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Abstract

More accurate construction of brain effective con-
ncetivity networks remains a great challenge to
achieve accurate auxiliary diagnosis of brain dis-
eases and in-depth exploration of brain function.
However, existing methods only consider higher-
order or non-stationary assumptions, rather than si-
multaneously constructing higher-order and non-
stationary networks. Among many existing meth-
ods, Bayesian network methods demonstrate supe-
rior network structure learning ability. In this work,
the forward-backward search (FBS) method is op-
timized by using brain active information, which
is improved to a higher-order network structure
learning method, called TSTAI. Firstly, in the pro-
cess of non-stationary network structure learning,
two-stage idea is used to search the change points.
Then, in the process of learning higher-order net-
work structure, FBS method is combined with two
kinds of brain active information to improve the
condition set filtering process and scoring func-
tion, respectively. Finally, the pruning strategy is
used to reduce the search space. Extensive ex-
periments on simulated and real data demonstrate
the effectiveness of TSTAI. Through experiments,
the TSTAI is compared with state-of-the-art higher-
order network construction methods, and the pro-
posed method achieves an improvement of 3.6%
and 17.4% respectively in the network construction
accuracy.

1 Introduction
Understanding the complex dynamics of the human brain,
as well as its numerous interconnected regions and com-
plex causal relationships, remains one of the most striking
challenges in neuroscience [Ji et al., 2021; Shuyue Xu and
Liang, 2023a; Qu et al., 2023]. With the continuous develop-
ment of brain imaging technology, such as fMRI and EEG,
it is now possible to observe brain activity non-invasively
[Ge et al., 2020; Paolo Maria Rossini and Vecchio, 2022].

∗Corresponding author

Brain network technology has emerged. At present, the re-
search on brain networks is mainly divided into three cate-
gories, including structural network, functional network and
effective connectivity network [Shuyue Xu and Liang, 2023b;
Toshiki Orihara and Tanaka, 2023]. Compared with the other
two kinds of networks, edges in effective connectivity net-
works exhibit directionality [Li et al., 2018; Pervaiz et al.,
2020; Liu et al., 2024a]. Besides, it can describe the direction
of information flow in the brain interval and contain more in-
formation, which makes it highly worthwhile to conduct fur-
ther research [Ma et al., 2024].

Probabilistic, statistical and graph theory-based Bayesian
networks (BNs) provide a promising approach to capture
the complexity of brain dynamics [Patel et al., 2006; Du
et al., 2019; Xin et al., 2024]. So BN has gradually be-
come one of the important methods to learn directed net-
works, and is gradually being applied in the process of con-
structing brain effective connectivity networks [Wang et al.,
2024]. However, BN structure learning has always been an
NP-hard problem [Saetia et al., 2021; Wang et al., 2025].
Meanwhile, many optimization methods have been proposed
in recent years [Li et al., 2015]. In the field of brain sci-
ence, the active information of the brain has always been the
focus of people’s exploration [Patel et al., 2006]. The ac-
tive information of the brain can not only provide rich infor-
mation for in-depth exploration of brain function, but also
act as an auxiliary diagnostic marker for some brain dis-
eases. In 2016 and 2019, Ji et al [Junzhong et al., 2016;
Liu et al., 2020] developed two swarm intelligence algo-
rithms combining brain activity information to infer effective
connectivity from fMRI data. Using two stochastic global
search mechanisms in the candidate solution space, both
methods achieve higher accuracy in identifying effective con-
nectivity orientation than traditional methods. However, the
existing optimization methods only consider the probability
statistics calculated from the brain active state that Patel has
proposed [Patel et al., 2006], but do not consider the hierar-
chical structure derived from the active state of brain regions.

Besides, nowadays most of network construction methods
need to be based on stationary and first-order Markov as-
sumptions, which is inconsistent with the complex working
states of human brain [Tan et al., 2023; Esch et al., 2020].
Moreover, there are very few methods to construct brain ef-
fective connectivity networks based on these two assump-
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Figure 1: The Framework for TSTAI Method

tions simultaneously. A wealth of research has demonstrated
that brain connection patterns are complex and dynamic [Al-
darondo et al., 2024; Lynch et al., 2024]. Therefore, it is
highly necessary to propose a method for constructing brain
effective connectivity networks that can take these two as-
sumptions into account simultaneously. To overcome these
limitations, we propose a novel Two-Stage higher order brain
effective connectivity network construction method combin-
ing with Two kinds of brain Activation Information based on
non-stationary time series (TSTAI). Overall, the contributions
of this paper can be summarized as:

• A structure learning method of higher-order non-
stationary brain effective connectivity network based on
fusion of two kinds of brain active information is pro-
posed, called TSTAI.

• In the condition set filtering stage, the search space is re-
duce using the hierarchical structure of the brain active
information. Besides, a pruning strategy is used to re-
duce the number of candidate networks and improve the
search efficiency in each round of the optimal network
structure searching.

• A novel scoring function for network structure learning
is proposed in combination with active information. It
can achieve more precise orientation to fuzzy edges and
achieve more accurate brain effective connectivity net-
work construction.

2 Method
In reality, brain is a highly complex system [Bossier et al.,
2020; Xu et al., 2016]. So a simplistic first-order assumption
falls short in accurately simulating its working states[Yang
et al., 2022]. Therefore, we propose a higher-order non-
stationary method to construct brain effective connectivity
networks. The overall framework is illustrated in Fig. 1. In

this part, firstly, the proposed higher order brain effective con-
nectivity network construction method combining with brain
activation information based on non-stationary time series is
introduced. After that, the active information extraction and
higher order network structure learning are introduced in de-
tail. In the part of network structure learning, an improved
HO-DBN method combining with brain activation informa-
tion is prosed to reduce the initial search space and mprove
the learning efficiency of network structure.

2.1 Definition
Let Xn denote brain signals from brain region, with XT

n
=
(
x1
n, ..., x

t
n, ..., x

T
n

)
(t = 1, ..., T ) representing the time se-

ries of region n, where T represents the length of time series.
And xt

n represents the fMRI time series value of brain regions
n at time t. D represents the time series set observed in all N
brain regions. Pa (Xn) represents the parent node set of Xn.

Let G =< V,E > represents a directed network, in which
V represents the node set in the network, that is, the brain re-
gions of interest selected for the construction of the brain ef-
fective connectivity network. E represents the directed edge
set in the network, which represents the influence relation-
ship between one brain region and another brain region in the
brain effective connectivity network. ei,j exist if and only if
there is effective connectivity between brain regions. Scor-
ing function J is used to quantitatively evaluate the quality
of fitting degree between candidate networks G and data D,
which is expressed as J (G |D ). Usually, inferring a brain ef-
fective connectivity network from fMRI data can be regarded
as searching a network G that can best fit the data D accord-
ing to the scoring function.

2.2 Two-Stage Higher Order Brain Effective
Connectivity Network Construction Method

In recent years, research has shown that the connection pat-
tern of the brain is more complex in the task state, and brain
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states dynamically change during different tasks. Therefore,
the traditional brain effective connectivity network construc-
tion method based on the assumption of stationary time series
is no longer applicable. With the deepening of research, some
studies have applied the non-stationary network construction
method to the process of brain network construction. How-
ever, these methods are all based on the first-order Markov
assumption, that is, it is assumed that the state of the brain
region at time T is only related to the state at time T − 1
and has nothing to do with other times. In fact, the brain is a
system with a very complex working mechanism, and a sim-
ple first-order assumption is not sufficient to accurately sim-
ulate the working state of the brain. Therefore, we propose a
higher-order non-stationary brain effective connectivity net-
work construction method.

The active state of brain regions has always been a fo-
cal point in neuroscience, offering abundant information for
understanding and analyzing brain function [Bolton et al.,
2020]. Patel et al. [Patel et al., 2006] were the first to
systematically introduce the concept of brain region activity,
proposing two key notions: active probabilistic statistics and
the hierarchical structure. In recent years, some studies have
applied probabilistic statistics to optimize network structure
learning [Junzhong et al., 2016; Akkurt et al., 2023]. Nev-
ertheless, they tend to overlook the crucial concept of hierar-
chical structure. Hence, we introduce a novel method called
TSTAI that integrates two kinds of information into a higher-
order brain effective connectivity network structure learn-
ing approach, thereby enhancing existing structural learning
methods.

The proposed method continues the idea of previous work
and conducts the detection of change points and the learning
of network structures in two steps. In the part of change point
detection, the latent block model is utilized. By comparing
the predicted correlation matrix with the actually observed
correlation matrix, the posterior predictive discrepancy is cal-
culated. Then, the posterior predictive discrepancies of dif-
ferent subjects are accumulated to obtain the cumulative en-
ergy discrepancy curve, and the local maximum points in the
curve are regarded as the network structure change points.
A detailed introduction to this part can be found in Wang’s
work [Wang et al., 2024]. Change point detection parame-
ters, empirically validated as optimal in prior studies, were
applied here to ensure methodological consistency and relia-
bility. After that, the whole time series is segmented by using
the detected change points, and the best brain effective con-
nectivity network based on the assumption of stationary time
series is learned by using the improved FBS method on each
time segment.

2.3 Brain Active Information
The information on the activity of brain regions is an im-
portant tool for analyzing abnormal conditions of the brain
and understanding brain functions. Since the construction of
brain networks using fMRI data relies on the blood oxygen
level dependent (BOLD) signals attached during the data col-
lection process. And the collection process will inevitably be
affected by the head movements of subjects and equipment
noise, this leads to the fact that the time series of various brain

regions finally extracted contain a lot of noise. Therefore, we
process the extracted time sequences before constructing the
network. In order to extract brain active information, the pre-
processed data are processed again. This process is shown in
Fig. 2. This process mainly uses resting-state fMRI data from
each subject to obtain their BOLD signal in the steady state
as a baseline of brain activity. After removing the baseline
signal from the preprocessed time series of each brain region,
the unique active signal of each brain region in the task-state
is obtained. This can effectively focus only on the active in-
formation in the task-state to avoid the influence of irrelevant
factors on the network construction [Akkurt et al., 2023].

Figure 2: The Process of Active Information Extraction.

To facilitate subsequent calculations, the resulting unique
signals for each brain region are normalized. The activity
threshold p is then set to determine the activity of each brain
region at each time point. To empirically validate the thresh-
old p, we systematically tested values in [0.2, 0.8] (step size
0.05), finding p ∈ [0.4, 0.55] yielded minimal variance and
superior performance, with p = 0.45 selected as the optimal
value for experiments. Activity is divided into three levels
as shown as (1). The first is completely inactive. This state
of completely inactive occurs only after human death, so it is
not considered in the experiment. The second is hypoactive
or inhibited state, which occurs mostly in the resting state and
a few in the inhibitory effect of the brain. The third is a hy-
peractive state, which occurs mostly in brain regions that are
activated while completing the task.

vta =

{
Stationary not considered
0 hypoactive/inhibited
1 hyperactive

(1)

When the activity value of brain region a is greater than or
equal to the active threshold p at time t, which is xa

t ≥ p, the
brain region a is judged to be in a hyperactive state at time t.
Conversely, when the activity value of brain region a is less
than the active threshold p at time t, which is xa

t < p, the
brain region a is judged to be in hypoactive or inhibited state
at time t.

Brain Active Probability
For each pair of brain region a and brain region b, the joint
active state of this pair of brain regions can be interpreted as
four different situations, as shown in Fig. 3. In the Fig. 3, the
dots represent different brain regions, and the colors repre-
sent different active states of the brain regions. Among them,
red indicates that the brain region is in a hyperactive state,
while blue indicates that the brain region is in a hypoactive
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or inhibited state. Besides, the corresponding joint activation
probabilities are shown in Table. 1.

Figure 3: Four Different Situations of the Joint Active State.

Region a
Active Inactive

Region b Active θ1 θ2
Inactive θ3 θ4

Table 1: Four Cases of Pairs of Brain Regions

In Table. 1, the four elements of θ1, θ2, θ3, and θ4 are the
joint activation probabilities corresponding to the above four
cases in the Fig. 3, and θ1 + θ3, θ1 + θ2 are the marginal acti-
vation probabilities for brain regions a and b, respectively. In
detail, the calculation formulas of the joint activation proba-
bilities θi (i = 1, 2, 3, 4) are shown in (2)-(5).

θ1 =
V T
a × Vb

Lv
(2)

θ2 =
V T
a × (I − Vb)

Lv
(3)

θ3 =
V T
b × (I − Va)

Lv
(4)

θ4 =
(I − Va)

T × (I − Vb)

Lv
(5)

Brain Hierarchy Information
The synchronism of brain region active states refers to a se-
ries of states in which pairs of brain regions are simultane-
ously in a hyperactive state or simultaneously in a hypoactive
or inhibited state, corresponding to (a) and (b) in Fig. 3. And
the corresponding asynchronism of brain region active states
refers that in a pair of brain regions, one brain region is in a
hyperactive state while the other brain region is in a hypoac-
tive or inhibited state, corresponding to (c) and (d) in Fig. 3
[Suzuki et al., 2018].

Some synchronization research methods have shown that
stronger synchronization between two brain regions means
that they are more likely to jointly complete the task of in-
formation interaction. In other words, brain regions that have
synchronism in their active states are more likely to simul-
taneously play the roles of issuing commands or receiving
commands (parent nodes or child nodes in the network) in
the task[Esch et al., 2020].

2.4 Network Structure Learning
The accurate construction of brain networks can provide more
favorable assistance for the auxiliary diagnosis of brain dis-
eases and offer new opportunities for researchers to conduct
in-depth exploration of brain functions and unveil the myster-
ies of the brain [Liu et al., 2024b]. Therefore, how to simu-
late the working mode of brain networks in a more realistic
manner has always been the focus of research. Here, in view
of the problems that existing methods are unable to construct
time-varying brain networks and also unable to build the in-
teraction relationships among brain regions within multiple
time delays, a new higher-order non-stationary brain effec-
tive connectivity network construction method is proposed,
called TSTAI. In this process, two kinds of information on
the activity of brain regions are respectively integrated into
the construction process to achieve a more efficient and accu-
rate construction of brain effective connectivity networks.

Initial Condition Set Filter
Filtering the initial set of conditions before starting network
structure learning is a common method to optimize methods
[Yokoyama and Kitajo, 2022; Warnick et al., 2018]. Here
use the hierarchical information of the brain active state com-
bined with Pearson’s correlation to filter the condition set of
each node.

The active states of the brain can be divided into two types,
including synchronous and asynchronous activity. When
paired brain regions are in a synchronous co-active or co-
inhibitory state, it can be considedred that these paired brain
regions are in the same hierarchical structure. According to
previous studies, the regulatory effects of the parent nodes of
the same target node on the target node are at the same fre-
quency at different times [Lv et al., 2023]. Therefore, nodes
in the same hierarchical structure are more likely to regulate
the same target node. Meanwhile, according to the traditional
constructing and analyzing brain functional networks meth-
ods, the magnitude of the Pearson correlation between paired
brain regions can reflect the degree of correlation between
brain regions [Liu et al., 2023]. That is to say, when the
Pearson coefficient between brain regions is larger, these two
brain regions are in a closer relationship and are more likely
to have interaction effects.

In order to achieve the accurate construction of higher-
order brain effective connectivity networks more efficiently,
we propose a method that combines the hierarchical struc-
ture of brain active states with Pearson correlation to filter
the initial parent node sets for each target node. This pro-
cess first calculates the correlation matrix by using Pearson
correlation, and then ranks the magnitudes of the correlations
between each target node and other nodes. Then, the top 50%
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of nodes associated with the target nodes are selected as the
candidate condition set. After that, the candidate condition
set is supplemented according to the hierarchical structure de-
rived from the brain active states to obtain the complete set of
potential parent nodes. Doing so can effectively reduce the
search space in the network structure learning stage and im-
prove efficiency. Meanwhile, it can also avoid the problem
that the traditional single-condition-set screening method fil-
ters out too many correct parent nodes in the initial stage.

Improved Scoring Function
How to accurately judge the direction of brain interval con-
nection has always been a difficult point in the construction of
brain effective connectivity network [Nadji-Tehrani and Es-
lami, 2020].

Traditional Bayesian scoring functions, such as K2, BIC
and so on, will obtain the same scores when dealing with
Markov equivalence classes. At this time, the algorithm will
make a random selection between a → b and b → a, and at
this time, the error occurrence rate is 50%. Obviously, this
random selection mechanism is not advisable. Meanwhile,
how to accurately handle the structures of Markov equiva-
lence classes is an urgent problem to be solved in the process
of Bayesian network structure learning. Here we use the ac-
tive probability to improve the BN scoring function. This
helps to achieve more precise edge orientation determination.
The optimized scoring function is shown as (6).

J (Gi; ηi) = W (2 logP (Di|Gi; ηi)− constant) (6)

In (6), ηi represents an unknown set of parameters in a
multi-input single-output network (subnetwork structure) for
node i, W represents the scaling coefficient, which is calcu-
lated by the marginal activation probabilities as shown in (7).

W =
θ1 + θ3
θ1 + θ2

(7)

When W > 1, it means that brain region a activity occu-
pies a higher priority than brain region b.At time t, the brain
region that is more active in a pair of brain regions has a
greater probability of playing the role of issuing commands
(the parent node in network). This enlarges the score and
supports the selection of networks containing edge ea,b.

Improved Searching Process
After that, the pruning strategy is utilized in every candidate
network search stage. This process removes the candidate
network structure Ĝ when the new network score Ĵ is smaller
than the original score J after calculating the score of each
candidate network in each round of search process. At the
same time, this candidate node is removed from the candidate
conditional set. This process is shown in Fig. 4

2.5 Time Complexity Analysis
In this section, we disscuss the computational cost of our al-
gorithm. First, we denote N as the number of brain regions
and T as the length of time series. The computational cost of
change point detection part of TSTAI is O(T ). Then in the

process of higher-order network structure learning, the com-
putational time complexity of the MISO is O(N). Subse-
quently, during the structural learning phase for each MISO,
two stages are involved: the forward/backward search, both
of which exhibit a time complexity of O(N2). Meanwhile,
the EM algorithm incurs a time complexity of O(T 3). As
mentioned above, the total computational cost of our algo-
rithm implementation is O(T +N(N2 + T 3)).

(a) The initial structure (b) The first round

(c) The second round (d) The final round

Figure 4: The Process of Pruning.

3 Materials and Results
3.1 Datasets and Preprocessing
Real Task-state Data
The data used in the experiment come from the Hu-
man Connectome Project (HCP), which is publicly avail-
able (https://db.humanconnectome.org/). Detailed intro-
duction of data can be viewed in HCP official website
(https://humanconnectome.org). The task-state fMRI (ts-
fMRI) data of 89 unrelated healthy adult subjects under a
block designed working memory task are obtained. The data
of each subject include 405 time points, 4 block design 2-
back experiments, 4 block design 0-back experiments and 4
fixed blocks.

To obtain cleaner data, a standard process for preprocess-
ing task-state fMRI data is applied [Glasser et al., 2013]. Af-
ter that, the general linear model (GLM) is used to identify
the significant active regions among different subjects. The
regions whose Z statistics are greater than the preset thresh-
old are selected as the regions of interest. In order to extract
the time series of the region of interest, a spherical brain tem-
plate is defined with the selected maximum point of local Z
statistics as the spherical center and 6mm as the radius. And
the average time series of all voxel time series in the region
of interest is calculated. A total of 35 brain regions of interest
are obtained through the above process.The information of 35
brain regions is shown in Table 2 and is sorted by brain region
names in the alphabetic order.
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MNI

Node Z x y z Brain Region Name

1 4.97 48 -58 22 Angular Gyrus.
2 9.61 36 8 12 Central Operational Cortex
3 8.27 -36 4 12 Central Operational Cortex
4 6.48 40 34 -14 Frontal Orbital Cortex
5 7.83 -12 46 46 Frontal Pole.
6 6 52 38 10 Inferior Frontal Gyrus
7 4.84 54 32 -4 Inferior Frontal Gyrus
8 4.38 -52 40 6 Inferior Frontal Gyrus
9 7.26 -48 -68 34 Inferior Parial Lobule

10 6.05 52 -70 36 Inferior Parial Lobule
11 6.18 44 -24 -20 Inferior Temporal Gyrus
12 9.54 36 -86 16 Lateral Occidental Cortex
13 8.04 -30 -80 -34 Left Crus I
14 7.6 -8 -58 -52 Left IX.
15 6.9 -22 -48 -52 Left VIIIb.
16 14.5 6 -90 -10 Lingual Gyrus.
17 10.3 30 10 58 Middle Frontal Gyrus
18 6.61 66 -30 -12 Middle Temporal Gyrus
19 4.53 -68 -34 -4 Middle Temporal Gyrus
20 14.5 18 -88 -8 Occidental Fusiform Gyrus
21 5.06 -12 -92 -2 Occidental Pole.
22 9.87 6 40 -6 Paracingulate Gyrus.
23 12 42 -16 -2 Planum Polare.
24 11.3 -40 -22 0 Planum Polare.
25 9.03 38 -26 66 Postcentral Gyrus.
26 8.31 -10 -60 14 Precuneus Cortex.
27 10.9 32 -58 -34 Right Crus I
28 8.34 32 -80 -34 Right Crus I
29 5.7 46 -60 -42 Right Crus I
30 6.41 10 -8 -14 Right Hippocampus.
31 7.69 24 -46 16 Right Lateral Ventricle
32 6.19 32 -52 2 Right Lateral Ventricle
33 6.13 0 10 -14 Subcallosal Cortex.
34 10.7 48 -44 46 Supramarginal Gyrus.
35 4.23 -50 -46 10 Supramarginal Gyrus.

Table 2: The Information of Selected Significantly Active Brain Re-
gions

Synthetic Data
In order to evaluate the accuracy of the proposed method and
the influence of different data length on network construc-
tion, the performance of the TSTAI is tested using the data
of known ground truth network structure. In network struc-
ture learning section, the simulated fMRI data including 35
brain regions of different lengths as T = {500, 800, 1000}
are generated separately through a known structure network
for experiments.

3.2 Experiments
In order to verify the effectiveness of the proposed method,
we compare the proposed TSTAI method with advanced
methods for multiple experiments use real data and simulated
data. HO-BIC [Ji et al., 2021] and HO-CPD-NSL [Wang et
al., 2024] methods are selected to carry out the experiment.

The common network evaluation measures such as true pos-
itive rate (TPR), false positive rate (FPR) and dis value are
selected to compare the estimated network structure with the
real network structure. The calculation formulas of each eval-
uation measure are shown in Table 3. At the same time, the
average time to repeat the construction 50 times under dif-
ferent length time series is also recorded as one of the mea-
sures of network construction efficiency. The results of ex-
periments using simulated data are shown in Table 4.

Evaluation metrics Formula

TPR TPR = TP
TP+FN

FPR FPR = FP
FP+TN

dis dis =

√
FPR2 + (1− TPR)

2

Table 3: Evaluation Metrics

T Method TPR FPR dis Time(s)
HO-BIC 0.77 0.23 0.33 34085.6

1000 HO-CPD-NSL 0.92 0.18 0.20 20743.3
TSTAI 0.97 0.02 0.04 22017.2

HO-BIC 0.83 0.11 0.20 32085.6
800 HO-CPD-NSL 0.90 0.13 0.16 17641.8

TSTAI 0.94 0.03 0.07 18382.1
HO-BIC 0.71 0.11 0.31 27411.4

500 HO-CPD-NSL 0.91 0.14 0.17 15819.6
TSTAI 0.93 0.03 0.08 16662.2

Table 4: The Results of Evaluation Metrics Using Different Network
Structure Learning Methods

From the experimental results in Table 4, it can be seen that
in the experiments of different T , the TSTAI achieves the best
results in the vast majority of evaluation metrics compared
with other methods. As traditional higher-order Bayesian
network structure learning methods do not consider the non-
stationary time-series assumption, the correctness of net-
work construction is compared with these traditional meth-
ods only on stationary time-series. Compared with traditional
higher-order Bayesian network structure learning methods,
the TSTAI method has improved the accuracy of network
structure learning in experiments with time-series of different
lengths. Its average true positive rate has increased by 17.4%.
At the same time, there has been a significant improvement in
efficiency, with the average time required to construct the net-
work being reduced by 12173.7 seconds.

Then, the TSTAI method is compared with the advanced
method for constructing higher-order brain effective connec-
tivity networks based on the non-stationary time-series as-
sumption. It can be seen from Table 4, TSTAI can achieve
more accurate network structure learning results. Under the
condition of time series of different lengths, the true positive
rate is increased by an average of 3.67%. It not only restores
the most real edges, but also maintains the least false positive
edges. However, the runtime is slightly worse than the HO-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: The Results of TSTAI for Working Memory tfMRI Data: (a), (c), (e), (f) represent brain states corresponding to 2-back working
memory tasks. (b), (d), (g), (h) represent brain states corresponding to 0-back working memory tasks.

CPD-NSL method. HO-CPD-NSL get less runtime because
that more false positive edges are retained during the network
search. This leads network structure learning to stop with
fewer rounds of search processes while accuracy is lower.
Meanwhile, it can be seen from Table 4 that TSTAI maintains
a high level of network construction accuracy under different
time-series lengths. This also indicates that, compared with
other methods, the TSTAI method exhibits better robustness
when the amount of data is insufficient.

After that, the experiment using real data from HCP is con-
ducted. The construction results of the higher-order brain
effective connectivity network for a randomly selected sub-
ject are shown in Fig. 5. The (a), (c), (e), (f) represent brain
states corresponding to the subject when performing 2-back
working memory tasks. (b), (d), (g), (h) represent brain states
corresponding to the subject when performing 0-back work-
ing memory tasks. The blue lines in Fig. 5 represent the
first-order edges, and the red lines represent the higher-order
edges. Here, we only considered a time delay of one unit.
By comparing brain networks under different tasks, it can be
seen that brain have more complex patterns of connectivity
when performing more complex tasks. As can be seen from
Fig. 5, the number of edges in the higher-order brain effec-
tive connectivity network of the subject when performing the
2-back task is significantly larger than that when perform-
ing the 0-back task. Consistent across all 100 subjects, 87
subjects showed increased edges in all four 2-back tasks, 11
subjects showed increased edges in three 2-back tasks, and 2
subjects showed increased edges in two 2-back tasks, which
aligns with the intrinsic working mechanisms of the brain re-

ported in current studies.
Finally, by analyzing different brain effective connectivity

networks, the edges pointing from visual areas to motor ar-
eas can be observed among different subjects. At the same
time, it can be observed that there exist higher-order delay
relation on these edges. This is consistent with the task set-
ting where different tasks are started by visual cues. Besides,
this aligns with studies showing task-induced modulation of
visual-motor pathways [Wang et al., 2024].

4 Conclusion
The connectivity patterns of the brains become more intri-
cate under task conditions, with its state continually evolv-
ing as it undertakes diverse tasks. Therefore, the single non-
stationary or higher-order assumption is no longer applica-
ble in constructing complex brain effective connectivity net-
works. In this paper, a novel brain effective connectivity net-
work construction method is proposed by considering both
two assumptions and combining two kinds of active informa-
tion, called TSTAI. The stability and accuracy of the TSTAI
are verified by simulation data under different lengths. Com-
pared with state-of-the-art methods, the TSTAI achieves the
best results in most metrics. Afterwards, the ability of the
TSTAI to be applied in practical problems is further verified
using real data. While initially applied to brain network mod-
eling, the TSTAI framework is inherently generalizable to
other domains (e.g., finance, molecular biology) by redefin-
ing domain-specific parameters, offering a versatile tool for
time-series regulatory network inference.
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