) An overview of FastSeqTrack. The key component is an encoder-decoder transformer and an early-exit module. The encoder
generates visual features and queries for the decoder. Early exits terminate forward propagation of the decoder layers and output the bounding
box when the softmax probability of the embedding-to-word network is above an threshold. Our proposal achieves both high-speed and
high-accuracy tracking. (b) Detailed transformer block in the mask-free decoder. The tracking tokens interact with each other through a
masked-free multi-head attention mechanism. The visual feature is incorporated into the decoder and interacts with the tracking tokens via a

multi-head attention layer.

SOFTMAX samples the predicted bounding box coordinates

b = [z,y,w,h] from the vocabulary based on the softmax
probability.

Early Exits. Different from previous sequence learning
based trackers (i.e., SeqTrack) which performs forward prop-
agation through all decoder layers, FastSeqTrack achieves
instance-specific tracking by early terminating forward prop-
agation in easy frames to avoid network overthinking. The
encoder of FastSeqTrack remain unchanged compared with
SeqTrack. In SeqTrack, the embedding-to-word network is
appended to the last decoder layer for bounding box predic-
tion. On contrast, in FastSeqTrack, the embedding-to-word
network is appended to each decoder layer as an internal clas-
sifier as shown in Fig.2(a). The embedding-to-word networks
after each decoder layer are parameter-sharing and thus avoid
adding extra parameters to the tracking model. Four track-
ing tokens [track] € RP** output by each decoder layer
are fed into the embedding-to-word network and mapped to
a softmax probability P € R"ins*4 We compute the aver-
age softmax score over four generated bounding box values.
If the averaged score exceeds a specific threshold 7 which
means the predicted bounding box is reliable enough, Fast-
SeqTrack terminates forward propagation at a certain inter-
mediate decoder layer and outputs the tracking result. The
forward propagation process of the decoder with early exits

is summarized in Algorithm 1. In fact, we also insert the
embedding-to-word network before the first decoder layer to
directly predict the bounding box from the tracking tokens
generated from the encoder. In this case, the whole decoder
is skipped.

3.3 Training and Inference

FastSeqTrack is trained in an end-to-end fashion with the
combination of the cross-entropy loss and the generalized
ToU loss [Rezatofighi et al., 2019]. Different from SeqTrack
which only predicts with the last decoder layer, all the inter-
mediate decoder layers of FastSeqTrack are responsible for
predicting the bounding box. The loss function can be writ-
ten as

N
) + Niou Y, Liou(b e
=1

where b represents the groundtruth bounding box and b rep-
resents the bounding box predicted by the l;;, decoder layer.
Ace, Niow € R are regularization parameters.

During inference, the encoder perceives one search image,
an initial template image, a dynamic template image and four
tracking tokens. The dynamic template image is online up-
dated. The decoder parallelly predicts the target sequence
from four tracking tokens. FastSeqTrack will early terminate
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Algorithm 1 Decoder With Early Exits
Input:
Visual features X.
Tracking tokens [track].
Parameters:
Decoder layers Block;,l =1: N.
Embedding-to-word network.
Output:
Predicted bounding box b.
1: Let zp = [Xs; track] and Earlyexit = False.
2: for layer/=1to N do
3: 2 = Block(z—1)

4. b, score =Embedding-to-word(z; )
5. if score > 7 then

6: Earlyexit = True

7 return b

8: endif

9: end for

10: if Earlyexit = False then

11:  returnb
12: end if

forward inference of the decoder and boost the tracking speed
in easy tracking frames. Forward inference will go deeper in
the decoder until the last decoder layer in difficult frames.
The last decoder layer will output its predicted bounding box
as the final tracking result when outputs from the previous
decoder layers are all unreliable.

4 Experiments

4.1 Implementation Details

Model. We adopt ViT-B [Dosovitskiy et al., 2020] as the en-
coder architecture for FastSeqTrack. The input resolution of
the template image and search image are 256 x 256. The
patch size is set to 16x16. Accordingly, the dimension of
four tracking tokens in FastSeqTrack is 768, which equals
16 x 16 x 3. The decoder consists of 2 transformer blocks.
Accordingly, three embedding-to-word networks are inserted
in the decoder, one before the first decoder layer and two af-
ter each decoder layer. For fair comparison, we follow all the
default parameter setting of SeqTrack for the rest hyperpa-
rameters. Our implementation is based on SeqTrack and is
far from optimal. We believe there is a big room for future
improvement and generalization.

In addition, we present model parameters, trraining flops,
and inference speed in Tab. 1. The speed is measured on Intel
Xeon Gold 6354 CPU @ 3.00GHz with 64 GB RAM and a
single 4090 GPU with 24GB memory. All the models are im-
plemented with Python 3.8 and PyTorch 1.11.0. As reported
in Tab. 1, FastSeqTrack and SeqTrack adopt the same back-
bone and thus maintain the same number of params in the
encoder. Compared with SeqTrack, the four tracking tokens
slightly increase the encoder flops in FastSeqTrack by 1.5%.
There are slightly fewer decoder params in FastSeqTrack than
SeqTrack which indicates that the tracking tokens and early
exits add almost no extra parameters to the model. During

training, SeqTrack has less decoder flops than FastSeqTrack
because its self attention is masked. It’s worth noting that the
encoder flops and decoder flops are measured during offline
training and do not directly measure the actual online infer-
ence speed which is displayed in the last column in Tab. 1.
It’s obvious that FastSeqTrack running at over 100 fps is two
times faster than SeqTrack during inference due to the one-
pass sequence generation manner.

Training. Our training data includes the training splits of
COCO [Lin et al., 2014], LaSOT [Fan et al., 2019], GOT-
10k [Huang et al., 2019], TrackingNet [Muller et al., 2018]
and VastTrack [Peng et al., 2024]. We follow the default
training parameters of SeqTrack. The training of FastSe-
qTrack is conducted on 2 Intel Xeon Gold 6354 CPU @
3.00GHz with 64 GB RAM and 8 4090 GPUs with 24GB
memory. Each GPU holds 16 image pairs, resulting in a total
batch size of 128. The regularization parameters Acc, Ajoy, €
R in Equ. 1 are set to 1 and 5 respectively. The model is
trained for a total of 500 epochs with 60k image pairs per
epoch. The learning rate decreases by a factor of 10 after 400
epochs.

Inference. The online template update interval is set to 1
by default, while the threshold 7 in Algorithm 1 is set to 1.6.
The vocabulary size is set to 4000 and the softmax likelihood
in the vocabulary is directly multiplied by a 1D Hanning win-
dow for window penalty.

4.2 State-of-the-Art Comparisons

As detailed in Tab. 2, we compare FastSeqTrack with state-of-
the-art trackers on four tracking benchmarks, i.e., VastTrack
[Peng et al., 2024], TNL2K [Wang et al., 2021], TrackingNet
[Muller et al., 2018] and GOT-10k [Huang et al., 2019]. Fast-
SeqTrack achieves the best performance in most benchmarks
and is the only tracker which runs over 100 fps among all
trackers. We display the performance and tracking speed of
SeqTrack, FastSeqTrack and state-of-the-art trackers on four
benchmarks in the following. It’s worth noting that we follow
the reported fps in the literature for each tracker in Tab. 2.

VastTrack. VastTrack [Peng et al., 2024] is a recently in-
troduced general visual tracking benchmark with a vast ob-
ject category. The test set comprises 3500 videos from 2115
classes. As reported in Tab. 2, FastSeqTrack achieves the top
position with AUC scores of 39.24%, surpassing the second
best tracker (i.e., MixformerV2) by 4.04%. The top posi-
tion in AUC, normalized precision (P ;) and Precision (P)
of FastSeqTrack demontrates the effectiveness of the initially
guessed tracking tokens. Further, FastSeqTrack performs bet-
ter than SeqTrack, getting 4.4% AUC score improvement.
Fig. 3 shows the results of attribute-base evaluation, illustrat-
ing that FastSeqTrack performs better than other competing
trackers on almost all attributes.

TNL2K. TNL2K [Wang et al., 2021] is a recently released
large-scale dataset with 700 challenging video sequences. On
the large-scale TNL2K benchmark, FastSeqTrack obtains the
third best performance with 56.86% AUC score as reported in
Tab. 2. Under aligned settings (the same ViT-B encoder archi-
tecture and input resolution), FastSeqTrack achieves 0.73%
and 0.96% higher AUC score than SeqTrack and OSTrack,
respectively.
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Model Encoder Params Encoder FLOPs Decoder Params Decoder FLOPs Overall Params Overall FLOPs = Speed
M) (&) M) M) M) (©) (fps)
SeqTrack 85.647 65.742 3.465 120.440 89.111 65.862 58
FastSeqTrack 85.647 66.082 3.464 130.232 89.110 66.212 125
Table 1: Details of SeqTrack and FastSeqTrack.
Method | VastTrack [Peng ef al., 2024] TNL2K [Wang et al., 2021] TrackingNet [Muller e7 al., 2018] GOT-10k [Huang er al., 2019]  Speed
[TAUC  Pnorm P AUC  Pnorm P AUC  Pnorm P AO SRy SRo.75 fps
SeqTrack 34.84 3770 33.89 56.13 7401 58.09 833 883 82.2 747 847 71.8 58
FastSeqTrack 3924 427 39.79 7422 6035 8554  90.31 85.53 778 882 76.8 125
ODTrack [Zheng e al., 2024] - 61.7 85.1  90.1 86.1 770 879 75.1 32
ARTrackV2 [Bai et al., 2024] - - - 59.2
SimTrack [Chen eral., 2022a] | 344 342 30.3 55.6 834 874 3 69.8 788 66.0 40
MixformerV2 [Cui et al., 2023] 33.0 - 83.1  88.1 81.6 707  80.0 67.8 25
AiATrack [Gao et al., 2022] - 827 878 80.4 69.6  63.2 80.0 38
CSWinTT [Song ef al., 2022] - - - 819 867 79.5 694 789 65.4 12
STARK [Yan ef al., 2021al 334 343 30.8 - 820 869 - 688  78.1 64.1 40
OSTrack [Ye et al., 2022] 336 345 315 559 831 878 82.0 710 804 68.2 58
SwinTrack [Lin et al., 20221 330 342 30.3 - 84.0 - 82.8 24 - 67.8 98
RTS [Paul er al., 2022] 355 364 = 81.6  86.0 79.4 - = 30
ToMP [Mayer et al., 20221 349 364 32.1 459 81.5 864 789 - - - 19
AutoMatch [Zhang er al., 2021] | 28.8 315 26.6 - 76.0 S 726 652  76.6 54.3 50
TransT [Chen er al., 2021b] 299 314 25.4 50.7 - - 814 867 80.3 67.1 768 60.9 50
SiamBAN [Chen et al., 2020] 160 155 9.6 410 49 417 - - - - - - 35
Ocean [Zhang et al., 2020] 275 302 24.6 384 45 37.7 - - - 61.1 721 473 58
DiMP [Bhat ef al., 2019] 299 317 25.7 447 - - 740 801 68.7 61.1 717 49.2 40
SiamPRN++ [Li er al., 2019] 28.1 297 24.9 413 48 412 733 80.0 69.4 517 616 325 35
ATOM [Danelljan ef al., 20191 | 172 14.1 10.2 40.1 47 39 703 771 64.8 556 634 40.2 30
SiamFC [Bertinetto et al., 2016] | 8.5 29 43 295 354 28.6 733 800 69.4 517 616 325 58
Table 2: State-of-the-art comparisons on four large-scale benchmarks. The top three results are highlight with red, blue and fonts,

respectively.

TrackingNet. TrackingNet [Muller et al., 2018] is a rela-
tively smaller dataset covering diverse object categories and
scenes with 511 videos in the test set. As reported in
Tab. 2, FastSeqTrack achieves the best performance in both
AUC score and Py, surpassing the second best tracker
ODTracker by 0.44% in AUC and 0.2% in Py opp,. It’s worth
noting that ODTrack adopts dense temporal tokens for per-
formance improvement and only runs at 32 fps.

GOT-10k. GOT-10k [Huang et al., 2019] test set contains
180 videos covering various common tracking challenges. As
reported in Tab. 2, FastSeqTrack achieve the top position in
AO, Py orm and P, outperforming SeqTrack by a large margin.
Specifically, FastSeqTrack achieves 3.1% gains in AO score
over SeqTrack.

4.3 Ablation and Analysis.

We use SeqTrack as the baseline model in our ablation study
to investigate the impact of different modules in FastSeq-
Track. The result of the baseline is reported in Tab. 3 (#0).
Loss Functions. We compare different loss functions for
offline training. The baseline SeqTrack tracker only adopts a
simple cross-entropy loss for end-to-end training. The over-
all cross-entropy loss of the predicted bounding box is calcu-
lated by summing the cross-entropy losses of four bounding
box values. Therefore, the cross-entropy loss in SeqTrack
is easy to be dominated by a certain value with big predic-
tion error. On contrast, as described in Equ. 1, FastSeqTrack
adopts both the cross-entropy loss and generalized IoU loss
for bounding box regression. Here, as reported in Tab. 3 (#1),
SeqTrack with the joint loss function performs much better
than SeqTrack with the cross-entropy loss, which indicates

that the generalized IoU loss contributes to better bounding
box regression.

Sequence Generation Manner. SeqTrack generates the se-
quence in an auto-regressive manner, which predicts the four
bounding box values one by one. As shown in Tab. 3 (#2),
we change the auto-regressive manner into the one-pass man-
ner that predictes four bounding box values parallelly. The
original input of the decoder in SeqTrack is only a start to-
ken which tells the model to begin the sequence genera-
tion. While, the input of SeqTrack in the one-pass manner is
changed into four randomly generated tracking tokens. Ac-
cordingly, the casual attention mask in SeqTrack is removed,
allowing four tracking tokens to attend to each other. As re-
ported in Tab. 3 (#2), SeqTrack in the one-pass sequence gen-
eration manner is superior to SeqTrack in the auto-gressive
manner by 1.6% in the AO score.

Decoder Input. We compare different input tokens to the
decoder. Different from four randomly generated tracking to-
kens in Tab. 3 (#2), the input tracking tokens of the decoder
in Tab. 3 (#3) is generated in the encoder as an initial guess.
While the input tokens of the decoder in SeqTrack only in-
teract with visual features in the decoder, the input tracking
tokens in Tab. 3 (#3) interact with visual features in both the
encoder and decoder. From Tab. 3 (#3), we can observe that
SeqTrack with initially guessed tracking tokens outperform
SeqTrack with randomly initialized tracking tokens by 2.4%
in the AO score. The underlying reason might be that ini-
tially guessed tracking tokens guarantee saturated fusion of
the tracking tokens and visual features.

Early Exits. As shown in Tab. 3 (#4), we insert parameter-
sharing early exits into the decoder of SeqTrack. Com-
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Figure 3: Success ratio plots on 10 attributes of the VastTrack dataset. Trackers are ranked by their AUC scores. Ours method has achieved
consistently the superior performance on 9 of 10 attributes, which demonstrates the robustness of our approach in challenging tracking
scenarios. The horizontal and vertical axes denote the overlap threshold and success rate respectively.

#| Method | AO SRg5 SR
0 Baseline - - -

1 +GlIoU Loss +24 +3.0 +23
2 Auto-regressive—One-pass +1.6 +1.8 +2.8
3 | Random Initialization—Initial Guess |+2.4 +2.6 +3.9
4|  +Parameter-sharing Early Exits  |+0.7 +1.2 +0.1
5 +Independent Early Exits +0.7 +1.3 +0.0

Table 3: Ablation Study on GOT-10k. + denotes the performance
gain compared with the baseline #0.

pared with SeqTrack which performs layer-by-layer inference
in the decoder, SeqTrack with parameter-sharing early exits
achieves better performance. The underlying reason might
be that early exits avoid network overthinking which is de-
structive when a correct prediction changes into a false pre-
diction by late layers. As shown in Tab. 3 (#5), we also
implement SeqTrack with independent early exits which are
not parameter-sharing. Overall, independent early exits don’t
show improved performance. Therefore, we adopt parameter-
sharing early exits by default in our implementation of Fast-
SeqTrack.

Visualization of Cross Attention Map. To better understand
the effectiveness of parallel sequence generation in FastSeq-
Track, we visualize the cross attention map of the last decoder
block. Fig. 4 shows cross attention maps as the model gen-
erates four tracking tokens. The search images are displayed
in the first column. Overall, the cross attention maps in the
second and third columns concentrate on the top left corner of
the target region which corresponds to the x and y values. On
contrast, the cross attentions in the fourth and fifth columns
focus on the whole target region to accurately regress the w
and h values.

Figure 4: Decoder’s cross attention to visual features when gener-
ating four tracking tokens. The first column is the search region
image, and the second to last columns are the cross attention maps
corresponding to z, y, w, h tokens, respectively.

5 Conclusion

In this work, we propose an efficient and effective sequence
learning based tracking framework named FastSeqTrack,
which sets a new direction for high-accuracy and high-speed
visual tracking. Compared with previous sequence learning
based trackers, FastSeqTrack improves the tracking token ini-
tialization and sequence generation manner. Early exits are
integrated into the decoder for further efficiency and avoid
network overthinking. Extensive experiments demonstrate
FastSeqTrack achieves state-of-the-art performance across
multiple datasets. The core ideas in FastSeqTrack are generic
and able to be incorporated into any similar sequence learning
based trackers.
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