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Abstract

Reinforcement Learning (RL) is widely used in
tasks where agents interact with an environment to
maximize rewards. Building on this foundation,
Safe Reinforcement Learning (Safe RL) incorpo-
rates a cost metric alongside the reward metric, en-
suring that agents adhere to safety constraints dur-
ing decision-making. In this paper, we identify that
Safe RL is vulnerable to backdoor attacks, which
can manipulate agents into performing unsafe ac-
tions. First, we introduce the relevant concepts
and evaluation metrics for backdoor attacks in Safe
RL. It is the first attack framework in the Safe RL
field that involves both Positive and Negative Ac-
tion sample (PNAct) is to implant backdoors, where
positive action samples provide reference actions
and negative action samples indicate actions to be
avoided. We theoretically point out the properties
of PNAct and design an attack algorithm. Finally,
we conduct experiments to evaluate the effective-
ness of our proposed backdoor attack framework,
evaluating it with the established metrics. This pa-
per highlights the potential risks associated with
Safe RL and underscores the feasibility of such at-
tacks. Our code and supplementary material are
available at https://github.com/azure-123/PNAct.

1 Introduction

Reinforcement learning (RL), as an important branch of arti-
ficial intelligence, is primarily focused on training an agent to
develop an optimal policy that maximizes task gains through
interactions with the environment. The metric used to eval-
uate task gains at every time step is the reward signal pro-
vided by the environment during the interaction process [Shi
et al.,2023; Chen et al., 2024; Yang et al., 2023]. The greater
the reward, the better the agent’s action at that time step.
However, the optimal policy in RL is often aggressive and
may select actions with potential safety risks when making
decisions, failing to ensure that the agent adheres to safety
constraints. Therefore, existing research has proposed Safe
Reinforcement Learning (Safe RL) based on traditional RL
[Heger, 1994]. Safe RL introduces an auxiliary cost signal

during the training process to measure the policy’s compli-
ance with safety constraints. In this context, the agent needs
to simultaneously maximize cumulative rewards and control
cumulative costs, ensuring task completion while comply-
ing with safety constraints. Existing solution methods for
Safe RL include primal-dual-based methods [Bhatnagar and
Lakshmanan, 2012; Fujimoto et al., 2019], uncertainty-aware
methods [Fujimoto et al., 2019; Chen et al., 2021], and vari-
ous other approaches [Achiam er al., 2017; Liu et al., 2022;
Zhang et al., 2020; Yang et al., 2020].

However, beyond environmental safety constraints, RL
faces other security challenges, such as adversarial attacks
and backdoor attacks. While these issues are serious and de-
serve attention, research in this area remains limited. Exist-
ing studies [Liu ef al., 2023a; Liu et al., 2023b] have shown
that Safe RL can be vulnerable to adversarial attacks, which
can lead to excessively high violation costs for safety con-
straints. These studies have also proposed corresponding de-
fense methods. In contrast, backdoor attacks present a more
challenging defense problem than adversarial attacks. Back-
door attacks are inherently more covert, as they involve in-
jecting specific trigger conditions during training. Once trig-
gered, these conditions cause the agent to take malicious or
unsafe actions while the agent appears to behave normally
under regular circumstances. Due to their stealthy, backdoor
attacks are more difficult to defend against. If effectively
implemented on Safe RL, backdoor attacks could signifi-
cantly compromise the agent’s decision-making safety and
greatly increase the difficulty of implementing effective de-
fenses. A recent study [Jiang et al., 2024] proposed a safety
reinforcement learning backdoor based on Signal Temporal
Logic (STL), demonstrating the vulnerability of Safe RL to
such attacks. To the best of our knowledge, this is the first
exploration of backdoor attacks in the context of Safe RL.
However, this approach has certain limitations. The proposed
backdoors require integrating logic parsers with RL frame-
works and using different specifications tailored to specific
scenarios, which limits their general applicability. To address
this research gap, this paper makes the following contribu-
tions:

* We define the concepts related to backdoor attacks in
Safe RL and propose relevant metrics to evaluate the ef-
fectiveness and stealthiness of these attacks.
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* We propose a backdoor attack framework for Safe RL,
named PNAct, which leverages positive and negative
action samples along with a loss function modification
technique. This framework enables the agent to take
unsafe and risky actions when the environment reaches
specific states.

* We apply the proposed attack framework to safety-
constrained environments and evaluate its performance
using the backdoor metrics for Safe RL, demonstrating
the effectiveness of our approach.

Unlike previous approaches, our attack framework does not
affect the rewards obtained by the agent, making it less likely
to be detected. However, it increases the cost of violating
safety constraints, leading to riskier decision-making by the
agent. Moreover, it can be applied to a variety of environ-
ments without requiring additional scenario-specific designs.

2 Related Work
2.1 Safe RL

Safe RL focuses on maximizing rewards while controlling
costs. A popular method is the primal-dual approach, which
introduces a Lagrange multiplier to penalize constraint vi-
olations, unifying reward and cost optimization. This ap-
proach serves as the foundation for our backdoor attack
framework. Early studies manually selected the Lagrange
multiplier [Borkar, 2005; Bhatnagar and Lakshmanan, 2012;
As et al., 2022], but this often led to suboptimal policies. To
improve, training can dynamically update policy parameters
and the multiplier to balance rewards and costs [Chow et al.,
2018; Liang et al., 2018]. Additionally, PID control [Stooke
et al., 2020] helps stabilize training and reduce oscillations
caused by phase shifts between the constraint function and
multiplier.

2.2 Backdoor Attacks in RL

Backdoor attacks in RL resemble those in neural network
classification, where an agent is manipulated to perform
attacker-specified actions in certain states while behaving
normally in other states. Most attacks decrease rewards. Tro-
JDRL [Kiourti et al., 2020], uses poisoning methods and pro-
vides various strategies based on attack strength and target
specificity. Building on TrojDRL, specialized methods have
emerged: BACKDOORL [Wang e al., 2021] targets adver-
sarial RL by triggering backdoors via adversarial action se-
quences; BadRL [Cui et al., 2024] employs sparse attacks
to maximize success with minimal steps; MARLNet [Chen
et al., 2023b] focuses on multi-agent scenarios using imper-
ceptible triggers and reward manipulation to degrade perfor-
mance. These attacks prioritize reward reduction without ad-
dressing safety constraint violations.

Recent research introduces the first backdoor attack in Safe
RL using STL [Jiang et al., 20241, but its effectiveness is
limited in complex, high-dimensional, or stochastic environ-
ments due to challenges in defining and verifying STL spec-
ifications and high computational costs. In contrast, our pro-
posed method generalizes better across diverse environments.

3 Preliminary

3.1 Constrained Markov Decision Process
(CMDP)

The traditional Markov Decision Process (MDP) in reinforce-
ment learning is a tuple that only considers the reward signal,
whereas the CMDP [Altman, 1998] defines a cost signal. It
is represented as (S, A, P, R,C, p,, ), where S is the set of
all possible states in the environment, and A is the set of ac-
tions the agent can take. P(s¢11|s¢,at) : S x Ax S — [0, 1]
is the probability that, at time step ¢, the environment tran-
sitions from state s; € S to state s;y1 € S after the agent
takes action a; € A. The reward at time step ¢ is calculated
using = R(st,a¢) : S x A — R, while the cost is cal-
culated using ¢; = C(sy,at) * S x A — R>(. The notation
p(so) : S — [0,1] represents the probability distribution of
the initial state. v € [0, 1] is the discount factor used to cal-
culate both cumulative reward and cost. This paper uses the
same discount factor for cumulative reward and cost calcula-
tions for convenience and to ensure stationary optimality.

CMDP provides a mathematical model for solving Safe
RL. The objective is to find a policy 7 for the agent that sat-
isfies the maximization of the reward value function:

max V" (p)

o0
—hax Boomparmm(lse)sera~P(lse,ar) [Z V' R(st, at)] )
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At the same time, it also needs to ensure that the expected
cumulative cost remains within a predefined range, i.e.,
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Here, « is a safety constraint threshold manually set. It is

considered safe if the cost value function of policy 7 satisfies
the above equation.

3.2 Threat Model

In this paper, we consider the following scenario: From the
user’s perspective, an RL policy is needed to guide the agent’s
behavior. In this case, the user may outsource training to a
relevant party or download a pre-trained model from a third-
party platform, deploying it directly in the user’s environment
or fine-tuning it before use. From the attacker’s perspective,
the attacker can implant a backdoor into the model during the
training process and then provide it to the user. The backdoor
can be activated during the model’s decision-making process
by altering the model’s input state or modifying the environ-
ment.

3.3 Concepts and Notations

Elements of Backdoor Attacks

According to the definition of backdoor attacks, the agent is
required to output actions desired by the adversary in specific
states. These specific states are also designated by the adver-
sary, often by adding anomalous elements to the state, such
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as inserting a colored patch in an image, a red sports car in a
video, or a fixed sequence in text. Anomalous elements like
the colored patch, sports car, or fixed sequence are referred to
as triggers, denoted by . The specific state called backdoor
state designated by the adversary is composed of the normal
state and the trigger 9.

Policies

In this paper, we define the set of all policies for the agent as
I1, which can be expressed as IT = II, U IL, U II;. Here, I
represents the set of safe policies, where any policy 7y € 1,
does not violate the task’s safety constraints. II,, denotes the
set of unsafe policies, where any policy 7, € II,, fails to com-
ply with the safety constraints. Lastly, 11 is the set of failure
policies, where any policy w¢ € 1l is unable to accomplish
the task. The optimal safe policy in 114, which maximizes re-
wards while controlling costs, is denoted as 7. Correspond-
ingly, the optimal unsafe policy in II,,, which solely maxi-
mizes rewards, is denoted as ;. Figure 1 presents a simple
case of a car reaching the goal, illustrating the relationship
between the policy set and optimal policies.

My . ;
@ Goal M, 1, :
O @~
‘ Hazard T ;
Car
(Agent)
(a) (b) ©

Figure 1: (a) shows a simple Safe RL scenario with a car, a target,
and a hazard. (b) illustrates the car’s policy spaces: the light red
region (II,,) represents unsafe policies that pass through the hazard,
the light green region (I1s) represents safe policies that avoid it, and
the light blue region (II) represents failed policies that don’t reach
the target. (c) demonstrates the car’s optimal unsafe policy and op-
timal safe policy.

The meaning of the two optimal policies in terms of the
value function is primarily represented by the following two
equations:

i = arg max V. (p) s.t. VI (p) <k 3)
7 = arg max VT (p) s.t. Vi (p) >k “4)

The relationship between the policy set and the optimal policy
based on the value function is shown in Figure 2. In this
paper, the backdoor policy is denoted as 7, and its properties
will be explained in detail in the following sections.

4 Method

4.1 Backdoored Constrained Markov Decision
Process (B-CMDP)

This paper introduces a new Safe RL-based mathemat-
ical model, the Backdoored Constrained Markov Deci-

VI(p)
X

Figure 2: The graphical representation of the policy set and the opti-
mal policy in the value function coordinate system. 11 and II,, form
a closed shape. Any point (v, v.) represents the cumulative reward
or cost associated with a policy {m € II|V," (10) = vy, VI (o) =
ve}. It is important to note that points outside the closed shape do
not necessarily have meaning; for simplicity, they are collectively
represented by IIy.

sion Process (B-CMDP), built upon the CMDP frame-
work. The mathematical definition of B-CMDP is given as
(8,X,X,A,P,R,C,p,7). Compared to CMDP, B-CMDP
additionally considers sets of normal states X and backdoor
states X Obviously, S = X U X. At time step ¢, the nor-
mal state or backdoor state are represented as x; € X and
Tt € X, respectively. Since triggers represent redundant in-
formation within states, they do not affect the state transition
probabilities, i.e., P(s¢11]Zt, ar) = P(Se1|ze + d,a¢) =
P(5t+1 |Z‘t, Clt).

In the scenario described in this paper, the backdoor trigger
can be considered absent in normal states. Thus, we have:

XNXx=0o. (5)
Therefore, it can be derived that
I(seX)=1-1I(s € X) (6)

Here, I(-) represents the indicator function, which is used for
truth evaluation. If the condition inside - is true, the function
value is 1; otherwise, it is 0.

In this paper, the backdoor policy 7 selects unsafe actions
in the backdoor state & and safe actions in the normal state x.
Thus, we derive the following property:

Property 1 (Action-wise). From the perspective of action
sampling, the backdoor policy executes the optimal unsafe
action in states with the trigger while hiding the backdoor
and executing the optimal safe action in normal states, i.e.,

Ay ~ 701'(|8t) = ]I(St S X) . W:('|St) + ]I(St c .)E) . ’/TZ('St)
@)
The above formula represents the choice between two opti-
mal policies made by the backdoor policy 7 at any given time
step t.
In addition to representing the properties of the backdoor
policy from the action sampling perspective, we can also de-
rive its property from the value function perspective:

Property 2 (Value function-wise). From the perspective of
the value function, the backdoor policy needs to violate the
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safety constraints in episodes where the backdoor is trig-
gered and adhere to the safety constraints in episodes with-
out the backdoor. Simultaneously, its reward value function
also needs to attain optimality. Its value functions can be ex-
pressed as: )

Vﬂ(pv T) 5 max V:r(p’ T)v

T

er(p, T) |T:‘T'> K, (8)

VX (psT) |‘l'7’5‘7'S K
In the above property, 7 = (s1, 82, ...,ST) represents a
state sequence of an episode with 7' time steps, and 7 is the
state sequence containing backdoor states, with the number
of backdoor states in the range (0, 7.

4.2 Metric Designing

The previous section has explained the basic properties of the
backdoor policy 7. However, more detailed metrics are re-
quired to evaluate the backdoor policy’s performance. We
evaluate the backdoor policy from two aspects: effectiveness
and stealthiness.

Definition 1 (Effectiveness). The effectiveness metric can
be represented by a logical expression, specifically Iy, =
L((VZ (p,7) > VI (p, 7)) A(VE (p,7) > K)). If T = 1,
it indicates that the backdoor policy 7 satisfies effectiveness;
if Iy, = O, then it does not satisfy effectiveness.

The effectiveness of the backdoor policy 7 is primarily re-
flected in two aspects: the comparison of cost value functions
with and without backdoor states, and whether the safety con-
straints are violated in the presence of backdoor states.

Definition 2 (Stealthiness). The stealthiness metric can be
represented by a logical expression, specifically 15 =
LV, (p,7) 2 Vi (p, 7)) A (VT (p,7) < ). IFTE =1,
it indicates that the backdoor policy 7 satisfies stealthiness;
if I = 0, then it does not satisfy stealthiness.

The stealthiness of the backdoor policy 7 is primarily re-
flected in two aspects: the comparison of reward value func-
tions with and without backdoor states, and whether the
safety constraints are satisfied in the absence of backdoor
states.

4.3 PNAct: Safe RL Backdoor Attack Framework

Based on the properties of the backdoor attack in Safe RL
proposed earlier, the backdoor policy 7 is a fusion of the op-
timal safe policy 7 and the optimal unsafe policy 7. From
the perspective of policy distribution, it resembles 7 in back-
door states and 7 in normal states. On this basis, we need to
find the optimal backdoor policy 7* that satisfies the condi-
tions and maximizes the similarity.

Remark 1. The optimal backdoor policy 7 satisfies the fol-
lowing conditions in terms of distribution:

" = argmin B, |[(s; € &) - Drcr. (w5 (|se)[|7(-]50)) +

I(s € ¥) -DKL<w:<-|st>||w<-|st>>],
C))

where Dkr, is the Kullback-Leibler divergence between
two policies.

We aim to obtain a Safe RL backdoor policy that satisfies
the fundamental properties of backdoor attacks while meeting
the effectiveness and stealthiness criteria. Based on this ob-
jective, we design an attack framework called PNAct, which
leverages positive and negative action samples. This frame-
work switches between positive and negative action samples
based on the state, enabling the backdoor policy learned by
the victim agent to better differentiate between safe and un-
safe policies.

Attack Control

During the training process, we need to control the frequency
and duration of attacks to adjust the ratio of backdoor and
normal states, as well as positive and negative samples. To
achieve this, we define an attack signal vy = u(f, k, t), where
f is the interval of backdoor injection during training (the
number of time steps between two consecutive attacks ), and
k is the duration (in time steps) of each injection. Their values
can be adjusted based on the training scenario and the specific
needs of the adversary. If ¢, = 1, it indicates that a trigger
needs to be added to the state at time step ¢; if ¢y = 0, it
indicates that no adjustment is required for the normal state
at time ¢, i.e.,

sp€thy - XU(L—1hy)- X, (10)

We can systematically generate both backdoor and non-
backdoor samples through the attack signal generator u.

Loss Design

PNAct samples actions from 7} and 7, based on different
states in the training process, setting positive and negative ac-
tion samples accordingly. The backdoor policy is trained to
fit the two strategies based on the state conditions. Specifi-
cally, when in a backdoor state, positive action samples are
obtained from 7}, and negative action samples are obtained
from 7}; when in a normal state, the opposite applies, i.e.,

af ~1(sp € X) -5 (s) + (s € X) - w5 (-]se),
a; ~T(s € X) - mi([se) + (s, € X) - w5(:]s0)-

Considering that the choice of state depends on the attack sig-
nal generator, it follows that

af ~ by (clse) + (1= ) -7l (se),
ag ~ Py m(se) + (L= t) - my(-[se)-

Remark 2. Since the optimal safe and unsafe policies are un-
known, we substitute them with a policy estimation method,
namely using reinforcement learning-based approaches to
obtain the fitted policy.

To satisfy Equation (9), we train the backdoor policy such
that the action generated by the backdoor policy 7 is as close
as possible to a;” and as far as possible from a; . If the actions
are continuous, the loss function for the action sample part
during the PNAct training process is:

Y

12)

‘C;rct(sﬁaj?a;) = )“7(7%(81‘/)7a’zr) - (1 - )\)j<7?r(5t)’a(i%)
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If the actions are discrete, the corresponding loss function can
be described as:

ﬁict(stvazrvat_)
=AT (7 (-[se),a)") — (1= N T (7 (]s0), ap).

A represents the weighting factor balancing the effects of pos-
itive and negative action samples. In Equation (13), 7 can be
a loss function for regression tasks, such as the mean squared
error (MSE) loss function. In Equation (14), J can be a
loss function used for multi-class classification, such as cross-
entropy loss, etc. In addition, the positive and negative action
samples are in the form of one-hot encoding.

For the purpose of measuring the reward and cost value
functions, PNAct references Lagrangian-based methods and
adds two critics. They are both neural networks, and their
loss functions for updating are as follows:

L= (Vo (st) = (de +1Ve,(5:41)))  d € {r,c} (15)

where £, and L. are the loss functions for updating the re-
ward and cost value networks, respectively, with 6, and 6,
being their corresponding parameters.

The update of the PNAct framework relies on minimizing
the following loss function:

Loss = aLl et + BL, + pLle (16)

(14)

where «, 8 and p are the weight coefficients that balance the
importance of the three losses. The benefit of using a three-
part loss function is that this approach ensures the backdoor
policy satisfies the basic properties while also performing the
functions of the reward and cost value functions. It allows
the policy to meet the actor-critic structure and improves its
stealthiness.

Training Process

Based on the method above, we outline the attack process of
PNAct during the training procedure. The specific implemen-
tation approach is shown in Algorithm 1.

5 Experiments

To verify whether PNAct satisfies the safety reinforcement
learning backdoor attack requirements, we apply it to the
Safety-Gymnasium environment [Ji et al., 2023], which has
strict safety constraints. The agent must reach the goal while
avoiding hazards, with obstacles like vases blocking its view
and movement.

5.1 Configuration

Environments and Trigger Design

We use Car, Point, and Ant as agents to complete the goal-
reaching task; the corresponding environments are called
CarGoal, PointGoal, and AntGoal. All environments contain
8 hazards, 5 vases, and 1 goal. The agent’s task is to avoid
the hazards and reach the goal location.

To implement the backdoor injection, we use the absolute
positions of the vases as triggers for the backdoor attack. This
type of trigger is similar to color blocks, but the advantage is
that it is not limited to image-based inputs. Moreover, dur-
ing the agent’s decision-making, only the positions of the

Algorithm 1: Training process of PNAct

Input: Optimal safe policy 7} ; optimal unsafe policy
m; initialized backdoor policy 7; initialized
reward value function Vj_; initialized cost
value function Vj_; trigger ¢; initial state
S0 ~ p; attack signal generator u; attack
interval f; attack duration k

1 for 1=0,1,2,... do

2 Obtain the normal state x; and the backdoor state
Ty = x¢ + 0 according to sy

3 Obtain the attack signal v, = u(f, k, )

4 if ; then

5 ‘ St < (it

6 end

7 else

8 ‘ St < Tt

9 end

10 Sample safe action as ¢ ~ 75 (+|s¢)

1 Sample unsafe action a,, ; ~ 7 (+|s;)

12 Agent takes action a; ~ 7(+|s¢)

13 if ; then

14 ‘ aj' S Oyt Qp < gt

15 end

16 else

17 ‘ a?‘ < Gg,ty Qp < Aot

18 end

19 The environment proceeds to s, and produce 7,
Ct

20 Agent adds (s¢, a), a; , 74, ci, 5¢41) to its buffer

21 Calculate L., £, and L. according to Equation
(13) or (14), and Equation (15)

22 Update 7, Vj, and Vj, according to Equation (16)

23 end

objects in the environment need to be changed without di-
rectly interfering with the agent’s state input. In the normal
state, the positions of vases are random, while specific posi-
tions are selected as backdoor states. In the experiment, we
use the positions of five vases, with their trigger positions be-
ing {(0,0), (1,0), (0,1), (-1, 0), (0, —1)}. Taking the Point-
Goal environment as an example, we illustrate the agent’s
performance in both normal and backdoor states in Figure 3.

Training Configuration

During the training process, we set the attack interval of the
attack signal generator as f = n X |7|, where n € Z~(. At
the same time, we set the attack duration as k = |7, meaning
that after several normal episodes, a backdoor is implanted in
one episode.

Base Model Configuration

The base models generate the optimal policies in this paper.
The base model for the optimal unsafe policy is trained using
the classical reinforcement learning algorithm PPO, which
only considers reward maximization without taking safety
constraints into account. We select multiple safe reinforce-
ment learning algorithms, namely PPO-Lag(rangian), TRPO-
Lag(rangian), and RCPO [Tessler et al., 2019], to train the
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Figure 3: An example of an environment with PointGoal is illus-
trated. (a) shows the point under the normal state, where it success-
fully reaches the goal while avoiding stepping into the hazard. (b)
depicts the point under the backdoor state, where it enters the hazard
area during the task, incurring a significant cost.

base models for optimal safe policies. These models are com-
bined with the optimal unsafe policy to form the sampled
policies for the optimal backdoor policy.

5.2 Results and Analysis

The experimental results of different policies in completing
the task are shown in Table 1. Each experiment shows the av-
erage reward, cost, and corresponding variance of PNAct over
100 complete episodes with n € {5, 10,15, 20,25}. We ana-
lyze the performance of PNAct from the following aspects.

Distinguishability
The results show that PNAct can generally meet the require-
ments for effectiveness and stealthiness in most cases.

Using the PPO+RCPO combination and the PointGoal task
with n = 10 as an example, we sample the cumulative re-
wards and costs from 1000 rounds of the PNAct model in
both backdoor and normal states. We then analyze the dis-
tribution of the corresponding rewards and costs to evaluate
the distinguishability between the two states. The distribution
plots are shown in Figure 4.

Reward and Cost Distribution-Normal Reward and Cost Distribution-Backdoor

Cost Constraint=25 60 120/ FB R Cost Constraint=25 2
g 50 8100
S 405 80 159
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€ 20" E 40
3 3
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Cumulative Reward Cumulative Reward
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Figure 4: (a) represents the reward and cost distribution under nor-
mal conditions, while (b) shows the reward and cost distribution un-
der backdoor conditions.

It can be intuitively seen from the figure that the backdoor
model we train has data points mainly concentrated in the re-
gion where the cumulative cost is below the cost constraint
value in the normal state, while the opposite is true in the
backdoor state. At the same time, the cumulative reward of
the backdoor model in the backdoor state is slightly higher

Attack Interval

Attack Interval

(a) Normal condition

Backdoor Policies with Different Attack Intervals - AntGoal
—— PPO +PPO Lag PPO + TRPO Lag PPO + RCPO

. \

5 10 15 20 25 50 75 100 5 10 15 20 25 50 75 100
Attack Interval Attack Interval

(b) Backdoor condition

Figure 5: The trends in return and cost under normal and backdoor
conditions are obtained from models trained with different attack
signal intervals for AntGoal environment. (a) and (b) represent the
trends in return and cost under normal and backdoor conditions, re-
spectively. The dashed lines y = 25 represent the cost constraint.

than that in the normal state. This shows that our PNAct at-
tack framework balances two metrics and exhibits a signifi-
cant distinction in scenarios with and without triggers.

Attack Signal Generation Interval

To explore the impact of the attack signal generation inter-
val on the models trained by the PNAct attack framework,
we use line charts to show the trends in cumulative reward
and cumulative cost under different values of n with n &
{5,10, 15,20, 25,50, 75,100}. Due to space limitations, we
take the AntGoal environment as an example, with the cor-
responding results shown in Figure 5. Line charts for other
environments are presented in the appendix.

Regardless of whether in the backdoor state or the normal
state, for models trained using the PNAct framework, as n in-
creases, both the cumulative reward and cumulative cost de-
crease, which may even affect the effectiveness of the back-
door attack. This result is related to the change in the propor-
tion of samples affected by the attack signal. As n increases,
the proportion of optimal unsafe policies decreases, and the
samples are dominated by those generated by the optimal safe
policy. As a result, the trained backdoor policy tends to make
decisions in a safer and more conservative direction. There-
fore, to ensure the performance of the backdoor policy, it is
necessary to adjust the attack signal generation frequency.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.

Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Safe RL CarGoal PointGoal AntGoal
n Policy Normal Backdoor 75 Th Normal Backdoor 75 TH Normal Backdoor 75 TH
Reward Cost Reward Cost Bo7s Reward Cost Reward Cost E s Reward Cost Reward Cost E7S
PPO-Lag 16.09+7.07 23.2+31.35 22.4+9.65 47.8+43.47 I I 8.09+7.83 19.3+23.3 8.86+9.35 26.4+29.55 1 1 13.27£15.27 22.25+70.15 40.56+32.99 45.53+101.86 1 1
5 TRPO-Lag 16.59+14.78 20.75+27.35 23.58+9.8  35.8+32.84 1 1 21.04+4.8 22941998 243349  55.2+32.33 1 1 32.72426.2 22.7#257  54.01£30.07  41.7£23.01 1 1
RCPO 16.85+13.29  16.66+22.38  26.56+7.78 1 1 13.94+7.66  24.0+48.63  22.7+5.88  42.03£28.23 1 1 26.92+24.74  17.56+19.67 41.56£30.69  37.25+57.99 1 1
PPO-Lag 14.97+7.63  21.08+23.65 20.98+8.68 1 1 8.34+8.22 12.9+17.91 8.84+9.01 29.95+31.66 1 1 10.78+10.19  22.14+66.26  31.07+24.8  43.26+96.14 1 1
10 TRPO-Lag 17.46+13.28 18.58+27.07 26.53+8.34  37.8+31.86 1 1 19.76+7.14 2494269  23.23x1.87 48.1x21.03 1 1 30.34+21.82  20.99+21.45 33.61£28.02  29.25+42.97 1 1
RCPO 17.95+12.68  16.28+22.29 24.74+#8.65 41.89+39.75 1 1 15.86+7.57 22.57425.01 21.68+4.29 45.89+31.96 1 1 25.07+23.23  19.66+24.84 34.29+24.64  27.76+25.69 1 1
PPO-Lag 15.31£8.0 19.2+26.56  17.86£9.05 28.69+50.95 I I 7.38+7.52  18.77+£30.07 8.07+£7.85  28.12+28.42 1 I 11.52+11.04 19.8£100.17 24.57#21.16  49.7+123.16 1 I
15 TRPO-Lag 17.03£13.01 22.76+45.79  27.148.83  45.27+36.62 1 1 18.33£6.86  23.2+20.12  22.0743.2  47.1+20.89 1 1 255442173  17.0£20.42  32.58+25.71  27.33+30.87 1 1
RCPO 16.85+12.36  18.8424.99  27.61+8.53 49.44+4526 1 1 18.93+7.16  21.68422.92 21.41+5.14 38.25+36.89 1 1 241442127 20.27+19.54 32.17+24.77  31.15+67.94 1 1
PPO-Lag 14.1247.57  24779+£31.15 18.9248.72  28.55+32.4 1 1 8.53£7.47 24.99+2821 11.31£7.05 2578+3126 1 1 10.48+9.57  21.65+71.68 22.35%17.92  25.25+30.62 1 1
20 TRPO-Lag 17.6£13.11 24.62+32.55 27.08+8.43 48.56+56.24 1 1 15.53%7.5 11.7¢15.52  23.96+4.53  45.3+21.6 1 1 24.0£19.64 20.0£29.9  34.22425.54  25.51+24.98 1 1
RCPO 16.65+14.53  18.58+30.24 27.06£9.14 45.25+39.95 1 1 15.6+7.38 19.2+21.14  21.39+3.73  36.75£32.05 1 1 27.59422.84  20.6+19.98  31.224#24.02  22.07+24.12 0 1
PPO-Lag 14.3+8.45 23.02+26.69 19.4247.97  30.2+33.93 I 1 9.07£6.22  20.03£31.27 6.85#8.12 20.86%27.57 0 0 12.274£12.17 19.76%23.65 22.25+18.26  43.51+83.01 1 1
25 TRPO-Lag 18.59+11.58 21.01434.73 25.61+9.31  37.1+32.58 1 1 21.17+4.01 15.8+18.88  22.52+3.32  38.3+18.74 1 1 24.89+20.65 17.62+22.29 32.49+26.83  24.71+28.57 0 1
RCPO 18.94+11.86 18.21£19.55 23.87+8.04 40.05+36.63 1 1 15.59£7.9  25.59+24.93 21.41+4.39 44.17+33.97 1 0 24.09+21.8  17.73£19.64 28.47+24.71  22.25+24.46 0 1

Table 1: The experimental results of the backdoor policy trained with the positions of five vases as triggers, under both trigger-present and
trigger-absent conditions. The safe reinforcement learning policy on the left is the safety policy used for sampling during training, while all

unsafe policies sampled are PPO.

CarGoal PointGoal AntGoal
RL Policy Normal Backdoor Normal Backdoor Normal Backdoor
Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

PPO 31922435 65.82246.]  32.133.60  55.42%46.82 2633137 54.76239.18 24.8%3.73 52723245 53.78£35.99 8701216379 88.04233.24 47.77%34.59
PPO-Lag  15.2727.02 32.16:37.82 1604680 30.61£38.8 10.3328.15 17.65%23.12 6.8249.65 14.76x18.5 13.15212.60 266728244 14.29%12.6 23.93£33.23
TRPO-Lag 21.6x12.09 22.6£35.17 19.89£12.06 22.58%26.59 22.48%560 28.23%26.1 22.22%5.12 31433029 20.04%2249 2221%22.94 36.17%26.66 24.62+23.65

RCPO  19.15211.5 2006229 184%11.99 20.0828.34 19.12%642 26.19£20.63 21.17%6.23 26.31£23.39 28.82%2325 203522262 32.38%24.87 22.0123.17

Table 2: The returns and costs of the baseline models under normal and backdoor conditions.
Base Models e Attack pattern. Adversarial attacks require specific

To compare the performance of PNAct with that of the base-
line model, we present the cumulative reward and cost of the
baseline model in both the backdoor and normal states, as
shown in Table 2. Clearly, there are significant differences in
performance across different Safe RL policies.

From the comparison, two phenomena can be observed.
The first is that the reward of the PNAct backdoor policy
tends to be similar to that of the corresponding base model’s
policy, but the cost is often significantly lower. The second is
that while certain base models’ safe policies violate the safety
constraints, the PNAct experimental results indicate that the
backdoor policy, even when trained with these unsafe poli-
cies, can still adhere to the safety constraints under normal
conditions. These two phenomena may be due to the neg-
ative action sample terms in equations (13) and (14), which
further constrain the cost. Additionally, due to the presence
of the safety constraints, the backdoor policy tends to be
more conservative in the normal state, leading to a lower re-
ward. Therefore, ideal performance backdoor policies can be
achieved by adjusting the weight factor A in the loss function.

6 Discussion
6.1 Backdoor Attack vs. Adversarial Attack

The main differences between adversarial attacks [Zhou et
al., 2024a; Zhou et al., 2024b; Guo et al., 2024; Guo et al.,
2025] and backdoor attacks are reflected in the following two
aspects:

* Stage of model access. Adversarial attacks can be
carried out during the model inference stage by mod-
ifying the agent’s input state to achieve the attack’s
goal. In contrast, backdoor attacks are implanted during
the training stage to inject a backdoor into the model.
During model inference, backdoor attacks can alter the
agent’s input state or even directly modify the environ-
ment without needing to interact with the model itself.

methods to design perturbations, such as gradient-based
optimization techniques (e.g., FGSM [Goodfellow er al.,
2015], PGD [Madry et al., 2018]), to achieve significant
attack effects. Random or simple perturbation patterns
have limited effectiveness. On the other hand, backdoor
attacks only need to apply simple attack patterns, such as
color blocks or regular sequences, within the input state
to achieve their objective.

Clearly, our attack method involves implanting a backdoor
during the training process and altering the environment dur-
ing the inference process, so the approach we adopt falls un-
der the category of backdoor attacks.

6.2 Defense

Existing studies propose defenses against reward-reduction
backdoor attacks, but none address secure backdoor attacks
with increased costs. BIRD [Chen et al., 2023a] uses
RL to detect triggers maximizing the value function, ef-
fective for poisoning-based attacks but inapplicable to our
non-poisoning approach. PolicyCleanse [Guo et al., 2023]
defends against adversarial RL backdoor attacks, but our
method does not involve adversarial scenarios.

7 Conclusion

This paper introduces the concept of backdoor attacks in Safe
RL, proposes corresponding evaluation metrics, establishes
the mathematical model B-CMDP, and designs the universal
backdoor attack framework for Safe RL, PNAct. Our attack
framework has been applied to multiple Safe RL scenarios
in Safety-Gymnasium, demonstrating significant experimen-
tal results under our evaluation metrics. In future work, we
will conduct more in-depth research on the existing limita-
tions of PNAct and propose improved solutions for backdoor
attacks in Safe RL.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Ethical Statement

Our attack framework targeting safe RL agents may cause
some ethical concerns. First, we clarify that attacks are not
our goal. Instead, our research has two main goals: firstly,
to identify potential risks in safe RL to avoid any real-world
consequences that could arise from these vulnerabilities; and
secondly, to lay the groundwork for future defense research
in this area. While our current focus is on risk identification,
we intend to focus on developing and implementing effective
defense strategies in our future work.
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