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Abstract

Multi-task learning (MTL) has emerged as a promis-
ing approach for deploying deep learning models in
real-life applications. Recent studies have proposed
optimization-based learning paradigms to establish
task-shared representations in MTL. However, our
paper empirically argues that these studies, specif-
ically gradient-based ones, primarily emphasize
the conflict issue while neglecting the potentially
more significant impact of imbalance/dominance in
MTL. In line with this perspective, we enhance the
existing baseline method by injecting imbalance-
sensitivity through the imposition of constraints on
the projected norms. To demonstrate the effective-
ness of our proposed IMbalance-sensitive Gradi-
ent (IMGrad) descent method, we evaluate it on
multiple mainstream MTL benchmarks, encompass-
ing supervised learning tasks as well as reinforce-
ment learning. The experimental results consistently
demonstrate competitive performance.

1 Introduction

Real-life scenarios often involve the need to handle multiple
distinct tasks concurrently, typically achieved by designing
task-specific models to ensure satisfactory performance. How-
ever, this approach becomes impractical as the number of
tasks grows, as it would require significant computational re-
sources and memory. To address this challenge and establish
an efficient multi-task learning (MTL) framework, recent re-
search has focused on developing a single model capable of
performing well on all target tasks.

Currently, research on MTL can be broadly categorized
into two frameworks: architecture-based [Liu et al., 2019;
Ye and Xu, 2022; Gao et al., 2019; Chen et al., 2023]
and optimization-based approaches [Sener and Koltun, 2018;
Yu et al., 2020a; Liu et al., 2021a; Zhou et al., ; Liu et al.,
2023]. The former emphasizes the design of efficient parame-
ter sharing architectures for multiple tasks, whereas the latter
typically employs a fixed architecture and focuses on develop-
ing optimization strategies to extract task-shared representa-
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Figure 1: Illustration of imbalance and conflicting issue in multi-task
learning. ‘Bal’ and ‘Imb’ represent balanced and imbalanced, while
‘N-Con’ and ‘Con’ represent non-conflicting and conflicting.

tions. In this paper, we exclusively introduce and compare our
method with optimization-based approaches, as our proposed
method falls within this framework.

In the realm of optimization-based methods, particularly
those involving gradient manipulation, a shared paradigm is
commonly followed, where task gradients are combined to
achieve Pareto optimality for individual tasks. Despite the high
performance demonstrated by these methods, the literature has
predominantly overlooked the significance of the inherent im-
balance nature among individuals (see Definition 2). This
oversight can be attributed to the greater emphasis placed on
addressing the conflict issue. However, it is important to note
that the conflict issue alone may not be the fundamental obsta-
cle hindering optimization in MTL. As illustrated in Figure 1,
a naive linear scalarization (LS) strategy (gmean) €ffectively
improves all individuals when they are balanced, regardless
of conflicts. But it proves ineffective when both imbalance
and conflict coexist, underscoring the importance of address-
ing conflicts that arise solely from imbalances. Furthermore,
imbalanced task gradients can introduce optimization prefer-
ences and lead to imbalanced progress even in the absence
of conflicts [Liu et al., 2023]. Although previous solutions,
such as IMTL [Liu et al., 2021b] and Nash-MTL [Navon et
al., 2022] illustrated in Table 1, have somewhat mitigated the
imbalance/dominance issue, they neither explicitly provide
evidence to demonstrate the importance of the imbalance issue
nor consider both conflict and imbalance issues simultane-
ously.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

GD  GradDrop

MGDA  PCGrad

IMTL CAGrad Nash-MTL MoCo ‘ IMGrad

Conflict-averse
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Table 1: Conflict-averse and imbalance-sensitive comparison for mainstream optimization-based MTL. Note that those which are imbalance-

sensitive mean that their solution can tackle the imbalance issue.

In this paper, we begin by empirically highlighting the sig-
nificance of the imbalance issue in MTL and elucidate the
advantages of incorporating imbalance sensitivity into base-
line methods as our primary motivation. Subsequently, we
enhance the well-established baseline method by injecting im-
balance sensitivity through the imposition of constraints on
the projected norms. Convergence and speedup analysis are
provided in the Appendix '. In a nutshell, we summarize our
contributions as three-fold:

* We place significant emphasis on and empirically identify
that the primary challenge in optimization-based MTL
lies more in the aspect of imbalance rather than conflict.
To the best of our knowledge, we are the first to explicitly
assert this claim.

To introduce the imbalance sensitivity into the existing
paradigm, we integrate the projected norm constraint into
the objectives. This incorporation allows for a dynamic
equilibrium between Pareto property (see Definition 3)
and convergence (two decoupled objectives), thereby en-
hancing the combined gradients and optimization trajec-
tories.

L]

The extensive experimental results present compelling ev-
idence that IMGrad consistently enhances its baselines
and surpasses the current advanced gradient manipulation
methods in a diverse range of evaluations, e.g., supervised
learning tasks, and reinforcement learning benchmarks.

2 Related Work

Currently, MTL approaches can be broadly categorized
into two groups: architecture-based and optimization-based
methods. Architecture-based approaches encompass vari-
ous paradigms, including hard parameter sharing [Heuer et
al., 2021; Kokkinos, 2017], soft parameter sharing [Yang
and Hospedales, 2016; Gao et al., 2019], modulation and
adapters [He et al., 2021; Liu et al., 2022], and mixture of
experts (MoE) [Chen er al., 2023; Fan et al., 2022], etc. On
the other hand, optimization-based MTL methods primarily
focus on learning paradigms rather than structural designs or
parameter sharing strategies. These methods aim to optimize
all individual tasks to extract task-shared representations.
One classical optimization-based MTL approach is
MGDA [Sener and Koltun, 2018], which seeks a combined
gradient with minimal norm using the Frank-Wolfe algo-
rithm [Jaggi, 2013]. PCGrad [Yu et al., 2020a] addresses
the conflict issue by projecting individual gradients onto or-
thogonal directions with respect to others. CAGrad [Liu et
al., 2021a] considers preserving both the Pareto property

"Refer to https://arxiv.org/abs/2503.08006 for the Appendix.

and global optimization, ultimately striving for a balance
between the two objectives using a hyper-parameter. Nash-
MTL [Navon er al., 2022] negotiates to reach an agreement on
a joint direction of parameter update, enabling all individual
tasks to achieve more balanced progress. MoCo [Fernando et
al., 2023] tackles the problem of biased gradient directions
in previous solutions by developing tracking parameters for
correction. Our method falls within the realm of optimization-
based MTL, with a specific focus on addressing the issue of
imbalance-sensitivity, which is largely lacking in the afore-
mentioned solutions.

Discussion with Counterparts: To the best of our knowl-
edge, IMTL [Liu et al., 2021b], Nash-MTL [Navon et al.,
2022], and FAMO [Liu et al., 2023] are three recent works
that explicitly consider the imbalance issue. However, all three
works fail to provide evidence demonstrating the importance
of the imbalance issue. Moreover, none of these approaches
possess conflict-averse properties. Thus, there is still room for
improvement. Although Nash-MTL appears to be designed to
avoid conflicts, its practical implementation does not achieve
this goal. Please refer to the Appendix for more discussion.

3 Preliminary

3.1 Setup of Optimization-based MTL

As mentioned, optimization-based MTL approaches operate
under the assumption that the model consists of a task-shared
backbone network alongside task-specific branches. Conse-
quently, the primary objective of these approaches is to devise
gradient combination strategies that optimize the backbone
network to yield benefits across all tasks. Let us consider a sce-
nario where there are X > 2 tasks available, each associated
with a differentiable loss function £;(©®), where © represents
the task-shared parameters. The goal of optimization-based
MTL is to search for the optimal ®* € R™ that minimizes
the losses for all tasks. However, it is widely recognized that
a simplistic linear scalar strategy, £o(©) = & Zfil L;(©),
fails to achieve satisfactory performance due to the conflict
and imbalance issue.

3.2 Pareto Concept

Formally, let us assume the weighted loss as L, =
Efil w;L;(®), where w € W and W represents the proba-
bility simplex on [K]. A point ®’ is said to Pareto dominate ©
if and only if Vi, £;(©") < £;(©). Consequently, the Pareto
optimal situation arises when no ®’ can be found that satisfies
Vi, £;(©®") < L£;(©) for the given point ©. All points that
meet these conditions are referred to as Pareto sets, and their
solutions are known as Pareto fronts. Another concept, known
as Pareto stationary, requires min,cw ||g. || = 0, where g,
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Figure 2: Comparison of MTL approaches on the imbalanced synthetic two-task benchmark. e and * represent the starting point and global
optimum, respectively, and grey line === represents the Pareto front. Two objectives are extremely imbalanced weighted, i.e., (0.9%L1,0.1xL2).
Please refer to the Appendix for more optimization trajectories under various pre-defined task weights.

represents the weighted gradient w " G, and G is the gradients
matrix whose each row is an individual gradient. We also
provide some definitions here for ease of description.

Definition 1 (Gradient Similarity). Denote ¢;; as the angle
between two task gradients g; and g;, then we define the
gradient similarity as cos ¢;; and the gradients as conflicting
when cos ¢;; < 0.

Definition 2 (Imbalance of Individuals). Assume the gradi-
ent owns the maximal norm in G is g4z, and the correspond-

ing minimal one is g,,;,. We define the imbalance ratio of G

asr = %. If » > 1, we call it’s imbalanced.

Definition 3 (Pareto Property). For each training step, the
combined optimization direction strives to promote all individ-
uals simultaneously (or at the very least, not cause detriment),
i.e. for Vi, the gradient similarity between g; and the com-
bined gradient g,, satisfies cos ¢,; > 0. When this condition
is not met, it is referred to as Pareto failure.

4 Motivation and Observation

A substantial body of previous studies [Sener and Koltun,
2018; Liu et al., 2021a; Yu et al., 2020a; Navon et al., 2022]
have primarily focused on addressing the conflict issue rather
than the imbalance issue. In this section, we aim to provide
empirical insights into the significance of imbalance and elu-
cidate how imbalance-sensitivity can bring benefits to current
popular optimization-based MTL paradigms. Based on these
insights, we naturally deduce our design in the next section.

4.1 Why Does Imbalance Matter More?

To begin, we conducted experiments on the CityScapes
dataset [Cordts et al., 2016] to statistically analyze the imbal-
ance ratios of representative optimization-based MTL methods
(e.g., PCGrad [Yu et al., 2020a], CAGrad [Liu et al., 2021al,
Nash-MTL [Navon et al., 2022]). The results of these exper-
iments are presented in the Appendix. From the depicted
results, it is evident that all the methods exhibit significant
imbalance during training, which poses a substantial challenge
when attempting to optimize all individuals simultaneously,
thereby underscoring the importance of addressing the imbal-
ance issue.

Secondly, to demonstrate the higher priority of imbalance
issue, we show the toy example results that present imbalance
and conflict among gradients in the following cases:

 Conflict (*" ); Imbalance (/*): In Figure 3, we manually
create scenarios where conflict exists but imbalance is
absent. By closely examining the center trajectories in
Figure 3 (d)(e), we observe that all methods can easily
reach the optimal point when imbalance is absent, re-
gardless of the presence of conflicts. This observation
suggests that the sole existence of conflicts has limited
impact on optimization, emphasizing the importance of
addressing the imbalance issue.

* Conflict (/*); Imbalance (* ): Simulating an optimiza-
tion trajectory without conflicts among individuals can
indeed be challenging. Therefore, we adopt the setting
from Nash-MTL [Navon et al., 2022] to handcraft an
imbalance-dominated optimization scenario. The result-
ing trajectories are depicted in Figure 2. It is evident
that all the compared approaches fail to converge at the
desired global optimum from all initial starts under the
extreme imbalance circumstances, though most of them
reach the Pareto front. Additionally, the trajectories at the
sides in Figure 3 (d)(e) also highlight the issue of progress
hindered by imbalance. Specifically, CAGrad fails to
reach the global optimum compared to IMGrad despite
undergoing the same number of optimization steps.

4.2 The Impacts of the Imbalance Issue

In Table 1, we list and compare mainstream optimization-
based MTL approaches. The table focuses on two key prop-
erties: conflict-averse and imbalance-sensitive properties. It
is observed that most MTL approaches possess the conflict-
averse property due to their design nature. However, only a
few approaches are imbalance-sensitive 2, and currently, there
are no methods that possess both properties simultaneously.
Furthermore, we analyze two imbalance-deduced issues that
occur and impede past solutions during optimization: Pareto
failure and imbalanced individual progress.

Pareto Failure: As shown in Figure 4 (a)(b), CAGrad exhibits
a certain probability of failing to preserve the conflict issue
due to its inherent compromise between conflict-averse and
convergence. This compromise is inevitably influenced by
the issue of imbalance. As illustrated in Figure 6, CAGrad
tends to prioritize the combined gradient that deviates from the

2We provide imbalance-sensitive analysis for IMTL, Nash-MTL,
and FAMO in the Appendix.
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Figure 3: Comparison of MTL approaches on the toy examples. We use the tool provided CAGrad to generate the synthetic toy examples with
two objective shown in (b) and (c). In this case, both objective are equally weighted.
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Figure 4: Individual gradient similarity and progress analysis of MTL algorithms on CityScapes. (a)-(c) show the gradient similarities between
individuals and the combined gradient; (d)-(e) present the progress of individuals during optimization.

individual with the least norm when encountering imbalanced Unfortunately, none of the above methods get rid of both
scenarios, leading to potential conflicts. Surprisingly, although  Pareto failure and imbalanced individual progress, primarily
Nash-MTL imposes a strong constraint for the Pareto property,  due to their limited focus on the imbalance issue.
fe., Vi, —i(w) < 0, p:(w) = log(w;) + log(g] Gw), G =
(91,92, -, gK], it often fails to achieve such a guarantee. This 43 Benefits of Integrating Imbalance-Sensitivity
failure can be attributed to the presence of negative terms in
Q;r G, indicating conflicts between g; and g; . Consequently,  The toy results depicted in Figure 2 and Figure 3 demon-
this leads to infeasible errors in the CcVXpy [Diamond and BOyd, strate that among the methods evaluated, Only our proposed
2016] implementation, and the Nash-MTL algorithm chooses  IMGrad, which incorporates imbalance-sensitivity, consis-
to skip the current step when such errors occur. As aresult,  tently arrives at the optimal point from all initial starts.
Nash-MTL frequently encounters Pareto failures due to the To further elucidate the advantages of imbalance-sensitivity
co-existence of imbalance and conflict, as depicted in F1gqre 4 in optimization-based MTL, we have implemented a naive
(b). IMGrad demonstrates a tendency to acquire a combined  ehod called Adaptive Threshold. This baseline selectively
gradlent that §ff§ctlvely preserves the Pareto property as the applies optimization-based MTL approaches only when the
imbalance ratio inereases. o imbalance ratio surpasses a specific threshold. The results of
Imbalanced Individual Progress: We employ an individual  thjs jmplementation on CityScapes are presented in Figure 5
progress metric proposed by [Chen ez al., 2018], which is (a). It is evident that all baselines exhibit varying performance
defined as follows: as the imbalance ratio fluctuates, emphasizing the significance
A ‘ of imbalance-sensitivity. Notably, all baselines outperform
ri(t) = Li(£)/£:(0) ) their respective vanilla versions under specific threshold con-
where £;(t) represents the individual loss value at ¢ time. ditions, providing additional evidence of the effectiveness of
As depicted in Figure 4 (c)(d), Nash-MTL demonstrates a injecting imbalance-sensitivity.
narrower gap in terms of individual progress compared to CA- Additionally, we have conducted a series of control group
Grad. This can be attributed to the more balanced combination experiments to further support our findings. Similarly, we only
employed by Nash-MTL, as indicated by the cosine similarity apply optimization-based MTL when the gradient similarity
in (a)(b). Consequently, Nash-MTL exhibits superior overall falls below a certain threshold. As depicted in Figure 5 (b), all
performance, characterized by a smaller Am%. Specifically,  baselines demonstrate relatively stable performance compared
AmY% is widely adopted to evaluate the overall degradation to those in (a) and fail to outperform the vanilla version, ex-
compared to independently trained models, which are con-  cept for MGDA (which itself performs worse than LS). This
sidered as the reference oracles. Its formal definition can be outcome further reinforces the claim that imbalance matters
found in the Performance Evaluation section. more.
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Figure 5: Imbalance and conflict sensitivity examination.

S Principal Design

In this section, taking CAGrad as the baseline, we present the
principal design of IMGrad, encompassing its formulation
in the objective function and the practical implementation.
And we provide convergence and speedup analysis in the
Appendix.

5.1 Injecting Imbalance-Sensitivity

As a widely adopted baseline, CAGrad strikes a balance
between Pareto property and globe convergence, and its
dual objective is formulated as follows:

max ming,, Td

4. ||ld — < 2
deERMmweW st || goll < cllgol| ()

where d represents the combined gradient, while go denotes
the averaged gradient, and c is the hyper-parameter.

To alleviate the imbalance-deduced Pareto failures or in-
dividual progress issue as illustrated in Figure 4, a logical
approach is to maximize the projected norm of the combined
gradient across all individuals. To achieve this, we incorporate
a stronger constraint (g;' d — || g:||>) into Eqn. 2, which en-
courages projected norms that surpass individual norms. This
formulation is reflected in our objective presented in Eqn. 3,
and subsequently, we derive the corresponding Lagrangian
equations in Eqn. 4.

2
max mingjd — (g; d— [gw|”) s.t.lld - goll < cllgol

deRmweWw
3)
Sd—(|d - )/2
max min g, (ld —gol* — &)/
“4)

—nlgsd—llgol?), A>0,u>0

The strong duality property holds for the aforementioned
objective, as supported by convex programming principles and
the fulfillment of Slater’s condition. Consequently, we inter-
change the positions of the minimum and maximum operators:

min  max (1 — u)g. d )
A>0,weWdER™

—§(||d —gol* — ¢) + ullgwl’

With )\, w fixing, the optimal d is achieved when d = gg +
% Substitude the optimal d into Eqn. 5, yielding the

— CAGrad
— IMGrad

8i

(a) (b)

Figure 6: Multi-objective optimization Comparison between CAGrad
and IMGrad. Here we suppose the angles between g; and g; in (a)
and (b) are same. g,, can be obtained via MGDA.

following problem:

. 1 T 2
Azg}géw( )G 9o + 11 ]|gw || (6)
a-p?

2

After optimizing out the A we have

+ lgo|I” + <zﬁ

Ve lgoll (D

where A = (1 — 1) ||gw|| /#'/2, and finally we have the op-

timization objective in Eqn. 8. By solving this objective, we
1/2

can obtain g, and have d = g¢ + hgw‘

“I,givnv(l — )9 go + 1 llgw| +

min (1 — 11)(g) go + Vo lgwl) + 1 lgull®  ®)
wew N——
~MGDA

CAGrad

Upon careful examination of Eqn. 8, it becomes evident that

the final objective can be decomposed into two distinct com-
ponents: CAGrad and MGDA. As depicted in Figure 6 (a),
the gradient obtained by solving the practical objective in
Eqn. 10, denoted as g, (represented by the green dotted line),
predominantly resides within the region bounded by g,,, and
g;. However, in the case of an extreme imbalance scenario,
as illustrated in Figure 6 (b), the corresponding g. tends to
lean towards the dominant gradient g;, thereby increasing
the risk of conflicting with g; and resulting in Pareto fail-
ures. When confronted with such a situation characterized by
varying imbalances, it is desirable for y to adaptively adjust
g. to consistently avoid Pareto failures while still promoting
individual progress when the imbalance is less pronounced.
Consequently, we establish a connection between p and the
gradient imbalances, effectively controlling the constraint
(g d— ||gz|| ) adaptively based on the imbalance circum-
stances.

Multiple alternatives exist for quantifying the imbalance
ratio among individuals *. We here choose to compute cos  to
represent the imbalance ratio (see negative correlation between
imbalance ratio and cos  in the Appendix), where ¢ denotes
the angle between go and g,,,. As a result, Eqn. 8 can be
re-written as:

min (1 — cos0)(g. go + V¢ | gul)) + cos flgul”  ©)

wew

3Please refer to the Appendix for additional alternatives.
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Simplification: As a matter of fact, CAGrad itself contains
decoupled components in its practical objective:

. T
min - gigo  +Volgul (10)
wew ——
Push Away from go ~MGDA

where g go tends to push away from go and /¢ ||g..|| plays
the role of MGDA does. Thus we can simplify the Eqn. 9 as:

min (1 — cos 0)g. go + cos /¢ ||g | (11)
wew

5.2 Augment Nash-MTL with Imbalance Sensitivity
As stated in the previous Pareto Failure analysis, while Nash-
MTL effectively addresses the imbalance issue and appears
to be naturally conflict-averse, its implementation often leads
to frequent Pareto failures. To address this problem, let’s first
examine its decoupled objective:

min ) g/ Gw + o(w) (12)

Strike balance among individuals

Push Away from ggo

s.t. Vi, —p;(w) <0, w; >0

where p;(w) = log(wi) +log(g;' Gw), G = [g1, 92, ., gk].
>, 9, Gw tends to push away from go and ¢(w) strives
balance among individuals. Intuitively, we expect to preserve
the Pareto property when encountering extremely imbalanced
scenarios; therefore, > g;'— Gw should be given more weight:

min (1 — cos9) Zgi—rGw + cos fp(w) (13)

3

With the proper assumption of H-Lipschitz on gradients, we
can still avoid Pareto failure with the derived weights among in-
dividuals from the last step. In a word, we augment Nash-MTL
by injecting imbalance sensitivity to reduce Pareto failures.
Please refer to the Appendix for more details.

5.3 Implementation

We implement our approach with Python 3.8, PyTorch 1.4.0
and cvxpy 1.3.1, while all experiments are carried out
on Tesla V100 GPUs *. We follow the setting and gen-
eral implementation of [Liu et al., 2021al, and the toy ex-
ample generation is borrowed from [Navon et al., 2022;
Senushkin et al., 2023]. See more implementation details
in the Appendix.

6 Performance Evaluation

Following the evaluation protocol in [Navon et al., 2022]
and taking it as the baseline, we conduct experiments under
the supervised learning and reinforcement learning scenarios.
Specifically, two scene understanding and one image classifi-
cation benchmarks are involved in supervised learning, and
the classical MT10 benchmark is adopted for reinforcement
learning. The examination of Pareto failures, individual task
progress, a sensitivity analysis of u, the verification of negative
correlation between imbalance ratio and cos 6, speed analysis,

*Code is avaliable at https://github.com/zzpustc/IMGrad.

and more visualizations are also provided in the Appendix,
please refer them for more details.

Evaluation metric. In addition to reporting individual
performance, we also incorporate a widely used metric,
Am% [Maninis et al., 20191, which evaluates the overall
degradation compared to independently trained models that
are considered as the reference oracles. The formal defini-
tion of AmY% is given as: Am% = + Z,f:l(—l)‘sk (M i —
My i)/ My ;. My, 1 and My, , represent the metric My, for the
compared method and the independent model, respectively.
The value of Jy, is assigned as 1 if a higher value is better for
M., and 0 otherwise.

Segmentation Depth |
Method (Higher Better) (Lower Better) | Am%|

mloU Pix. Acc. Abs. Err. Rel. Err. |
Independent 74.01 93.16 0.0125 2777 |-
LS 75.18 93.49 0.0155 46.77 22.60
RLW 74.57 93.41 0.0158 47.79 24.37
DWA 75.24 93.52 0.0160 44.37 21.43
MGDA 68.84 91.54 0.0309 33.50 44.14
GradDrop  75.27 93.53 0.0157 47.54 23.67
PCGrad 75.13 9348 0.0154 42.07 18.21
CAGrad 75.16 93.48 0.0141 37.60 11.58
IMTL 75.33 93.49 0.0135 38.41 11.04
Nash-MTL 75.41 93.66 0.0129 35.02 6.82
MoCo 75.42 93.55 0.0149 34.19 9.90
FAMO 74.54 93.29 0.0145 32.59 8.13
IMGrad 75.13 9345 0.0128 34.95 ‘ 6.61

Table 2: Scene understanding (CityScapes, 2 tasks). We report
MTAN model performance averaged over 3 random seeds.

6.1 Supervised Learning

Customary evaluation in supervised learning for MTL involves
assessing the ability of MTL approaches to handle multiple
scene understanding and classification tasks. For scene under-
standing tasks, we follow previous studies [Liu er al., 2021a;
Liu et al., 2021b; Navon et al., 2022] and employ a Multi-
Task Attention Network (MTAN)[Liu et al., 2019] as the
fundamental architecture for all MTL approaches. Our ex-
periments are conducted on two well-established datasets:
NYUv2[Silberman et al., 2012] and CityScapes [Cordts et
al., 2016]. To ensure fair comparisons, we adopt the same
training strategy as described in prior works [Liu et al., 2021a;
Navon et al., 2022]. Specifically, models are trained for 200
epochs using the Adam optimizer, with an initial learning rate
of le-4, which decays to 5e-5 after 100 epochs. For the image
classification task, we utilize a 9-layer convolutional neural
network (CNN) as the backbone, with linear layers serving as
task-specific heads, and conduct experiments on CelebA [Liu
et al., 2015]. The model is trained using the Adam optimizer
for 15 epochs, with an initial learning rate of 3.0e-4 and a
batch size of 256.

NYUv2. NYUV2 is a widely used indoor scene understanding
dataset for MTL benchmarking, encompassing three tasks:
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Segmentation Depth Surface Normal \
Method (Higher Better)  (Lower Better) Angle Distance Within ¢ | Am% |
(Lower Better) (Higher Better) \
mloU Pix. Acc. AbsErr Rel Err Mean Median 11.25 225 30 \
Independent 38.30 63.76 0.68 0.28 2501 19.21 30.14 5720 69.15 | -

LS 39.29 65.33 0.55 023 28.15 2396 22.09 47.50 61.08 | 5.46
RLW 37.17 63.77 0.58 024 2827 2418 2226 47.05 60.62 | 7.67
DWA 39.11 65.31 0.55 023 27.61 2318 24.17 50.18 62.39 | 3.49
MGDA 30.47 59.90 0.61 0.26 2488 1945 29.18 56.88 69.36 | 1.47
GradDrop 39.39 65.12 0.55 0.23 2748 2296 2338 4944 62.87 | 3.61
PCGrad 38.06 64.64 0.56 0.23 2741 2280 23.86 49.83 63.14 | 3.83
CAGrad 39.79 6549 0.55 023 2631 21.58 2561 5236 65.58 | 0.29
IMTL 39.35 65.60 0.54 0.23 26.02  21.19 2620 53.13 66.24 | -0.59
Nash-MTL  40.13 65.93 0.53 0.22 2526 20.08 28.40 5547 68.15|-4.04
MoCo 40.30 66.07 0.56 0.21 26.67 21.83 2561 51.78 64.85| 0.16
FAMO 38.88 64.90 0.55 0.22 25.06 19.57 2921 56.61 68.98 | -4.10
IMGrad 40.20 66.19 0.52 0.22 25.15 19.94 28.69 55.80 68.44 | -4.57

Table 3: Scene understanding (NYUv2, 3 tasks). We report MTAN model performance averaged over 3 random seeds.

semantic segmentation, depth estimation, and surface nor-
mal prediction. The results, presented in Table 3, show that
IMGrad surpasses the previous SOTA in terms of Am%,
highlighting the effectiveness of incorporating imbalance sen-
sitivity. IMGrad also achieves best performance on segmen-
tation and depth tasks without much promise on other tasks.
CityScapes. The CityScapes dataset is used for MTL evalu-
ation, focusing on semantic segmentation and depth estima-
tion tasks. Following the previous experimental setup, we
utilize a coarser version that categorizes segmentation into
7 classes. The results, presented in Table 2, indicate that
IMGrad exhibits a similar trend to its performance on NYUv2
and achieves SOTA results in terms of Am%.

MT10 CelebA

Method | Success = SEM 1 || Method | Am% |
LS 0.49 + 0.070 LS 4.15
STL SAC 0.90 4+ 0.032 SI 7.20
MTL SAC | 0.49 £0.073 RLW 1.46
MH SAC 0.54 4+ 0.047 DWA 3.20
SM 0.73 £0.043 uw 3.23
CARE 0.84 4+ 0.051 MGDA 14.85
PCGrad 0.72 £ 0.022 PCGrad 3.17
CAGrad 0.83 4 0.045 CAGrad 2.48
Nash-MTL | 0.91 £ 0.031 Nash-MTL | 2.84
FAMO 0.83 4+ 0.050 FAMO 1.21
TMGrad | 0.93 +0.068 (+0.10) || TMGrad | 1.27

Table 4: Reinforcement learning (M710, 10 tasks) and image clas-
sification (CelebA, 40-task).

CelebA. CelebA is a widely used face attributes dataset con-
taining over 200,000 images annotated with 40 attributes. Re-
cently, it has been adopted as a 40-task MTL benchmark to

evaluate a model’s ability to handle a large number of tasks.
The results, presented in Table 4, are averaged over three
random seeds. While IMGrad does not achieve the best
performance, it consistently ranks among the top methods,
underscoring the importance of imbalance sensitivity.

6.2 Reinforcement Learning

Reinforcement learning is another domain where MTL is of-
ten essential, as it seeks to acquire a policy capable of suc-
ceeding across various manipulation tasks. To evaluate the
generalizability of our proposed method, we use CAGrad as
the baseline and conduct experiments on the MT10 environ-
ment from the Meta-World benchmark [Yu et al., 2020b].
The results, presented in Table 4, report the average success
rate on the validation set over 10 random seeds. Consistent
with the improvements observed in supervised learning eval-
uations, IMGrad enhances CAGrad by over 0.10, achieving
SOTA performance on this benchmark. It is worth noting that
Nash-MTL does not provide an official implementation for
reinforcement learning benchmarks. As a result, we did not
augment it for evaluation in this context.

7 Conclusion

In this paper, we begin by empirically demonstrating the signif-
icance of addressing the imbalance issue in optimization-based
MTL. We assert that incorporating imbalance-sensitivity is
crucial for avoiding Pareto failures and promoting balanced in-
dividual progress. Building upon this motivation, we propose
IMGrad, a method derived from a projection norm constraint,
which is further simplified as an adaptive balancer between
decoupled objectives. Through extensive experiments, we val-
idate the effectiveness of our proposed approach. We believe
that our explicit emphasis on the imbalance issue, rather than
the conflict issue, provides valuable insights for the future
development of optimization-based MTL.
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