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Abstract
Deploying Large Language Models (LLMs) on
edge devices is increasingly important, as it elimi-
nates reliance on network connections, reduces ex-
pensive API calls, and enhances user privacy. How-
ever, on-device deployment is challenging due to
the limited computational resources of edge de-
vices. In particular, the key bottleneck stems from
memory bandwidth constraints related to weight
loading. Weight-only quantization effectively re-
duces memory access, yet often induces signifi-
cant accuracy degradation. Recent efforts to in-
corporate sub-branches have shown promise for
mitigating quantization errors, but these methods
either lack robust optimization strategies or rely
on suboptimal objectives. To address these gaps,
we propose FeedBack Quantization (FBQuant),
a novel approach inspired by negative feedback
mechanisms in automatic control. FBQuant inher-
ently ensures that the reconstructed weights remain
bounded by the quantization process, thereby re-
ducing the risk of overfitting. To further offset the
additional latency introduced by sub-branches, we
develop an efficient CUDA kernel that decreases
60% of extra inference time. Comprehensive ex-
periments demonstrate the efficiency and effective-
ness of FBQuant across various LLMs. Notably,
for 3-bit Llama2-7B, FBQuant improves zero-shot
accuracy by 1.2%.

1 Introduction
Large Language Models (LLMs) [Touvron et al., 2023]
have demonstrated remarkable capabilities in natural lan-
guage processing, driving significant advancements in the
field. while their extensive parameter counts enable this
high-level performance, they also pose substantial deploy-
ment challenges related to memory access, storage, and com-
putation. These issues challenges even more critical for
personal, localized applications, where privacy concerns of-
ten preclude the use of cloud-end LLM APIs, and where
most personal devices lack high-performance accelerators

✉ denotes the corresponding author.

Figure 1: Impact of weight-only quantization on the RTX 3090
GPU. (Left) For Llama2-7B, the INT4 model processes 1,024 to-
kens for prefilling and 80 new tokens for decoding in only 60% of
the time required by FP16. (Right) After loading to the GPU device,
the INT4 model consumes just 25% of the memory used by FP16.

(e.g., top-tier GPUs). Furthermore, as AI systems increas-
ingly rely on LLM-based agents [Talebirad and Nadiri, 2023;
Li et al., 2023b] to handle ever more complex tasks, the com-
putational demands continue to intensify, raising unprece-
dented barriers to on-device deployment.

One defining characteristic of the on-device LLMs is the
consistently small batch size (in most cases, a batch size of
one) [Lin et al., 2024b]. Consequently, inference is predomi-
nantly a memory-bandwidth-bound operation constrained by
weight loading. Under these conditions, weight-only quan-
tization emerges as a highly effective optimization strategy
(as shown in Fig. 1). By storing weights in INT3/4 while re-
taining inputs and outputs in floating-point, memory require-
ments and bandwidth overhead are substantially reduced.
Moreover, this technique can be broadly applied to various
hardware platforms, such as desktops, laptops, and mobile
phones, offering a cost-effective solution that balances per-
formance and affordability.

Existing optimization methods of weight-only quantiza-
tion for LLMs can be broadly classified into three cate-
gories, as illustrated in Fig. 2, Clamping, Rotation, and
Sub-branching: (a) Clamping methods [Lin et al., 2024b;
Shao et al., 2023] refine the quantization scale by restrict-
ing the value range, improving the representation of smaller
weights while sacrificing outliers. (b) Rotation-based ap-
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Figure 2: Three categories of optimization methods for weight-only
quantization: Clamping, Rotation, and Sub-branching.

proaches [Liu et al., 2024b; Lin et al., 2024a] apply rotation-
equivalent transformations to shift quantization challenges
from weights (which are quantized) to activations (which re-
main in high precision). (c) Sub-branching [Li et al., 2023a;
Li et al., 2024] methods introduce a parallel branch along-
side the quantized main path to compensate for quantiza-
tion errors. Despite extensive research into clamping and ro-
tation techniques, the quantization-induced accuracy degra-
dation remains a critical concern. Recently, sub-branching
methods have gained attention as an orthogonal solution for
mitigating quantization errors. The key idea is to split each
quantized layer into two parallel paths: a main path that re-
tains the quantized weights and a sub-branch that compen-
sates for quantization losses. Recent approaches, such as
CALDERA [Saha et al., 2024] and EoRA[Liu et al., 2024a],
construct sub-branches using the LoRA [Hu et al., 2021]
framework, but these methods can overfit to limited cali-
bration data or rely on ill-posed optimization objectives (see
Sec. 3). Another significant challenge of sub-branching meth-
ods is the unexpected increase in inference latency, despite
the sub-branches only introducing a small number of opera-
tions. This delay is primarily driven by memory access bot-
tlenecks, as the sub-branch frequently reads and writes input
activations, intermediate results, and layer outputs.

In this work, we propose a novel method called FeedBack
Quantization (FBQuant), tackling both the optimization
problem and the latency overhead introduced by sub-
branches. Drawing inspiration from negative feedback mech-
anisms in automatic control [Franklin et al., 2002], FBQuant
feeds the sub-branch weights back into the main path, ensur-
ing that the reconstructed weights remain inherently bounded
by the quantization process (see Sec. 4.1). With this mecha-
nism, FBQuant is able to fine-tune sub-branches with a lim-
ited amount of calibration data, and prevent overfitting. The
pipeline is both straightforward and effective as illustrated
in Fig. 3, and we provide rigorous mathematical proofs in
Secs. 3 and 4. To address the latency challenge, we develop
the CUDA kernel fusion implementation on the sub-branches.
By reducing the repeated read and write operations in the con-
structed layers, this implementation saves 60% of extra infer-
ence time compared to conventional sub-branches.

Experiments demonstrate that FBQuant outperforms exist-
ing methods across various tasks and model families. On
3-bit Llama2-7B, FBQuant improves zero-shot accuracy by
1.2%. We further apply FBQuant to instruction-tuned ver-

sions of these models, showing consistent gains over other
quantization techniques. Wall-clock time evaluations further
reveal significant token throughput improvements over tradi-
tional implementations, while matching the latency of quan-
tized models without sub-branches.

Our contributions are summarized as follows:

• Feedback-Based Sub-Branch Optimization. We
introduce a novel sub-branch quantization pipeline,
FBQuant, which feeds sub-branch signals back into the
main path to establish more effective reconstruction ob-
jectives. This design inherently upper-bounds the recon-
structed weights, thereby preventing overfitting to cali-
bration noise.

• Efficient CUDA Kernel Integration. We develop a
tailored CUDA kernel that fuses the sub-branch opera-
tions with the main path, significantly reducing latency
by minimizing repeated reads and writes to inputs, inter-
mediates, and outputs.

• Superior Performance Across Models. Extensive ex-
periments demonstrate that FBQuant consistently im-
proves perplexity and zero-shot accuracy over existing
quantization approaches across a variety of model fami-
lies and parameter sizes.

2 Related Works
Quantization Methods are commonly divided into two cat-
egories: Post-Training Quantization (PTQ) [Dong et al.,
2019; Liu et al., 2023a] and Quantization-Aware Training
(QAT) [Liu et al., 2023b]. PTQ offers training-free solutions
by reconstructing the quantized model after it has been fully
trained. For example, AdaRound [Nagel et al., 2020] opti-
mizes the rounding direction inspired by a Hessian-induced
reconstruction objective, while Hawq [Dong et al., 2019]
leverages Hessian information to identify weights sensitive
to quantization. In contrast, QAT incorporates quantization
during the training process, mitigating the accuracy loss as-
sociated with quantization. In the case of large language mod-
els (LLMs), PTQ is generally preferred for its simplicity and
lower computational overhead. In this work, we focus on
PTQ for LLMs and introduce FBQuant.

Weight-only Quantization focuses solely on quantizing
model weights, reducing memory usage and speeding up
memory-bound operations. For instance, [Dettmers et
al., 2022] introduce the INT8 weight quantization method.
QLoRA[Dettmers et al., 2024] proposes the NF4 data format
to better align with LLM weight distributions. GPTQ[Frantar
et al., 2022] uses layer-wise quantization combined with Op-
timal Brain Compression[Frantar and Alistarh, 2022], lever-
aging inverse Hessian information to guide quantization pro-
cess. AWQ[Lin et al., 2024b] identifies salient weights by
the corresponding activations and applies scaling techniques
to protect them during quantization. OmniQuant[Shao et al.,
2023] refines quantization via clamping and rotation values
learned per layer. However, these methods suffer from sig-
nificant accuracy degradation under low-bit quantization. In
contrast, FBQuant employs an orthogonal sub-branch mech-
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Figure 3: (Left) The main path incorporates feedback signals from the sub-branch to facilitate improved weight quantization, where Ŵ
represents the quantized weights in the main path, obtained via a quantizer Q(·), and Σ denotes the weights in the sub-branch. (Right) Direct
quantization of the original weights (red) maps them to the nearest quantization bins (blue). In contrast, the FBQuant method (green) applies
a multi-step quantization approach, progressively adjusting the weights towards their original values in three stages.

anism that effectively compensates for quantization errors,
leading to improved performance.

Weight-Activation Quantization handles both weights
and activations. SmoothQuant [Xiao et al., 2022] and Out-
lier Suppression [Wei et al., 2022] achieve W8A8 quantiza-
tion by balancing the quantization challenges of weights and
activations. QServe [Lin et al., 2024c] employs a W4A8
scheme, offering a trade-off between accuracy and speed.
Quarot [Ashkboos et al., 2024] and DuQuant [Lin et al.,
2024a] further enhance accuracy by introducing Hadamard
rotation on weights and activations. RPTQ[Yuan et al., 2023]
and LLM-QAT[Liu et al., 2023b] achieve W4A4 quanti-
zaiton. However, weight-activation quantization generally
faces insufficient support on general devices, making weight-
only methods more applicable in practice.

Sub-branches Compensation introduces parallel path-
ways alongside the quantized layer to offset quantization er-
rors. LoftQ [Li et al., 2023a] directly decompose quanti-
zation errors using Singular Value Decomposition and con-
struct low-rank residual paths correspondingly. CALDERA
[Saha et al., 2024] relies on quantized low-rank sub-branches
that are fine-tuned to further reduce quantization errors, while
EoRA [Liu et al., 2024a] projects compression errors into
the eigenspace of input activations, focusing on reconstruct-
ing the most impactful components. SVDQuant [Li et al.,
2024], originally developed for diffusion models but adapt-
able to LLMs, observes that high-rank components capture
most of the outliers, leaving the remaining components sim-
pler to quantize. However, these methods lack robust opti-
mization strategies or employ suboptimal reconstruction ob-
jectives, often resulting in diminished performance or overfit-
ting to calibration data noise. In contrast, our FBQuant intro-
duces a feedback-driven optimization mechanism that effec-
tively addresses the issue.

3 Motivation
This section discusses our insights on the ill-posed optimiza-
tion of existing sub-branching methods (Sec. 3.1), and the
inference delay induced by the sub-branches (Sec. 3.2).

3.1 Ill-posed Optimization
Sub-branch compensation reconstructs the weights of a layer
can be mathematically represented as:

W′ = WQ +Σ, (1)

where W is the original weight matrix, WQ is its quantized
counterpart produced by quantizerQ, and Σ is a low-rank lin-
ear projection derived from the sub-branch. Although this de-
sign aims at correcting quantization errors, directly optimiz-
ing Σ can lead to overfitting and dependence on calibration
data. To see why, let’s consider the layer-wise reconstruction
objective:

Σ∗ = argmin
Σ
L1, subject to rank(Σ) ≤ r, (2)

where
L1 = ∥(W −W′)X⊤∥F

= ∥(W −WQ −Σ)X⊤∥F ,
(3)

∥ · ∥F denotes the Frobenius norm, X represents layer inputs,
and r is the rank constraint for the sub-branch. Letting ∆ =
W−WQ, assume Σ∗ yields a minimal value ϵ1 for L1, then

ϵ1 = ∥(∆−Σ∗)X⊤∥F
= tr

(
(∆−Σ∗)X⊤X(∆−Σ∗)⊤

)
,

(4)

where tr(·) denotes the trace operation. In addition, from the
Singular Value Decomposition (SVD), Σ∗ can be expanded
in terms of the top-r singular vectors:

Σ∗ = UrSrVr. (5)

We can subsequently consider an alternative solution Σ′:

Σ′ = Σ∗ +ΣN , where ΣN = UrSr(αNr), (6)

with Nr sharing the same dimensionality as Vr, and a
scalar α. Because typical calibration data are limited, X⊤X
is positive semidefinite but not strictly full-rank [Huang et
al., 2024], implying there exists non-zero Nr orthogonal to
X⊤X, that is,

NrX
⊤X = 0. (7)

Then,
ΣNX⊤X = UrSr(αNrX

⊤X)

= 0.
(8)

Hence, the construction loss ϵ′ which is achieved by Σ′ is
equal to ϵ1:

ϵ′ = tr
(
(∆−Σ′)X⊤X(∆−Σ′)⊤

)
= tr

(
(∆−Σ∗)X⊤X(∆−Σ∗)⊤

)
− tr

(
(∆−Σ∗)(ΣNX⊤X)⊤

)
− tr

(
(ΣNX⊤X) · (∆−Σ∗ −ΣN )⊤

)
= ϵ1,

(9)
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Figure 4: Macs and latency of the linear layer in Llama2-7B. (Up-
left) The MACs introduced by the main path WX⊤ and the sub-
branch BAX⊤ are M0 = b × d × d and M1 = 2 × b × r × d,
respectively, where b is the batch size, r is the rank value, and d is
the layer dimension. This results in M1/M0 = 6.25% additional
MACs, when r = 128 and d = 4096. However, naively implement-
ing this sub-branch significantly increases the latency by 20% when
prefilling (right), and up to four times when decoding (bottom-left).
FBQuant significantly mitigates the problem caused by the kernel
fusion approach.

where gray terms are 0 due to orthogonality. This equation
demonstrates that Σ′ is also a valid solution. However, for
any w ∈ W, which is reconstructed by σ′ ∈ Σ′, the differ-
ence between the original and the reconstructed weights is:

|w − w′| =
∣∣w − (

Q(w) + σ′)∣∣
= |w −Q(w)− σ∗ − ασN |.

(10)

With determined {w,Q, σ∗}, the unbounded term ασN

may significantly deviate the reconstructed weights, leading
to less meaningful values, which highlights the potential for
overfitting and performance degradation.

3.2 Delay Attribution of Sub-branches
We observe that inference latency can be significantly im-
pacted by the inclusion of sub-branches. Theoretically, the
computational overhead introduced by sub-branches consti-
tutes only a small fraction of the total computation in the main
path. However, in practice, it can lead to a substantial in-
crease in inference latency. As illustrated in Fig. 4, consider
a linear layer in the Llama2-7B model with a weight matrix
W ∈ Rd×d, a layer input and output dimension of d = 4096,
and a sub-branch implemented by the LoRA [Hu et al., 2021]
approach with a rank value of 128. The inclusion of the sub-
branch results in a 6.25% increase in Multiply-Accumulate
Operations (MACs), but causes the decoding process to be
four times slower inside the layer. This dramatic slowdown
is primarily attributable to memory access bottlenecks. The
sub-branch computations involve intensive access to input ac-
tivations in the down projection (i.e., A), multiple writes to
intermediate results before the up projection (i.e., B), and ad-
ditional writes to the layer outputs.

Figure 5: Kernel Fusion. We integrate the de-quantization and the
linear projection in the main path, and up-projection in the sub-
branch into the same kernel. The reduced number of kernels re-
sults in reduced kernel launch time. The integration reduces repeated
writes to output activations.

4 Methodology
Building on the insights from Sec. 3, we propose FBQuant,
which includes: (1) feedback integration to upper-bound re-
constructed weights and prevent overfitting (see Sec. 4.1), and
(2) a differentiability strategy ensuring gradient propagation
for the sub-branch parameters to process layer-wise recon-
struction (see Sec. 4.2). (3) Furthermore, we introduce an
efficient CUDA kernel implementation to mitigate the extra
latency induced by the sub-branch (see Sec. 4.3).

4.1 Feedback and Upper Bound
Conventional sub-branch methods overlook on how far the re-
constructed weights can deviate from the original. To address
this limitation, we introduce a novel feedback mechanism,
hereafter referred to as FBQuant, which incorporates nega-
tive sub-weights into the quantization process. As illustrated
in Fig. 3, the weights of the main path are Q(W − Σ), and
the weights of the sub-branch are Σ, then, the feedback-based
reconstructed weights WF are redefined as:

WF = Q(W −Σ) +Σ. (11)

Letting w and σ be elements of W and Σ respectively, the
difference between the original and reconstructed weights is
defined as:

|w − wF | =
∣∣w − (

Q(w − σ) + σ
)∣∣

= |(w − σ)−Q(w − σ)|.
(12)

When Q(·) functions as round-to-nearest, the deviation in
Eq. (12) is bounded as:

|w − wF | ≤ s/2, (13)

where s is the quantizer’s scaling factor. Some toy exam-
ples are shown in Fig. 3 (left). Consequently, FBQuant natu-
rally limits reconstructed-weight deviations, which is a criti-
cal property that prevents the sub-branch from overfitting cal-
ibration data noise.
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4.2 Differentiability for Layer-wise Reconstruction
We fine-tune sub-branch weights based on layer-wise recon-
struction. Before that, we must ensure the differentiability
of the reconstruction objectives. Let’s first look at the loss
function derived by FBQuant:

LF = ∥WX⊤ −WFX
⊤∥F

= tr
(
∆FX

⊤X∆⊤
F

)
,

(14)

where
∆F = W −WF

= W −Q(W −Σ)−Σ.
(15)

Although Straight-Through Estimator (STE) [Bengio et
al., 2013] is commonly used to approximate the derivative
of the quantizer as

∂Q(W)

∂W
≈ I, (16)

it yields zero gradients for the sub-branch weights Σ in
FBQuant, that is

∂LF

∂Σ
=

∂LF

∂∆F
· ∂∆F

∂Σ

= (2 ·∆FX
⊤X) · (0+ I− I)

= 0.

(17)

To overcome this issue, we detach the feedback signal from
the back-propagation graph, while allowing gradients to flow
only through the sub-branch. This modification yields

∂∆F

∂Σ
= −I. (18)

Then, we obtain:

∂LF

∂Σ
= −2 ·∆FX

⊤X, (19)

which enables optimizing Σ by gradient descent. In practice,
we implement Σ using low-rank adapters [Hu et al., 2021],
such that Σ = B ·A. The sub-branches are applied to the lin-
ear layers in LLMs, such as Query, Key, Value, and Out pro-
jections in attention blocks, as well as Down, Gate, and Up
projections in feed-forward networks (FFNs). During the op-
timization process, calibration data is fed into the model and
each layer is optimized using gradient descent to minimize
the reconstruction loss in Eq. (14). More details of layer-wise
reconstruction by FBQuant are described in algorithm 1.

4.3 Kernel Fusion
To address the latency challenge induced by sub-branches de-
scribe in Sec. 3.2, we propose the kernel fusion method, il-
lustrated in Fig. 5. The reconstructed layer consists of four
kernels: de-quantization and linear projection in the main
path, as well as down-projection and up-projection in the
sub-branch. We observe that while the down-projection re-
quires relatively minimal time, the other operations domi-
nate the overall latency. To mitigate this, we integrate weight
de-quantization, activation-weight multiplication, and the up-
projection into a single CUDA kernel. This reduces the to-
tal number of kernels from four to two, significantly lower-
ing the kernel launch overhead. Additionally, in the fused

Algorithm 1 Layer-wise Reconstruction by FBQuant

Require: Xl: input activations of the l-th layer
Wl: original weights of the l-th layer
Q: linear quantizer
Σl, Al, Bl: Σl ← BlAl, weights forming the low-rank
sub-branch
r: rank of the sub-branch satisfies rank(Σ) ≤ r

Ensure: A′
l, B

′
l: optimized low-rank sub-branch weights

1: Al ← instantiate Al ∼ N (0, σ2I);
2: Bl ← instantiate Bl with 0;
3: for l = 1 −→ N do
4: repeat
5: obtain FP16 output: Zl ←WlX

⊤
l

6: obtain quantization output:
Z′

l ← Q(Wl −BlAl)X
⊤
l +BlAlX

⊤
l

7: calculate reconstruction loss: L ← ∥Zl − Z′
l∥F

8: back propagation:
∂L
∂Σ

with detached Wl and Q(Wl −BlAl)

9: update Al,Bl via gradient descent
10: until Convergence
11: A′

l,B
′
l ← Al,Bl

12: end for
13: return {A′

l,B
′
l}Nl=1

kernels, the up-projection in the sub-branch shares the same
output tensor as the linear projection in the main path. This
optimization minimizes redundant writes, which would oth-
erwise occur if the operations were handled separately. As a
result, these modifications collectively reduce the additional
inference delay caused by the sub-branches by 60%.

5 Experiments
In this section, we present the experimental setup of mod-
els, baselines, datasets, metrics and implementation details in
Sec. 5.1. Then, we demonstrate the perplexity and zero-shot
accuracy of various quantization methos in Sec. 5.2, followed
by the performance of instruction-tuned models and the wall-
clock latency on real devices.

5.1 Experimental Setup
Models. We benchmark our methods using the model
frameworks and checkpoints from HuggingFace [Jain,
2022], which includes Llama2 [Touvron et al., 2023],
Llama3 [Dubey et al., 2024], and Qwen2.5 [Yang et al., 2024]
families, with parameter sizes ranging from 7 billion to 70
billion. Specifically, we use pre-trained versions to generate
the main results as shown in Tabs. 1 and 2, while instruction-
finetuned versions are utilized for the pairwise competition as
shown in Fig. 6.
Baselines. We compare FBQuant against Round-To-
Nearest (RTN), GPTQ [Frantar et al., 2022], AWQ [Lin et al.,
2024b], OmniQuant [Shao et al., 2023], CALDERA [Saha et
al., 2024], and SVDQuant [Li et al., 2024]. GPTQ, AWQ,
and OmniQuant are implemented using their publicly re-
leased codebase. For CALDERA and SVDQuant, we fol-
low their papers and codebases to produce the results, as
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Method W Bit Group Llama2-7B Llama2-13B Llama2-70B Llama3-8B Llama3-70B Qwen2.5-7B
FP 16 - 5.12 4.57 3.12 5.75 2.97 6.39

RTN 4 128 5.27 4.69 3.25 6.29 3.63 6.72
GPTQ 4 128 5.27 4.67 3.23 7.31 3.41 6.60
AWQ 4 128 5.23 4.65 3.20 6.11 3.25 6.62

OmniQuant 4 128 5.23 4.65 3.19 6.15 3.18 6.60
CALDERA 4 128 5.26 4.69 3.20 6.26 3.23 7.14
SVDQuant 4 128 5.30 4.71 3.22 6.39 3.14 6.64
FBQuant 4 128 5.18 4.61 3.15 5.89 3.05 6.52

RTN 3 128 6.08 5.18 3.73 10.74 12.14 11.50
GPTQ 3 128 5.96 5.07 3.69 8.66 5.04 7.90
AWQ 3 128 5.82 4.98 3.56 7.63 4.39 7.31

OmniQuant 3 128 5.78 4.96 3.53 7.86 4.12 7.23
CALDERA 3 128 5.84 5.07 3.71 9.64 4.78 10.20
SVDQuant 3 128 6.90 5.54 3.69 10.73 4.30 8.57
FBQuant 3 128 5.59 4.86 3.42 6.78 3.77 6.92

Table 1: Comparison of perplexity scores on the WikiText2 validation dataset. Lower values indicate better performance. Results for GPTQ,
AWQ, and OmniQuant were obtained using their publicly released codebases. Results for CALDERA and SVDQuant were derived from
their publicly released codebases with necessary revisions. The best results are highlighted in bold. Our FBQuant approach consistently
demonstrates superior performance.

CALDERA only support Lattice quantizer and SVDQuant is
originally designed for diffusion models. Additionally, we
include unquantized models using the float16 datatype as a
baseline for a fair comparison.

Datasets and Metrics. Following previous works [Frantar
et al., 2022; Lin et al., 2024b], we employ 128 samples with
a sequence length of 2048 in the subset of WikiText2 [Mer-
ity et al., 2016] training data for calibration. The perplexity
results are tested on the WikiText2 validation set. The zero-
shot evaluation is conducted using the open-source toolkit,
i.e., Language Model Evaluation Harness [Gao et al., 2024],
which has been utilized by other baselines. The evaluation
datasets include Arc-Challenge [Clark et al., 2018], Arc-
Easy [Clark et al., 2018], HellaSwag [Zellers et al., 2019],
MMLU [Hendrycks et al., 2021], PIQA [Bisk et al., 2020],
WinoGrande [Sakaguchi et al., 2019], and BoolQ [Wang et
al., 2019]. We report the averaged accuracy.

Implementation Details. All experiments are conducted
using A100 and RTX 3090 GPUs. Both the A100 and 3090
GPUs are utilized for optimizing the sub-branches, while only
the 3090 GPU is used for testing latency, as it is commonly
available for personal use. In the main results, we set the rank
parameter to 128. The total number of optimization epochs
is set to 20. A group size of 128 is used in all quantization
methods. Sub-branches are integrated into all linear layers in
LLMs, such as Query, Key, Value, and Out projections in At-
tention blocks, as well as Down, Gate, and Up projections in
Feed-Forward Networks.

5.2 Results and Analysis
Performance Comparison. Tab. 1 and Tab. 2 present the
evaluation results for perplexity on WikiText2, and zero-shot
accuracy on seven public benchmarks, across different quan-
tization methods, tested on various LLM architectures and
model sizes. The quantization methods evaluated include
RTN, GPTQ, AWQ, and OmniQuant, which rely on clamping

and rotation techniques; as well as CALDERA, SVDQuant,
and FBQuant, which adopt sub-branch approaches. Our
FBQuant achieves state-of-the-art results in both perplexity
and zero-shot accuracy across various models. Specifically,
for the 3-bit Llama3-8B model, FBQuant reaches a perplex-
ity of 6.78, marking a significant improvement of 0.85 over
the second-best method AWQ. For the Llama2-7B model,
FBQuant attains a zero-shot accuracy of 64.68%, outperform-
ing OmniQuant by 1.20%. Three key observations can be
made from the results: (a) 4-bit quantization generally offers
good performance, while 3-bit quantization remains a little
gap compared to the floating-point models. (b) New mod-
els present greater challenges for quantization. For instance,
the 3-bit Llama3-8B model poses significant challenges for
AWQ, which suffers a substantial degradation in perplexity
by 1.88. (c) Existing sub-branch approaches occasionally
produce poor performance, as observed with CALDERA on
3-bit version of Llama3-8B, Llama3-70B, and Qwen2.5-7B,
as it relies on the ill-posed reconstruction objective as ex-
plained in Sec. 3. Besides, SVDQuant performs poorly on
3-bit Llama3-8B, as it only focuses on the weight outliers,
ignoring the layer output error.

Quantization of Instruction-tuned Models. Most real-
world applications are powered by instruction-tuned models,
motivating us to benchmark the performance of our method
on the instruction-tuned versions of the corresponding LLMs.
Following the experiment setting in [Lin et al., 2024b; Shao
et al., 2023], we conduct pairwise comparisons among AWQ,
OmniQuant, CALDERA, SVDQuant, and FBQuant under 3-
bit settings. We use the GPT-4 evaluation protocol [Chiang
et al., 2023] to assess performance on the Vicuna bench-
mark [Chiang et al., 2023], which comprises 80 questions.
The results of the comparisons are reported as win, tie, and
loss percentages. A higher percentage of wins and ties in-
dicates better performance, highlighting the superior results
achieved by FBQuant. To negate position bias [Zheng et al.,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Method W Bit Group Llama2-7B Llama2-13B Llama2-70B Llama3-8B Llama3-70B Qwen2.5-7B
FP 16 - 66.62 70.45 76.27 72.79 80.22 74.25

RTN 4 128 64.17 69.83 75.87 71.52 78.67 71.55
GPTQ 4 128 64.78 69.93 75.85 66.12 79.51 72.09
AWQ 4 128 66.08 70.14 76.07 71.78 79.13 73.15

OmniQuant 4 128 65.75 69.85 76.10 71.81 79.37 73.41
CALDERA 4 128 65.88 68.37 76.01 70.09 79.24 68.78
SVDQuant 4 128 65.12 69.94 76.18 71.42 77.85 73.85
FBQuant 4 128 66.45 70.05 76.20 72.55 79.74 74.03

RTN 3 128 62.17 68.33 73.97 61.51 68.61 67.21
GPTQ 3 128 59.68 67.16 73.39 63.63 77.19 70.73
AWQ 3 128 63.31 68.74 74.82 67.83 77.69 70.84

OmniQuant 3 128 63.48 67.96 74.55 67.97 77.81 70.98
CALDERA 3 128 62.10 66.13 73.56 63.48 77.17 64.45
SVDQuant 3 128 57.06 64.49 74.61 60.38 78.47 70.79
FBQuant 3 128 64.68 69.11 75.77 68.87 78.99 72.16

Table 2: Comparison of zero-shot accuracy on seven benchmarks as described in the experimental setup. The table shows the average
accuracy across all tasks, with the highest score highlighted in bold. Our FBQuant approach consistently demonstrates superior performance.
More details are provided in the Appendix.

Figure 6: Quantization of Instruction-tuned Models. We use differ-
ent quantization methods on the Llama3-8B-Chat model to conduct
the experiments. FBQuant demonstrates consistent strength against
other quantization methods.

2023], we also test pairs in exchanged position, totaling 160
trails per competition. As shown in Fig. 6, in the Llama3-
8B-Chat model, our FBQuant demonstrates best performance
against other quantization methods. For instance, FBQuant
achieves 79.3% win-tie rate against to AWQ, and 90.0% win-
tie rate against to SVDQuant.
Wall-clock Latency on Real Devices. We evaluate the to-
ken throughput, measured in tokens per second (tk/s), of the
FBQuant kernels on the RTX 3090 GPU, and compare it
to floating-point (FP16), INT4, and INT4 with conventional
sub-branch (INT4-Sub) implementations. As shown in Fig. 7,
INT4-Sub exhibits a significant slowdown, achieving only 46
tk/s, slightly slower than FP16, which achieves 48 tk/s. In
contrast, FBQuant demonstrates a substantial improvement
against baselines, achieving 61 tk/s and significantly increas-
ing token throughput.

6 Conclusions
In this paper, we introduced FBQuant, a novel feedback-
based optimization approach that addresses key challenges in

Figure 7: Token throughput of the Llama2-7B model using FP16,
INT4-Sub, INT4 and INT4-FBQuant tested on RTX 3090 GPU. Ex-
periments were conducted with a batch size of 1. The rank parameter
for INT4-Sub and FBQuant was set to 128. The token throughput is
measured by prefilling 256 and decoding 64 tokens.

the sub-branching quantization for LLMs. By incorporating a
feedback mechanism inspired by automatic control systems,
FBQuant effectively optimizes sub-branches without over-
fitting to calibration data, ensuring robust reconstruction of
quantized weights. Additionally, we developed an efficient
CUDA kernel fusion implementation to tackle the latency
overhead introduced by sub-branches, significantly reducing
inference delays caused by memory access bottlenecks. Our
experiments demonstrated that FBQuant consistently outper-
forms existing quantization techniques across various tasks
and model families on LLMs, achieving superior accuracy
and perplexity while improving inference efficiency. Specif-
ically, FBQuant enhances zero-shot accuracy for 3-bit mod-
els, such as Llama2-7B, by 1.2%, and achieves significant
throughput improvements in wall-clock evaluations. These
results highlight the practical utility of FBQuant for on-device
deployment of LLMs, where computational and memory con-
straints are critical.
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