Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Efficient Inter-Operator Scheduling for Concurrent Recommendation Model
Inference on GPU

Shuxi Guo'?, Zikang Xu', Jiahao Liu', Jinyi Zhang', Qi Qi', Haifeng Sun', Jun

Huang?, Jianxin Liao"* and Jingyu Wang

1,3,%

!State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
2Meituan, Beijing, China
3Pengcheng Laboratory, Shenzhen, China
{sx, xuzikang, liujiahao, elementp,qiqi8266,hfsun} @bupt.edu.cn, huangjun03 @ meituan.com,
{liaojx,wangjingyu } @bupt.edu.cn

Abstract

Deep learning-based recommendation systems are
increasingly important in the industry. To meet
strict SLA requirements, serving frameworks must
efficiently handle concurrent queries. However,
current serving systems fail to serve concurrent
queries due to the following problems: (1) inef-
ficient operator (op) scheduling due to the query-
wise op launching mechanism, and (2) heavy con-
tention caused by the mutable nature of recommen-
dation model inference. This paper presents Re-
cOS, a system designed to optimize concurrent rec-
ommendation model inference on GPUs. RecOS
efficiently schedules ops from different queries by
monitoring GPU workloads and assigning ops to
the most suitable streams. This approach reduces
contention and enhances inference efficiency by
leveraging inter-op parallelism and op character-
istics. To maintain correctness across multiple
CUDA streams, RecOS introduces a unified asyn-
chronous tensor management mechanism. Evalua-
tions demonstrate that RecOS improves online ser-
vice performance, reducing latency by up to 68%.

1 Introduction

Deep neural networks (DNNs) based recommendation mod-
els (RMs) have been widely deployed in many large com-
panies, including Google [Zhao er al., 2019; Covington et
al., 2016],Alibaba [Zhou et al., 2018a; Zhou et al., 2019],
and Netflix [Koren et al., 2009]. An RM typically consists
of a memory-intensive part, known as the embedding lookup
layer and often contains caches, and a compute-intensive part,
known as several fully connected layers. Efficient inference
of recommendation models is crucial for the profits of an on-
line service.

While an RM does not require massive computing re-
sources, it still faces extremely high concurrency and strict

*Corresponding authors

40 Low Concurrency 394
Mid Concurrency
—_ High Concurrency|
Z 30 28.4
g
=
2 19.8
g0 15.2
= .
—~ 11.2
9.4 .
10 7.2 6.8
S 45
1423
0 WnD DIN DLRM BST

Figure 1: Online inference performance was evaluated at three levels
of concurrency: low (1 client), medium (15 clients), and high (30
clients). Results showed that under high concurrency, the inference
latency can increase by as much as 4.7 times compared to the low
concurrency scenario (BST).

latency requirements in online serving. Recently, online ser-
vice frameworks such as TensorFlow Serving (TS) [Olston et
al., 2017b], and Triton Inference Server [NVIDIA, 2024c]
have emerged. When an op finishes execution, the online
service system determines the execution order of ops based
on the topology of the computation graph. Then, ops are
launched to GPU in a First Come First Served (FCFS) man-
ner. Such a workflow, however, faces poor performance in
concurrent queries scenarios. As illustrated in Figure 1, the
inference latency of processing thirty concurrent queries in-
creases by 1 to 6 times compared to processing only one
query. This occurs because multiple queries independently
launch ops to the GPU during traffic peaks, leading to un-
avoidable op interleaving, forcing ops from different queries
to alternate on the GPU. Furthermore, the service frame-
works typically launches all ops to the same CUDA Stream
(stream) [NVIDIA, 2024a]. This mechanism ensures that ops
are executed in the correct order by utilizing the stream’s fea-
tures. However, as indicated in Figure 3, this approach does
not fully utilize GPU resources and leads to prolonged la-
tency.

It’s straightforward to use multiple streams to serve concur-

rent queries. However, as shown in Figure 3, such a mecha-
nism is still suboptimal. Unlike other DNN models’ infer-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

- Sparse [T
input

EmbeddingTable
= Sparse o @ o[o
Input - Concat
EmbeddingTable

=Dense
nput

Figure 2: RMs consist of an embedding part (embedding tables) and
a dense part (neural networks).

ence, RM’s inference is mutable. When accessing the muta-
ble part of RM, locks are needed to guarantee the correctness.
Thus, when multiple ops access the same mutable region,
conflicts occur and ops’ execution time increases. What’s
worse, synchronization between ops from multiple streams
is needed to ensure the correctness of the inference, which
further increases the overhead.

To address the problems listed above and improve the on-
line execution efficiency of RMs, we introduce RecOS, an
online RM scheduling system. We adopted Nvidia’s Mul-
tistream [NVIDIA, 2024a] mechanism and scheduled ops
across multiple streams to fully utilize GPU resources while
minimizing the overhead caused by disordered op schedul-
ing and conflicts. To achieve highly efficient op scheduling
on multiple streams, RecOS must obtain real-time informa-
tion about the workload of each stream. Since Nvidia does
not provide a related API, RecOS establishes a GPU work-
load monitor. This monitor estimates the queuing status of
each stream by considering ops’ execution order and compu-
tational attributes such as grid size and execution time. Af-
ter obtaining the queuing status of each stream, RecOS uses
greedy algorithms to assign ops to suitable streams based on
op’s type. Finally, RecOS introduces a unified asynchronous
tensor management mechanism based on characteristic of
tensors’ lifetime to eliminate the synchronization overhead.

Our experiments on multiple RMs show that RecOS can
effectively improve the inference latency. Our algorithm
can significantly reduce inference latency under high concur-
rency. Compared to current service frameworks, RecOS can
achieve an inference latency improvement of up to 68%.

Our contributions are summarized as follows:

1. We analyzed RMs’ computation graph characteristics,
mutable nature, and execution process in concurrent sce-
narios, identifying key opportunities for optimization
through scheduling. To the best of our knowledge, we
are the first to highlight the mutable nature of RMs and
its impact on concurrent inference.

2. We introduce RecOS, an op-level inference scheduling
system specifically tailored for RMs, designed to im-
prove kernel scheduling efficiency and reduce inference
latency.

3. We extensively tested multiple RMs under various on-
line concurrent scenarios, demonstrating the effective-
ness of our approach.

Model #Ops Grid Ratio Grid Ratio Parallel Op
[0, 28] (28, <] Ratio
RMs 350 85% 15% 78%

Table 1: Model Characteristics

2 Background and Motivation

2.1 Architecture and Characteristics of RMs

Figure 2 sketches the architecture of RMs. RMs primarily
accept two types of input: sparse features (such as user ID
and video ID) and dense features (such as user age and video
click count). The sparse module of RMs lookups embedding
table, whose size may reach hundreds of GBs, to transforms
sparse features into dense features. The feature interaction
module is responsible for combining the dense and sparse
features. Finally, the prediction module takes the output from
the interaction module and calculates the click-through rate
(CTR) probability for each user-item pair using neural net-
work computations. The CTR probabilities for all items are
then ranked, and the top-N choices are presented to the user.

Owing to their unique hybrid structure, RMs’ inference
possess the following characteristics:

1. Low Computational Complexity

Unlike many well-known neural networks, RMs gen-
erally have lower computational complexity. Based
on our statistical analysis across multiple RMs[Cheng
et al., 2016; Zhou et al., 2018b; Chen et al., 2019;
Naumov et al., 2019], Table 1 summarizes their com-
mon characteristics, the ‘Grid Ratio [0,28] = 85% ¢ indi-
cates that 85% of the ops have a grid size of 28 or less,
so each op by itself cannot fully occupy all SMs on an
A30 GPU.!.

2. High Parallelism We abstract the computational graph
of an RM model as a directed acyclic graph (DAG). For
any node a within this graph, if there exists another node
b that does not communicate with a, then a and b can
be executed in parallel. As shown in Table 1, up to 78%
of RMs’ ops can run in parallel with other ops.

3. Mutable Inference Unlike conventional models, RM
weights are not fully frozen during inference. Because
of their large embedding tables, RMs often employ GPU
caches [Wang et al., 2022; Xie et al., 2022] to improve
memory efficiency. The cache records metadata (e.g.,
access frequency) of embeddings and updates HBM pa-
rameters from external memory (e.g., DRAM) accord-
ing to caching strategies. To prevent accessing invalid
cache entries, caches use locks to protect data. Because
these caches update metadata on each access, multiple
embedding ops may compete for the same entry, causing
lock contention and prolonged execution time if sched-
uled improperly.

'Nvidia A30, a widely used Al inference card, contains 56 SMs

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Time: 6 ! i 5 Requests arrives
o g q g No concurrency Avg Time: (22+3-1+ + +)/5=26
S \ 5}) ‘ 5 K ‘ |
| %DKE GPU ["]]]]]]]]-m 'sg:og; GPU "]]]]I" i l() 6 4 6
f 8 1 @ Conﬂlcts no parallellsm Avg Tlme (10+(7+2/3+ +01 041 7)/5=8.47
P E g: GPU P2 H 7/ 6
; §§ o - E GPU Graph
i <8 S = (el 1L 111NN NNNANNS AN /7 77 NN NN 7. 7/ e S At
! 5 Iz ‘ &:g gi GPU 1 2 3 4 5 ¢ low occupancy Dependency
: e 20 d D
R HEEA i 2 NN NN 7/ Op
2 2 — |5 (D ‘
LA 5 % GPU 3; L % Parallelism, concurrency, no conflicts Avg Time:(4 + 5 +6 +e+0)/5=62
' ot | i ' 1 17
LS & N heeatl” 5! 6 A . Moreopsdependnop3
first launc| mportamo Time: S ! 5 5 ' IlReql BReq2 Req3 i
1 = | "
R [I]]]]]]]]]‘-i - ! N A ([Reqd Regs]
3 E GPU @ i VA 2 2. (g | [JEmb []JGemm[|Src

Figure 3: An example of GPU op scheduling with different numbers of queries, streams, and launch strategies. The ops with north-west/south-
east hatching, north-east/south-west hatching, and vertical hatching represent embedding ops with cache, computation ops, and source ops
receiving inputs, respectively. (a)- (d) handle one query, while (e)- (g) handle five concurrent queries. The GPU utilizes one stream in a) and
(e), two streams in (b) and (d), three streams in (c), and four streams in (f) and (g). It is assumed that the ops in the GPU graph are identical
and consume less than 1/4 of the GPU’s SMs. In figure (f), multiple queries access the same embedding cache, leading to prolonged latency.

2.2 Analysis of Current Schedule
Single Query
We first consider scheduling within a single query.

Single Stream. The op scheduler launches all ops onto one
stream based on topological sorting, as shown in Figure 3 (a).
This method results in the longest inference latency and the
lowest resource utilization, since inter-op parallelism is not
exploited.

Multiple Streams. To utilize inter-op parallelism, it is nec-
essary to launch ops onto multiple streams. Figures 3 (b)
and 3 (c) illustrate the use of 2 and 3 streams, achieving an
inference latency improvement of 1/6 and 1/3, respectively.

Ideal. Although increasing the number of streams im-
proves inference latency, it does not always achieve optimal
resource utilization. Figure 3 (d), which utilizes 2 streams,
reaches the same inference improvement as that achieved
with 3 streams in Figure 3 (c). This is due to the topological
sorting scheduling algorithm. If op 3 can be finished earlier,
ops 4 and 6 can be launched earlier, which can reduce the
overall query inference latency.

2.3 Concurrent Queries

Next, we consider the case of processing multiple concurrent
queries.

Single Stream. Many existing DNN service systems, such
as TS [Olston et al., 2017al, utilize a single computation
stream for all concurrent queries. However, as depicted in
Figure 3 (e), the inference latency of the GPU graph might
be substantially increased due to op interleaving (see the red
dashed box), as only one kernel runs on the GPU at any given
time. This method results in poor throughput of 0.167 (pro-
cessing 5 queries during 30 time units).

Multiple Streams. Increasing the number of streams can
mitigate the impact of op interleaving under concurrent
queries. Figure 3 (f) illustrates the use of 4 streams, selecting
one for each query in a round-robin manner and launching

all ops of a query onto the same stream. This approach re-
duces the inference latency from 26 to 8.47 and increases the
throughput from 0.167 to 0.417. However, it does not ex-
ploit inter-op parallelism, leading to a non-optimal inference
latency and low resource utilization. Besides, the conflicts
between caches increase the ops’ execution time.

Ideal. Figure 3 (g) presents the ideal schedule of RMs
across multiple streams. Apart from utilizing multiple
streams, this also leverages inter-op parallelism (see the red
dashed-line box) and avoids cache conflicts. Figure 3 (g)
reaches an average inference latency of 6.2 and a throughput
of 0.635, which achieves best compared with Single Stream
and Multiple Streams.

2.4 Insight
From the above illustration, we can derive two insights.

Underutilized Inter-Op Parallelism. Table 1 reveals that
most computation graphs have a high degree of parallelism.
However, due to the one-by-one scheduling strategy shown in
Figure 3 (a), (e), and (f), RM models’ parallelism is underuti-
lized.

Disordered Scheduling under Concurrency. Figure 3 (e)
shows the disordered kernel execution timeline under con-
current queries. When the dependencies of a kernel from
one query are satisfied, it may still have to wait because ker-
nels from other queries have already been launched into the
queue. Besides, the conflicts between caches increase the
ops’ execution time and increase the inference latency of to-
tal queries. The primary cause is the absence of a unified
scheduling mechanism.

3 Methodology

3.1 Overview

The goal of RecOS is to provide efficient scheduling of ops
across multiple streams (see Figure 3 (f)) to improve infer-
ence latency under traffic peaks. Figure 4 shows the overall
framework of our system, which includes (a) an offline com-
ponent, which profiles models before online service, and (b)

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

an online component, which schedules ops under concurrent
queries.

Offline. Before online scheduling, RecOS utilizes Nsight
Systems [NVIDIA, 2024b] to obtain information about the
ops on the GPU in the model, including op execution time
and kernel grid size.

Online. The online component comprises a Model Weights
Database, a Workload Monitor, a Multistream Scheduler, and
a Memory Manager.

3.2 Model Weights Database

Op Importance

To facilitate explanation, we abstract the computational graph
into a DAG. Let G = (V, L) denote the DAG of a DNN,
where V = {v1,va,...,v,} is the set of vertices represent-
ing the ops of the DNN and L is the set of links. A link
(vs,v;) € L indicates that v; must be processed before v,,
with v; feeding its output to v;.

As discussed before in Section 2.2, scheduling ops based
on their importance is more effective than using the topologi-
cal order. We calculate the DepV alue for each op as the op’s
importance in the computation graph:

DepV alue(vy,)

DepValue(v) =1.0 + Z inDegree(v,)

(v,vn)EL

where inDegree(v,,) represents the in-degree value of the
vertex vy, .

Op Execution Statistics

Op execution statistics include grid size and execution time,
which can be collected using Nsight Systems [NVIDIA,
2024b].

Grid Size. The grid size refers to the number of blocks
within an op and can be used to infer the maximum num-
ber of SMs that an op can occupy on the GPU. The grid size
of an op is calculated as follows:

GridSize(O) = Z GridSize(k)

keO

where GridSize(O) and GridSize(k) represent the grid
size of an op and a kernel, respectively, and & € O indicates
that the kernel belongs to an op.

Execution Time. Execution Time refers to the duration of
an op’s execution, including the time for kernel preparation,
kernel launch, and kernel execution.

3.3 Workload Monitor

To effectively schedule ops, we need to acquire the status of
ops running on the GPU. As NVIDIA does not provide APIs
that meet our requirements, we implemented our own mon-
itor to estimate the running status of the GPU (as shown in
Figure 4).

Assuming op o will be launched on stream s, before its ex-
ecution starts, the monitor appends it to the op information
queue of stream s and removes it upon completion of exe-
cution. We use grid size and execution time as metrics for
measuring the resource occupancy and execution of a stream.

| Offline Online |
| |
RMs | ;
v ' Model 7—l :
Graph | Weights) :
Analyse [Database Multistream 'Schedule
. i i Scheduler ISystem
Operator ! Work!oad 77777777777777777777777
Profiler ! Monitor
| Memory

Figure 4: Architecture of RecOS.

The expected completion time for stream s is calculated as
follows:

CompletionTime(s) = Z

o€opinstream(s)

ExecTime(o)

where opinstream(s) refers to the ops that are stored in the
op info queue of stream s.
The resource occupancy at time ¢ is calculated as follows:

ResOccupancy(t) = Z GridSize(o)
o€opattime(t)

where opattime(s) refers to ops that are being executed at
time ¢.

3.4 Multistream Scheduler

Execution Order

Computation Op. The computation op execution order is
determined by both the topology and the DepV alue. First,
before computation, RecOS calculates the DepV alue for all
ops. Once an op finishes computation, all dependent ops
go into the queue. The scheduler then selects the op with
the highest DepV alue from queue to launch; i.e., v3 would
be selected first after v; finishes execution, ensuring that the
most critical ops are scheduled first.

Embedding Op. Because embedding ops require locks for
cache consistency, concurrent embedding lookups on the
same cache entry cause lock contention. RecOS utilizes a
round-robin strategy to reduce contention caused by concur-
rent embedding operations. For each new query, RecOS de-
termines a unique starting position. This position depends
on the previous query’s execution state, ensuring a staggered
offset:
Startldz =(Nowldzyre, + of fset) mod |emb ops|
of fset — Nowldzprey —2 Startldzpres

where NowlIdx,,e, is the index of the last launched embed-
ding op, StartIdx,,., is the initial embedding op launching
position of the previous query, and |emb ops| represents the
total number of embedding ops. This approach yields two
primary benefits. First, by introducing an offset, it effec-
tively staggers similar embedding operators across concurrent
queries, thereby reducing lock contention. Second, it dynam-
ically adapts the scheduling offset according to the real-time
execution status.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Alloc 2| Dealloc 2
Alloc 1{Dealloc 1#
Thread 1 Opl
Thread 2 022
Ptr] Ptr2
Stream 1 L K1 I K2 |
Alloc 2| Dealloc 2
Alloc 1yDealloc 1}
Thread 1 Opl v
Thread 2
Ptr]
Stream 1
Stream 2
Pealloc
Save % Save
Alloc 1y Alloc2 |Alloc Ny
Thread 1 p ceesee Op2
Thread 2 Op2
Ptrl PtrN| Query status
Stream 1 secese { KN |
Stream 2 escsce

Figure 5: (a) When there is only one stream, concurrent kernel exe-
cution does not occur. (b) GPU memory might be deallocated before
the kernel finishes its execution. (¢) The Memory Manager deallo-
cates memory after kernel execution.

Stream Selection
The scheduler employs different approaches for computaion
ops and embedding ops.

Computation op. The scheduler uses Workload Monitor’s
information and op’s statistics such as grid size to select the
most appropriate stream. First, if any stream is idle, the
scheduler immediately dispatches the computation op to that
stream. Otherwise, it identifies the two streams with the
shortest and second-shortest completion times, then estimates
the overall workload if the op were placed on either one. If the
shortest stream’s estimated workload violates certain thresh-
olds, the scheduler switches to the second-shortest stream;
otherwise, it remains on the shortest.

Embedding op. For embedding ops, the scheduler focuses
on avoiding cache conflicts. It first checks if there are any
streams on which the op can be launched without conflict. If
such streams exist, the scheduler assigns the op to the stream
with the shortest expected completion time. Otherwise, it
reuses the op’s previously assigned stream.

3.5 Memory Manager

Next, we discuss how to ensure ops’s correct execution across
multiple streams through asynchronous memory manage-
ment.

Ops utilize tensors to store and transfer data. To maintain
the correctness of computations, it is critical to ensure that
one op’s memory space is not compromised by other ops.

When there is a single stream, the stream characteristic en-
sures that only one kernel is executed on the GPU, thereby
preventing data corruption. However, as Figure 5 illustrates,
when multiple streams are used, there is a risk of mem-
ory corruption, which can lead to incorrect computation re-
sults. This problem could be solved if each GPU op waits
for the completion of its prior op’s kernel execution after be-
ing launched. However, this synchronous approach can re-
duce the efficiency of kernel launches and introduce addi-
tional overhead into GPU graph computations.

To minimize the overhead associated with multistream
memory management, we propose an asynchronous memory
management approach for multistream RM execution. Re-
cOS introduces a centralized memory manager to properly
free GPU buffers used by ops. It utilizes a separate tensor
pool for each stream to collect tensors. When a tensor pool
reaches a certain threshold, the manager checks the status of
corresponding kernels and releases tensors if the kernels have
finished execution.

4 Experiment

4.1 Experiment Setting

Implementation. We implemented RecOS on TS [Olston
et al., 2017al, an open-source machine learning service sys-
tem designed for production environments. It’s noteworthy
that RecOS can be easily integrated with other serving sys-
tems, such as Triton Inference Server [NVIDIA, 2024c].

Hardware and Software. We deployed our system on a
server equipped with an Intel (R) Xeon (R) Platinum 8352Y
CPU and an Nvidia A30 GPU (24 GB HBM2 and 56 SMs
available), matching our production environment. All code
was compiled using GCC and nvcc with the -O3 option. We
used CUDA driver version 525 and CUDA Toolkit 12.0.

Models. We evaluated four representative recommendation
models from in-house production: WnD [Cheng et al., 2016],
DIN [Zhou et al., 2018b], DLRM [Naumov et al., 2019], and
BST [Chen et al., 2019]. These models represent different
architectural paradigms in modern recommendation systems
and are widely deployed in production environments. It is
noteworthy that RMs comprise many small kernels, which
leads to high kernel launch overhead. Therefore, in a pro-
duction setting, RMs would first be optimized by tools such
as TVM [Chen et al., 2018] to reduce such overhead. To
closely mimic the production environment, we applied such
optimizations.

Metrics. We selected latency as the main metric. Latency
refers to the duration of model inference, excluding the time
consumed for serialization, deserialization, and the network
delays associated with sending and receiving queries. Exper-
iments were conducted at five levels of concurrency: 1, 8, 15,
22, and 30. The clients keep sending queries after receiving
the response of the previous queries from the server’. Be-
sides, we also simulated online traffic to test the performance.

Comparison. We compared the performance of our system
with the following three approaches: (1) TSSS, the default
Single Stream kernel launch mechanism of TS [Olston et
al., 2017al; (2) TSMS, the MultiStream implementation by
TS [Olston et al., 2017al, which contains multiple computa-
tion streams and launches kernels from one query to multiple
streams based on the topology of the computation graph; (3)
MSSS, a scheme that launches all kernels belonging to one
query onto the same stream, as illustrated in Figure 3 (f); (4)

“We omit throughput measurement because under our client-
query pattern (where each client sends the next query only after re-
ceiving the previous response), the system throughput is essentially
the reciprocal of latency.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

| ~ TSMs TSSS — v MSSS — ¢ StreamRec Opara RecOS]
WnD DIN DLRM 60 BST
8 25
= . 25 * 50
E6 . 2 20 N 40)
g * 15 v
S4 v - ¥ 15 ® v 30 X
3 y ry - T 2
g T 10 ¢t 10 . & 0 3
2w w 5 3 10 .
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Concurrency Concurrency Concurrency Concurrency

Figure 6: Runtime Performance of RecOS on Four Models. At low concurrency levels, RecOS offers only moderate improvements compared
to TSSS, TSMS, and MSSS. However, when concurrency reaches a high level, RecOS’s latency is lower than that of all other schemes.

| # of Requests TSSS RecOS|
WnD DIN 20 DLRM 25 30k BST 45
250k 6 50k 40k 40
E 20 35~
E—40k 5 40k 15 30k 20k 30
k 4 k 1 25
30 30 10 20k > %8
_n;)'20k 3 20k 10 10k 15%
E 10k 2 10k 5 10k 10—
Z 1 5 5
0 0O 5 10 15 20 0 0 5 10 15 20 0 0O 5 10 15 20 0 0 5 10 15 20 0
Time Time Time Time

Figure 7: Runtime Performance under Online Traffic: (a) Pulse-Type Traffic; (b) Unimodal-Type Traffic; (c) (d) Bimodal Traffic. Among all

traffic types, RecOS reduces inference latency during traffic peaks.

StreamRec, the Stream Assignment method for Recommen-
dation models proposed in [Niu er al., 2023]; (5) Opara, a
resource- and interference-aware DNN op parallel schedul-
ing framework to accelerate DNN inference on GPUs [Chen
et al., 2024].

4.2 Overall Performance

This section evaluates RecOS using the four optimized mod-
els, comparing it with the five aforementioned scheduling
baselines: TSSS, TSMS, MSSS, StreamRec, and Opara. Fig-
ure 6 presents the comparison of inference latency.

Figure 6 shows that RecOS consistently outperforms the
other five methods as concurrency increases. Compared to
TSMS and StreamRec, which utilizes Multistreams, RecOS
can achieve up to a 68% speedup (WnD, concurrency 30) and
a 63% speedup (WnD, concurrency 30), respectively. Both
TSMS and StreamRec assign streams based on the topology
order of computation graph. When faced with high concur-
rent queries, they encountered disordered scheduling. Be-
sides, both of them adopt a naive tensor management strategy
(as shown in Figure 5 (b)), which also introduced high over-
head. As a result, both of them had degraded latency. The
improvement of RecOS over TSSS and MSSS is not obvious
at low concurrency (< 8). However, the improvement in-
creases as concurrency rises. This is because as concurrency
increases, more ops need to be scheduled, thus a highly effi-
cient scheduler can improve the inference latency. Besides,
RecOS achieves a 46% improvement (DIN) at a concurrency
of 30 compared to TSSS. The best improvement of RecOS
over MSSS and Opara is about 44% and 53% for DIN re-
spectively, at a concurrency of 30. Although both of them
utilize multiple streams, they lacks in avoiding cache conflicts
between embedding ops, thus leading to sub-optimal perfor-
mance. What’s more, the Tensor Manager adopted by RecOS

reduces the overhead of synchronization between ops, which
also makes RecOS better than Opara.

4.3 Performance under Online Traffic

Our experiments were conducted on RecOS and TSSS under
simulated network traffic conditions. Specifically, we tailored
the distribution of traffic to reflect the typical patterns encoun-
tered in business environments, focusing on three main types:
pulse-type, bimodal, and unimodal traffic distributions.

The data depicted in these figures revealed two character-

istics:

1. When the traffic volume is low, the performance of the
TSSS is quite similar to that of RecOS. During these pe-
riods of low traffic, the latency difference between TSSS
and RecOS is not significant.

When the traffic volume is high, RecOS demonstrates
its effectiveness. It is evident that RecOS outperforms
TSSS under conditions of high traffic volume. Further-
more, as seen in Figure 7, when traffic reaches its peak,
the time saved by RecOS is maximized.

4.4 Performance Analysis

Better op schedule. The performance of RecOS can be at-
tributed to several key factors:

1. Efficient Stream Management Unlike TSSS that uses
only one stream or MSSS’s simple stream assignment
strategy, RecOS dynamically assigns ops to multiple
streams based on comprehensive workload monitoring.
This allows for better GPU resource utilization and re-
duced idle time.

Cache Conflict Avoidance RecOS’s round-robin em-
bedding launch algorithm minimizes cache conflicts, an

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

32 MB 64 MB 96 MB 128 MB]|
1000
= 4
m
g 80 -
2 600 &,
>
g £2
s 400 &{;
=) —
1
& 200

0

WnD DIN DLRM BST WnD DIN DLRM BST

Figure 8: Comparison of Tensor Manager performance for all 4
models at different memory threshold. (a) GPU Memory Usage and
(b) inference latency.

issue overlooked by StreamRec and Opara. This is par-
ticularly important for RMs due to their mutable nature
during inference.

3. Topology-aware Scheduling By considering both the
DepV alue and topology of the computation graph, Re-
cOS ensures critical ops are prioritized appropriately.

4. Dynamic Workload Balancing The system’s workload
monitor provides real-time information about stream
status and resource utilization, enabling RecOS to make
more informed scheduling decisions.

These optimizations work together to reduce inference la-
tency, particularly during high-concurrency scenarios where
the benefits become most apparent.

Tensor Management. By eliminating the post-processing
step of tensor memory management, our tensor management
reduces the overall latency. We first conducted experiments
on all four models to investigate the impact of various mem-
ory threshold settings on system performance, as shown in
Figure 8. As shown in Figure 8, under the threshold of
64 MB, the tensor manager achieves the best inference la-
tency across all models. As the threshold increases, the fre-
quency of tensor releases decreases, but the overhead asso-
ciated with each release becomes larger. Additionally, the
process tensor release also consumes resources (for example,
event managers and thread pools), that are needed for op ex-
ecution. The threshold of 64 MB achieves an optimal bal-
ance between release frequency and release overhead. Unlike
inference latency, GPU Memory utilization increases as the
memory threshold increases because more tensors are stored
in the tensor manager’s pool. However, it is noteworthy that
even when the threshold reaches 128 MB, the GPU Memory
Utilization only increases by about 100 MB, which is mini-
mal compared to the overall GPU Memory capacity of 24 GB
for A30.

Then we conducted experiments to investigate the impact
of Tensor Management on RecOS at the threshold of 64 MB.
Figure 9 shows that Tensor Manager improves inference la-
tency of RecOS across all models. The comparative anal-
ysis conclusively shows that our tensor management’ effec-
tiveness while incurring only a marginal memory overhead.

(o]

RecOS w/ TM.
RecOS w/o TM

N

Latency(ms)
~

S

0 WnD DIN DLRM BST

Figure 9: Comparison of RecOS with and without Tensor Manager.

5 Related Work

Recommendation Models Acceleration. Recently, many
works have been proposed to accelerate DLRMs. Meth-
ods such as embedding cache on GPUs [Xie et al., 2022;
Wang et al., 2022], op fusion [Pan et al., 2023], near-
memory processing [Ke et al., 2020; Kwon ef al., 2019], and
in-memory processing [Wang et al., 2021] have been pro-
posed to improve the embedding lookup, which are orthog-
onal to RecOS. StreamRec [Niu ef al., 2023] utilizes multiple
streams to improve the embedding lookup op. However, all of
them neglect the mutable nature of RM inference. To the best
of our knowledge, RecOS is the first system that schedules
RM inference based on RM’s mutable nature.

GPU Concurrency. Many efforts have been proposed to
increase GPU concurrency. Miriam [Zhao et al., 2023] gener-
ates kernels with elastic resource occupancy and dynamically
adjusts them when critical kernels arrive. Opara [Chen et al.,
2024] determines stream allocation and launch order based
on computation graph topology and operation characteristics,
generating CUDA Graphs to accelerate inference. Unlike
these works, RecOS introduces a comprehensive scheduling
mechanism that efficiently distributes RM operations across
multiple streams, fully utilizing GPU resources while specif-
ically addressing the unique mutable nature of recommenda-
tion models.

6 Conclusion and Future Work

We propose a novel system named RecOS, which improves
latency in RM online service systems under concurrent
queries. To tackle the cache conflicts caused by RM’s
mutable nature, RecOS proposes a round-robin embedding
launch algorithm. The proposed system also takes advan-
tage of the high parallelism topology of RM models and low-
resource-consumption ops to achieve highly efficient parallel
op launch. Furthermore, it utilizes a runtime op scheduler to
process multiple concurrent queries across multiple stream to
solve the disordered scheduling problem.

Experimental results with multiple models indicate that
RecOS can enhance the overall system latency while incur-
ring a minimal increase in memory occupancy. In the future,
we plan to dive into the optimal configuration of RecOS for
RM models.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

This work was supported in part by the National Natu-
ral Science Foundation of China under Grants (62471055,
U23B2001, 62321001, 62101064, 62171057, 62201072),
the Ministry of Education and China Mobile Joint Fund
(MCM20200202, MCM20180101), the Fundamental Re-
search Funds for the Central Universities (2024PTB-004).
The research was also supported by Yerui Sun and Yuchen
Xie from Meituan.

References

[Chen et al., 2018] Tianqi Chen, Thierry Moreau, Ziheng
Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. TVM: An auto-
mated End-to-End optimizing compiler for deep learning.
In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 578-594, Carlsbad,
CA, October 2018. USENIX Association.

[Chen et al., 2019] Qiwei Chen, Huan Zhao, Wei Li, Pipei
Huang, and Wenwu Ou. Behavior sequence transformer
for e-commerce recommendation in alibaba, 2019.

[Chen et al., 2024] Aodong Chen, Fei Xu, Li Han, Yuan
Dong, Li Chen, Zhi Zhou, and Fangming Liu. Opara: Ex-
ploiting operator parallelism for expediting dnn inference
on gpus, 2024.

[Cheng et al., 2016] Heng-Tze Cheng, Levent Koc,
Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,
Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep
learning for recommender systems. In Proceedings of
the 1st Workshop on Deep Learning for Recommender
Systems, DLRS 2016, page 7-10, New York, NY, USA,
2016. Association for Computing Machinery.

[Covington ef al., 2016] Paul Covington, Jay Adams, and
Emre Sargin. Deep Neural Networks for YouTube Recom-
mendations. pages 191-198, Boston Massachusetts USA,
September 2016. ACM.

[Ke e al., 2020] Liu Ke, Udit Gupta, Benjamin Youngjae
Cho, David Brooks, Vikas Chandra, Utku Diril, Amin
Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S.
Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim
Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong
Wang, Brandon Reagen, Carole-Jean Wu, Mark Hemp-
stead, and Xuan Zhang. RecNMP: Accelerating person-
alized recommendation with near-memory processing. In
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 790-803, Valencia,
Spain, 2020. IEEE.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix Factorization Techniques for Recom-
mender Systems. Computer, 42(8):30-37, August 2009.

[Kwon et al., 2019] Youngeun Kwon, Yunjae Lee, and Min-
soo Rhu. TensorDIMM: A practical near-memory pro-
cessing architecture for embeddings and tensor operations

in deep learning. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 740-753, Columbus OH USA, 2019. ACM.

[Naumov et al., 2019] Maxim Naumov, Dheevatsa Mudi-
gere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan
Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta,
Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhul-
gakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu,
Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen,
Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyan-
skiy. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems, May 2019.
arXiv:1906.00091 [cs].

[Niu et al., 2023] Yuean Niu, Zhizhen Xu, Chen Xu, and
Jiagiang Wang. Accelerating Recommendation Infer-
ence via GPU Streams. volume 13943, pages 546-561.
Springer Nature Switzerland, Cham, 2023.

[NVIDIA, 2024a] NVIDIA. Multiple
stream. https://developer.nvidia.com/blog/
gpu-pro-tip-cuda-7-streams-simplify-concurrency/,

2024.

[NVIDIA, 2024b] NVIDIA. Nvidia nsight systems. https:
//developer.nvidia.com/nsight-systems, 2024.

[NVIDIA, 2024c] NVIDIA. Nvidia triton inference server.
https://github.com/triton-inference-server/server, 2024.

[Olston et al., 2017a] Christopher Olston, Noah Fiedel, Kiril
Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li,
Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml serv-
ing, 2017.

[Olston et al., 2017b] Christopher Olston, Fangwei Li,
Jeremiah Harmsen, Jordan Soyke, Kiril Gorovoy, Li Lao,
Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
Tensorflow-serving: Flexible, high-performance ml
serving. In Workshop on ML Systems at NIPS 2017, 2017.

[Pan et al., 2023] Zaifeng Pan, Zhen Zheng, Feng Zhang,
Ruofan Wu, Hao Liang, Dalin Wang, Xiafei Qiu, Junjie
Bai, and Wei Lin. RECom: A Compiler Approach to Ac-
celerate Recommendation Model Inference with Massive
Embedding Columns. 2023.

[Wang et al., 2021] Yitu Wang, Zhenhua Zhu, Fan Chen,
Mingyuan Ma, Guohao Dai, Yu Wang, Hai Li, and Yi-
ran Chen. Rerec: In-reram acceleration with access-
aware mapping for personalized recommendation. In 2021
IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pages 1-9, 2021.

[Wang et al., 2022] Zehuan Wang, Yingcan Wei, Minseok
Lee, Matthias Langer, Fan Yu, Jie Liu, Shijie Liu,
Daniel G. Abel, Xu Guo, Jianbing Dong, Ji Shi, and Kun-
lun Li. Merlin HugeCTR: GPU-accelerated recommender
system training and inference. In Proceedings of the 16th
ACM Conference on Recommender Systems, pages 534—
537, Seattle WA USA, 2022. ACM.

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://github.com/triton-inference-server/server

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Xie et al., 2022] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing
Wang, Jian Gao, Kai Ren, and Jiwu Shu. Fleche: An
efficient GPU embedding cache for personalized recom-
mendations. In EuroSys '22: Seventeenth European Con-
ference on Computer Systems, pages 402-416, Rennes
France, 2022. ACM.

[Zhao et al., 2019] Zhe Zhao, Lichan Hong, Li Wei,
Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee
Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and
Ed Chi. Recommending what video to watch next: a multi-
task ranking system. pages 43-51, Copenhagen Denmark,
September 2019. ACM.

[Zhao er al., 2023] Zhihe Zhao, Neiwen Ling, Nan Guan,
and Guoliang Xing. Miriam: Exploiting Elastic Kernels
for Real-time Multi-DNN Inference on Edge GPU, 2023.

[Zhou et al., 2018a] Guorui Zhou, Xiaogiang Zhu, Chenru
Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi
Jin, Han Li, and Kun Gai. Deep Interest Network for
Click-Through Rate Prediction. pages 1059-1068, Lon-
don United Kingdom, July 2018. ACM.

[Zhou et al., 2018b] Guorui Zhou, Xiaogiang Zhu, Chenru
Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi
Jin, Han Li, and Kun Gai. Deep Interest Network for
Click-Through Rate Prediction. pages 1059-1068, Lon-
don United Kingdom, July 2018. ACM.

[Zhou et al., 2019] Guorui Zhou, Na Mou, Ying Fan, Qi Pi,
Weijie Bian, Chang Zhou, Xiaoqgiang Zhu, and Kun Gai.
Deep Interest Evolution Network for Click-Through Rate
Prediction. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 33(01):5941-5948, July 2019.

