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Abstract

Link Sign Prediction (LSP) in signed networks is
a critical task with applications in recommenda-
tion systems, community detection, and social net-
work analysis. Existing methods primarily rely
on graph neural networks to exploit structural in-
formation, often neglecting the valuable insights
from edge-level textual data. Furthermore, utilizing
large language models (LLMs) for LSP faces chal-
lenges in reliability and interpreting graph struc-
tures. To address these issues, we propose a novel
STLSP framework that integrates signed networks’
Structural and Textual information with LLMs for
the LSP task. STLSP leverages structural balance
theory to generate node embeddings that capture
positive and negative relationships. These embed-
dings are transformed into natural language rep-
resentations through clustering techniques, allow-
ing LLMs to utilize the structural context fully.
By integrating these representations with edge text,
STLSP improves the accuracy and reliability of the
LSP task. Extensive experiments conducted on five
real-world datasets demonstrate that STLSP out-
performed state-of-the-art baselines, achieving an
8.7% improvement in terms of accuracy. More-
over, STLSP shows robust performance across var-
ious LLMs, making it adaptable to different com-
putational environments. The code and data are
publically available at https://github.com/sss483/
STLSP.

1 Introduction

Signed networks are graph structures consisting of nodes rep-
resenting various entities and edges assigned with positive or
negative signs to denote different relationships or interactions
between nodes. For instance, in an online social platform,
user entities can have “like” relationships (positive edges)
with each other, while “dislike” actions can be represented
as negative edges. Due to the distinctive feature of accu-
rately reflecting the relationships in real-world complex sys-
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tems, signed networks are widely employed in various appli-
cations [Xie et al., 2022]. Link Sign Prediction (LSP) is a cru-
cial downstream task for signed networks. LSP determines
whether a relationship is positive or negative, directly em-
powering applications such as community detection [Wang et
al., 2023] and recommendation systems [Zhou et al., 2023].

Currently, LSP research can be broadly divided into
two main categories: feature-based methods and network
embedding-based methods [Fang et al., 2024]. Feature-based
approaches gather specific features from the graph structure
and identify the sign of a target link based on those features.
In [Leskovec et al., 20101, logistic regression is adopted to
predict link signs using node degrees and triad types features.
HOC [Chiang et al., 2011] presents a supervised approach
that extracts features from longer cycles to predict link signs.
[Beigi er al., 2020] leverage Emotional Information, Diffu-
sion of Innovations, and Individual Personality theories to
guide feature engineering to address the data sparsity prob-
lem in link sign prediction.

On the other hand, network embedding-based methods
transform the signed graph into a low-dimensional vector
space and then use the node representations for LSP. SGCN
[Derr et al., 2018] applies graph convolution to signed net-
works, effectively capturing both positive and negative edges
for accurate LSP. RSGNN [Zhang er al., 2023] analyzes the
impact of noisy edges on signed graph neural networks us-
ing an extended Weisfeiler-Lehman test and presents a dual
architecture to denoise the graph and learn node representa-
tions simultaneously. S-GNN [Lin and Li, 2024] separates
pairwise interactions into receptive and generative types and
uses two-component status convolutional layers for status ag-
gregation and propagation.

However, although existing methods effectively utilize
graph structures, the textual information on edges, which
could provide valuable evidence for LSP, is often overlooked.
As shown in the first motivating scenario of Figure 1, the
textual description of the target edge clearly points to the
negative sign. Regardless, a conventional GNN-based LSP
method produces a wrong answer by analyzing the graph
structure without considering edge text. Here, only 1-hop
neighbors of target nodes are illustrated for simplicity.

With the emergence of large language models (LLMs),
LLM-based LSP has become a promising direction for
leveraging edge text in signed networks. However, LLMs
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Figure 1: Motivating scenarios, where t,, indicates target node and
n denotes node.

face inherent limitations in understanding topological graph
data [Huang er al., 2024]. A straightforward way is to con-
vert the graph structure into text and inject it into prompts for
decision-making by LLMs. As shown in the incorrect predic-
tion result given by an LLM in the second motivating scenario
in Figure 1, there remain research challenges for LLM-based
LSP. Firstly, LLMs cannot fully interpret raw structural infor-
mation in a simple text format such as quadruple. Secondly,
relying solely on LLMs to perform downstream tasks like
LSP could result in unreliable outputs [Majeed and Hwang,
2024]. Tt stems from the fact that LLMs generate results
through a softmax layer in the final stage, where the one with
the highest probability is selected as the output.

To address the challenges mentioned above, in this paper,
we propose an approach that integrates Structural and Textual
information in signed networks with LLMs for Link Sign
Prediction, namely STLSP. STLSP combines the structure
learning capabilities of graph neural networks (GNNs) with
the natural language understanding of LLMs. Specifically,
we adopt the structural balance theory for structural learning
to guide the generation of node embeddings that capture both
positive and negative relationships between nodes. Then, a
clustering technique is adopted to identify different balance
groups. Natural language labels are generated depending on
whether the nodes belong to the same balance group to en-
able LLMs to comprehend the graph structure deeply. Finally,
LLMs are employed to perform the LSP based on the created
contextual information to predict the signs of edges.

The main contributions are summarized as follows:

* We propose STLSP, which combines structural informa-
tion from signed networks, processed through structural
balance theory, with textual data from edges. This inte-
gration leverages the strengths of graph neural networks
(GNNs) and large language models (LL.Ms) to enhance
the accuracy and reliability of link sign prediction (LSP).

e We transform graph structural information into natu-
ral language expressions using network embedding and
clustering techniques. This enables LLMs to interpret
and utilize graph topological data effectively, addressing
their limitations in directly understanding raw graphs.

» Experimental results on five real-world datasets show
that STLSP outperforms state-of-the-art LSP methods
with an average margin of 8.7% in terms of accuracy.
STLSP is independent of the parameter size of LLMs
and works well with relatively small-scale LLMs such as
LLama3-7B. Besides, STLSP demonstrates significantly
higher reliability than a text-only approach, highlighting
the effectiveness of the proposed integration mechanism
of graph structure and edge text.

2 Related Work
2.1 Link Sign Prediction

Feature-based and network embedding-based methods are
two mainstream methods in LSP research. Feature-based LSP
methods focus on extracting specific features from the graph
structure to predict the sign of a target link. HOC [Chiang
et al., 2011] leverages features derived from longer cycles in
signed networks to predict link signs. Extending beyond lo-
cal structures like triangles, it incorporates higher-order pat-
terns to capture the structural imbalances in the graph better.
In SLF [Xu et al., 2019], latent factor decomposition mod-
els positive and negative relationships between nodes, focus-
ing on topological features extracted from the signed graph.
In [Beigi et al., 2020], features inspired by social science
theories, such as emotional information, diffusion of innova-
tions, and individual personality, are extracted to address the
signed link prediction problem. These features leverage non-
structural information from user behavior and interactions to
compensate for the sparsity of signed links.

Network embedding-based LSP approaches learn low-
dimensional representations of signed graphs to capture struc-
tural and signed characteristics for link sign prediction.
Among these methods, SGCN [Derr er al., 2018] applies
graph convolution to signed networks, leveraging structural
balance theory to model local triangular structures and distin-
guish between positive and negative edges. Extending this,
SDGNN [Huang et al., 2021] employs a signed directional
aggregator to capture edge directionality better, improving
upon SGCN while maintaining its capability to model signed
features. RSGNN [Zhang et al., 2023] leverages an extended
Weisfeiler-Lehman test to analyze the effects of noisy edges
on signed graph neural networks. Integrating a dual architec-
ture that simultaneously denoises the graph and learns robust
node representations addresses challenges in modeling com-
plex signed structures and improves learning.

2.2 Large Language Models for Predicton Tasks

LLMs have proven highly effective in graph-related tasks,
particularly in datasets with rich textual information. By
leveraging their advanced natural language understanding ca-
pabilities, LLMs consistently achieve decent performance
in natural language processing (NLP) tasks [Mekrache et
al., 2024]. However, LLMs fall short of capturing struc-
tural information, such as node relationships, graph topol-
ogy, and neighborhood aggregation, which are the strengths
of GNNs. Considering this, many recent methods aim to in-
tegrate LLMs with GNNGs, creating novel frameworks that ef-
fectively combine structural and textual information [Jin et
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al., 2024]. Within this paradigm, link prediction has gar-
nered significant attention due to the enhanced ability to cap-
ture richer relational semantics, as the integration of textual
and structural data enables models to infer better and con-
textualize connections between nodes. Specifically, in the
paradigm where LLMs assist GNNs, SimTeG [Duan er al.,
2023] improves link prediction by combining LLM-generated
node embeddings with graph structure. The embeddings cap-
ture rich textual features, which enhance the GNN’s ability to
model relationships between nodes effectively.

On the other hand, in the paradigm where GNNs assist
LLMs, LPNL [Bi et al., 2024] enhances the link prediction
capability of LLMs by transforming graph structural infor-
mation into natural language prompts, leveraging a two-stage
sampling pipeline and a divide-and-conquer strategy to effec-
tively handle large-scale heterogeneous graphs, enabling the
model to infer better connections between nodes. In this pa-
per, we focus on signed networks, extending the application
of LLMs from traditional link prediction to link sign predic-
tion. Implementation details are provided in Section 4.

3 Preliminaries

Signed Networks. Signed networks are defined as G =
(V,€,X,T), where V and £ denote the sets of nodes and
edges, X represents the node properties, and T indicates the
textual information associated with the edges. Specifically, £
can be further expressed as & = (€1, E7), where £T denotes
edges with positive values and £~ stands for edges with neg-
ative values. For simplicity, we re-formalize £ using an adja-
cency matrix A = [a;;] € RV*N where a;; = 1 indicates a
positive edge between nodes 7 and j, and a;; = —1 denotes a
negative edge. Additionally, each a;; is associated with text
t;; € T, representing the raw textual data linked to a;;.

Link Sign Prediction (LSP). The LSP problem is for-
mally defined as follows. Given a signed network G =
(V,€,X, T), the task of link sign prediction aims to predict
the sign a;; € {—1,1} of an edge e;; based on the structural
properties of the network, the attributes of nodes X, and the
textual information ¢;; € T. The goal is to determine whether
the relationship between nodes 4 and j is positive (a;; = 1)
or negative (a;; = —1).

Structural Balance Theory. Structural balance theory can
be used to understand the stability of relationships within so-
cial networks [Heider, 1946]. According to the theory, the
stability of networks depends on the balanced states of their
relational triads. A triad is considered “balanced” under two
conditions: 1) all three edges are positive, representing full
cooperation and reflecting the principle that “the friend of my
friend is my friend”; 2) one edge is positive while the other
two edges are negative, reflecting the principle that “the en-
emy of my enemy is my friend”. From the clustering view,
the positive and negative links are considered balanced if they
can be divided into the same and different clusters, respec-
tively. Moreover, clustering under structural balance divides
a signed network into a number (K) of clusters to minimize
the number of imbalanced links.

4 Proposed STLSP

In this section, we introduce the proposed approach STLSP
that predicts edge signs using both trained node features
and edge-related textual information. STLSP mainly com-
prises three modules: Graph Divider, Embeddings Trainer,
and LLM Predictor. The overall architecture of the proposed
STLSP is shown in Figure 2. For training, we adopted a node
training strategy incorporating the structural balance proper-
ties unique to signed networks, ensuring that node embed-
dings effectively reflect these characteristics, as detailed in
section 4.2. After obtaining the embeddings, we prepro-
cess them to make the structural information interpretable
by LLMs through a clustering-based partitioning module that
converts structural data into natural language representations.
Finally, we combine the structural and textual information
using a carefully designed prompt, enabling the LLM-based
prediction module to generate the final sign prediction results.

4.1 Graph Divider

The graph divider splits the graph data into the train and test
sets, as shown in Figure 2(a). The embeddings trainer utilizes
the train set to learn graph representations, and the test set is
delivered to the LLM predictor to infer LSP results.

Specifically, an edge-masking strategy is adopted to parti-
tion the signed network constructed from the dataset into a
train set and a test set. Due to the network topology in the
test set not being a continuous graph, it is not feasible to di-
rectly apply the trained node embedding generation module
to produce structure-balanced node embeddings for the test
set. Therefore, during the processing stage, we ensure that
every node in the test set has been included in the train set and
has obtained its embedding through training. In other words,
during the edge-masking process, we continuously check for
the emergence of isolated nodes (nodes with a degree of 0).
The corresponding edges are deemed unsuitable for masking
if such nodes are detected.

Formally, the signed network is represented as G =
(V,€,X,T). When a candidate edge e = (u,v) € £ is
masked, the edge set £ updates to £’, and the signed network
becomes G’ = (V, &', X, T). Then we define:

d'(u) = degg (u) (D
where d’(u) is the degree of node w in graph G’. Finally, the
overall edge-masking strategy can be summarized as follows:

: / !
H(e) = 1, 1fd(u).>0andd(v)>0
0, otherwise

where H(e) = 1 indicates that the edge e can be masked,
while H(e) = 0 denotes that the edge e must be retained.

4.2 Embedding Trainer

In the embedding trainer module, inspired by SINE [Wang et
al., 2017], we propose a novel loss function to adapt sparse
networks better. Due to the sparsity of edges, relying on traids
to analyze the structure between nodes is computationally ex-
pensive and suboptimal. Therefore, we directly constrain in-
dependent edges instead of constructing triads. Guided by the

s u,v€e (2)
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Figure 2: Overall architecture of the proposed STLSP approach.

structural balance theory, which posits that a triad is balanced
if “the friend of my friend is my friend” and “the enemy of
my enemy is my friend”, we enforce cohesion for positively
linked nodes and separation for negatively linked nodes.

For positive edges, inspired by the structural balance the-
ory, which emphasizes that positively linked nodes should ex-
hibit strong cohesion, we minimize the Euclidean distance be-
tween their embeddings. It ensures that nodes connected by
positive links are drawn closer in the embedding space, re-
flecting their harmonious relationship. The loss function for
positive edges is defined as follows:

Lpos — ||Eu - Ev”2 (3)

where E,, represents the embedding vector of node u, and v
denotes the adjacent node of w.

For negative edges, inspired by the structural balance the-
ory, which emphasizes that negatively linked nodes should
exhibit clear separation, we enforce a threshold-based separa-
tion by penalizing distances shorter than a predefined margin
between the node embedding of u and v. The loss function
for negative edges is defined as follows:

Lieg = max(0,k — |E, — E,|)? 4)

We use the ReLLU function [Kouvaros and Lomuscio, 2021]
to constrain the distance for negative edges to a threshold of k.
When the distance exceeds k, the loss becomes zero, avoiding
unnecessary constraints on distant negative edges. This soft
constraint effectively reduces the influence of noisy edges,
ensuring that the optimization process focuses on closer neg-
ative edges with insufficient distance, thus improving the ro-
bustness of the model. Therefore, the total loss function is
designed as follows:

Ltotal = Lpos + Lneg (5)

The trained node embeddings are inherently designed to re-
flect the principles of structural balance theory, where nodes
connected by negative edges are represented as farther apart
in the embedding space, and nodes connected by positive
edges are closer. This property ensures that the embed-
dings naturally align with the K-means clustering assump-
tion, which groups points that are close in the feature space
while separating those farther apart. Thus, we applied the K-
means [MacQueen, 1967] to partition the embeddings simply
but effectively without requiring more complex approaches.

n

argmin » _ [|E; — Cy, ||? ©6)
=1

Eq. (6) aims to minimize the intra-cluster distance, where C
is the set of cluster centers, and C;, represents the cluster
center of node i. E € R™"*4 where n is the number of nodes,
d is the embedding dimension of the nodes, and E; is the
embedding vector of node i. L = {ly, 13, ..., 1, } is the set of

cluster labels for the nodes.

4.3 LLM Predictor

Here, we will introduce two components of LLM Predictor.
The first focuses on processing structural information into
natural language, and the second addresses prompt design.

Structural Information Processing. When we have the
node embeddings, transforming them into a format that LLMs
can effectively perceive is a significant challenge. To address
this, we propose a simple yet effective module. Specifically,
by comparing the balanced population labels of each pair of
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Figure 3: The general structure of the prompt.

nodes, we assign a special label to the edge connecting them
based on whether their labels match. During the prompt de-
sign phase, this structural information is carefully integrated
with the textual information and then input into the LLMs.
Experimental results demonstrate that this structural informa-
tion can be fully utilized by LLMs, significantly enhancing
the performance of the tasks. The label generation process is
defined as follows. For any pair of nodes (u, v), the label of
the edge &, can be defined as:

ifl, =1,

where the label g(u,v) indicates whether « and v belong to
the same balance group.

same,
different,

@)

Prompt Design. Building on the representation of struc-
tural information g(u,v), we design a carefully tailored
prompt to guide LLMs leveraging structural and textual infor-
mation for prediction tasks. The prompt comprises two key
elements: explicit task instructions and the seamless integra-
tion of multimodal data. The task instructions are designed to
constrain the output format, ensuring that the model outputs
only a prediction of 1 or —1 without irrelevant text, thereby
maintaining clarity and consistency in the output.

Moreover, the prompt integrates the structural balance la-
bels g(u,v) with the text attributes of the edges, providing
the model with a comprehensive context that fuses graph-
theoretic and linguistic perspectives. By specifying a weight
ratio for structural and textual information, the prompt pri-
oritizes the structural cues while allowing the textual data to
complement the decision-making process. Experimental re-
sults demonstrate that the design enhances the interpretability
of predictions and significantly improves the performance of
prediction tasks. It highlights the importance of integrating
multimodal information into Prompt Design Techniques for
signed network reasoning tasks. The general structure of the
prompt is shown in Figure 3. Because a 6:4 weight ratio be-

Dataset #nodes  #poslinks #neglinks % pos
wiki-rfa 11,381 144,451 41,176 77.81%
amazon_software 368,461 285,989 133987  68.09%
amazon_office 3,518,540 4,368,219 829,225  84.04%
amazon_video 1,521,407 1,898,218 453,114 80.72%
amazon_crafts 1,780,025 2,344,185 331,077  87.62%

Table 1: Statistic of the datasets.

tween structural information and textual information causes
excessive interference from structural information, while an
8:2 ratio renders structural information underpowered, a 7:3
weight ratio is chosen. This ratio ensures that structural in-
formation remains useful without interfering with reasoning
when clear semantic information is present.

S Experiment

Extensive experiments were conducted to verify the effective-
ness of the proposed STLSP, focusing on answering the fol-
lowing research questions (RQs):

* RQ1: Does STLSP achieve superior performance in the
LSP task comparing to the state-of-the-art baselines?

* RQ2: Is the performance of STLSP dependent to the
parameter size of LLMs?

* RQ3: Does STLSP effectively incorporate textual infor-
mation for the LSP task?

* RQ4: Does STLSP enhance the reliability of LLM in-
ference in the context of LSP?

5.1 Experimental Settings

Datasets. Five datasets were employed in our experiments,
which are wiki-rfa [West et al., 2014] dataset and four sub-
sets from the Amazon Review Data [Ni et al., 2019]. For
dataset splitting, we set the ratio of edges between the train
and test sets as 8:2, following common configuration in the
LSP task [Huang et al., 2021]. We also ensured that all nodes
in the test set were included in the train set during sampling.
The dataset statistics are shown in Table 1. The proportion of
positive edges was nearly 80%.

Baselines and LLM models. We compare our STLSP with
six LSP baselines divided into two categories. The first
category is the feature-based method, like SLF [Xu et al.,
2019], which relies on explicit feature extraction to model
signed relationships. The second category includes network
embedding-based methods, including SGCN [Derr et al.,
2018], BESIDE [Chen et al., 2018], SDGNN [Huang et al.,
20211, SiGAT [Huang et al., 2019], and RSGNN [Zhang
et al., 2023]. Network embedding-based methods leverage
graph neural networks or embedding techniques to capture
the latent representations of signed graphs, commonly guided
by balance theory, for improving the effectiveness of LSP.

For LLMs, we adopted close-sourced large model GPT-
40 [Cheng et al., 2024] and open-sourced relatively small
models such as Gemma-7B [Team et al., 2024], LLama3-
7B [Dubey et al., 2024] and Mistral-7B [Liu er al., 2023].
Unless otherwise specified, all experiments were conducted
using the STLSP equipped with GPT-4o.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.

Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Categor Method wiki-rfa amazon_software amazon_office amazon_video amazon_crafts Average
gory Acc. Binary-F1 Acc. Binary-F1 Acc.  Binary-Fl Acc.  Binary-Fl Acc.  Binary-Fl Acc.  Binary-Fl
Feature SLF 74.1% 83.4% 66.1% 77.7% 74.0% 84.8% 63.9% 77.2% 74.2% 84.9% 70.5% 81.6%
SiGAT 76.0% 85.1% 73.8% 82.6% 85.9% 92.3% 82.2% 89.9% 90.3% 94.8% 81.6% 88.9%
SGCN 76.2% 86.4% 67.4% 80.0% 81.8% 89.9% 76.7% 86.7% 79.3% 88.3% 76.3% 86.3%
Network BESIDE 75.5% 84.4% 71.1% 81.2% 83.8% 91.1% 81.6% 89.7% 88.5% 93.9% 80.1% 88.1%
mbeddin SDGNN 76.0% 84.9% 78.3% 85.7% 86.4% 92.6% 82.9% 90.3% 90.4% 94.9% 82.8% 89.7%
embedding | RSGNN 76.2% 86.5% 69.6% 82.1% 85.8% 92.4% 82.5% 90.4% 88.8% 94.1% 80.6% 89.1%
STLSP (ours) | 90.5% 90.2% 90.7 % 90.8% 91.7% 92.7% 89.9% 90.8% 94.9 % 95.5% 91.5% 92.0%
- improvement | +14.3% +3.7% +12.4% +5.1% +5.3% +0.1% +7.0% +0.4% +4.5% +0.6% +8.7% +2.3%

Table 2: Evaluation results of STLSP and LSP baselines on five datasets. Acc. is short for accuracy. The best scores in each metric are

highlighted in bold, and the follow-ups are marked with underline.

Evaluation Metrics. Accuracy and Binary-F1 were used as
evaluation metrics. Accuracy reflects the overall correctness
of the model in predicting both positive and negative links,
TruePositives+TrueNegati . .
formally === 200 s— <9922 Binary-F1 provides a
balanced evaluation of predicting positive and negative links,

Precision X Recall
defined as 2 x Precision+ Recall *

Experimental Environment. The experiments were con-
ducted using a workstation running on Ubuntu 20.04. It had
an AMD EPYC 7763 64-core CPU and an NVIDIA GeForce
RTX 4090 GPU. Our STLSP was implemented using Python
(version 3.9.20) with a Pytorch backbone (version 2.4.0).

5.2 Overall Comparison with Baselines (RQ1)

We compared the proposed STLSP method with baseline ap-
proaches across five different datasets, and the results are
presented in Table 2. In the first group, SLF represents a
feature-based approach that primarily relies on explicit fea-
ture extraction methods, such as triadic structures or node
attributes, to model pairwise relationships. However, this
method overlooks the deeper integration of global topolog-
ical features and the complex interactions within signed net-
works, which limits its overall performance. For example,
on the amazon_software dataset, SLF achieves an accuracy
of only 66.1%, significantly lower than the best-performing
methods. Feature-based approaches struggle to capture the
rich structural information in signed networks effectively.

Based on the experimental results, embedding-based meth-
ods generally outperformed SLF, demonstrating their superi-
ority caused by learning latent representations from signed
networks. The SGCN, as a foundational embedding-based
method, shows significant improvements over SLF. For ex-
ample, on the amazon_video dataset, SGCN achieved an ac-
curacy that was 12.8% higher than that of SLF. However,
SGCN’s dependence on local features and simple aggregation
techniques limits its ability to model global relationships.

SiGAT addresses this issue by introducing a sign-aware
graph attention and achieved an accuracy of 73.8% on the
amazon_software dataset. Despite this achievement, it has
difficulties modeling complex interactions, which constrains
its effectiveness. Building on SGCN, RSGNN incorporates a
dynamic denoising mechanism that alternates between opti-
mizing the adjacency matrix and embedding representations.
Nevertheless, RSGNN'’s heavy reliance on local neighbor-
hood aggregation during the embedding process means there
is room for further enhancement.

BESIDE expands on embedding-based approaches by
jointly modeling triangular and bridge-edge relationships. It

excels in datasets with sparse local features, such as ama-
zon_software, where it achieves an accuracy of 71.1%. How-
ever, its performance drops when it comes to tasks that re-
quire modeling strong global contexts. SDGNN introduces
a hierarchical aggregation mechanism that captures global
structural features in signed networks while integrating struc-
tural balance theory to optimize embeddings, effectively bal-
ancing global context and local semantics. These innovations
make SDGNN the best-performing baseline method, achiev-
ing an accuracy of 90.4% on the wiki-rfa dataset. Never-
theless, SDGNN’s limitation lies solely in its dependence on
graph structures. It cannot leverage textual information that
could contain valuable evidence for the LSP task.

Our STLSP combines structural balance theory with thor-
oughly considering global structural information while gen-
erating node embeddings. Additionally, we have innovatively
integrated textual information into our framework. Experi-
mental results demonstrate that STLSP outperforms all base-
line methods across various datasets, achieving the highest
accuracy and Binary-F1 scores. Specifically, on the ama-
zon_software dataset, STLSP attained an accuracy of 90.7%
and a Binary-F1 score of 90.8%, representing a 12.4% im-
provement over SDGNN. Similarly, on datasets rich in tex-
tual information, such as amazon_crafts, STLSP reached a
Binary-F1 score of 95.5%. It further emphasizes the signifi-
cance of incorporating textual information into STLSP. These
results confirm that STLSP outperforms all baseline methods,
highlighting its clear advantage in the LSP task.

5.3 Comprehensive Evaluation of STLSP

Dependency Analysis on LLMs (RQ2). To evaluate the
generalization capabilities, we tested the performance of
STLSP with different LLMs such as GPT-40, Gemma-7B,
LLama3-7B, and Mistral-7B. GPT-4o0, a variant of OpenAlI’s
GPT-4 model, is estimated to have over 100 billion param-
eters designed for complex reasoning tasks. Gemma-7B is
an open-sourced LLM with 7 billion parameters optimized
for efficient language understanding in low-resource environ-
ments. LLama3-7B strikes a balance between performance
and resource consumption. Mistral-7B, another open-sourced
LLM, excels in multilingual tasks that provide high accuracy
in low- and high-resource settings.

As summarized in Table 3, our STLSP framework demon-
strated consistently strong results across all variants, show-
casing its adaptability to LLMs with different scales and com-
putational capacities. These findings underscore STLSP’s
remarkable adaptability to LLMs, rendering it an eminently
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Method wiki-rfa amazon_software amazon_office amazon_video amazon_crafts Average
Acc.  Binary-F1 ~ Acc.  Binary-F1 ~ Acc.  Binary-F1 =~ Acc.  Binary-F1 Acc.  Binary-F1 Acc.  Binary-F1
GPT-40 90.5% 90.2% 90.7% 90.8% 91.7% 92.7% 89.9% 90.8% 94.9% 95.5% 91.5% 92.0%
Gemma-7B | 83.4% 81.5% 82.8% 79.8% 94.8% 93.6% 90.7% 89.2% 96.6 % 95.8% 89.7% 88.0%
LLama3-7B | 86.7% 87.2% 92.2% 92.5% 93.5% 94.2% 92.0% 93.1% 95.2% 95.8% 91.9% 92.6%
Mistral-7B | 82.9% 79.5% 78.8% 72.7% 94.3% 92.7% 89.2% 86.5% 96.3% 95.4% 88.3% 85.4%

Table 3: Evaluation results of STLSP with differenet LLMs on various datasets. Acc. is short for accuracy. The best scores in each metric are

highlighted in bold, and the follow-ups are marked with underline.

Method wiki-rfa amazon_software
Accuracy Binary-F1  Accuracy Binary-F1
STLSP 90.5% 90.2% 90.7% 90.8%
STLSP_w/o_text 64.2% 65.3% 42.1% 44.3%
- difference -26.3% -24.9% -48.1% -46.5%

Table 4: Impact analysis about the textual information on STLSP.
STLSP_w/o_text is a variation of STLSP that does not utilize textural
details, i.e., the first context in the prompt of Figure 3 is omitted.

Il STLSP STLSP_w/o_struct Il STLSP STLSP_w/o_struct

e 284 293 g5 855 857 880 38

Errornum
Errornum

0
20%  30% 40% 60% 20%  30%

Threshold

50% 40% 50%  60%

Threshold

(a) wiki-rfa (b) amazon_software

Figure 4: Impact analysis on LLM reliability of STLSP on the wiki-
rfa and amazon_software networks. STLSP_w/o_struct is a variation
in which graph structures are not utilized, i.e., the second context in
the prompt of Figure 3. Answers with reliability below the threshold
are considered errors. And Errornum indicates the number of errors.

suitable solution for the LSP task across a broad spectrum of
LLM configurations. Notably, the combination with LLama3-
7B achieved the highest scores on most datasets despite hav-
ing fewer parameters than GPT-4o. It indicates that the pro-
posed STLSP can be deployed on a local machine with a
consumer-level GPU to avoid data exposure.

Impact Analysis of Integrating Text (RQ3). To validate
the necessity of incorporating textual information, we com-
pared STLSP with STLSP_w/o_text. As shown in Table 4,
the performance of STLSP dropped significantly when tex-
tual information was removed. Specifically, on the ama-
zon_software dataset, the score difference reached 48.1% in
terms of accuracy. It denotes that STLSP effectively incorpo-
rated edge text, and the textual information contributed enor-
mously based on LLMs for the LSP task.

Impact Analysis on LLM reliability (RQ4). Due to the
probabilistic inherence, LLMs return answers with the high-
est probability, even if the reliability (i.e., confidence) of these
answers is low. To evaluate the reliability of LLM inferences
for the LSP task, we counted the number of low-reliability an-
swers at varying reliability thresholds (20%, 30%, 40%, 50%,
60%), which were injected into the prompts. Figure 4 demon-
strates that our method significantly reduced the number of

—o— amazon_videos -=- amazon_crafts
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Figure 5: Sensitivity analysis results of the clustering parameter K
of STLSP. The Accuracy and Binary-F1 scores for LSP are reported
with varying K values.

low-reliability answers by fusing structure embeddings, im-
proving the inference reliability of LLMs for the LSP task.

Note that the number of errors (Errornum) does not show a
monotonically decreasing trend as the reliability threshold in-
creases. It occurs because LLMs generated new tokens each
time the threshold was adjusted, and the attention mechanism
computed a different weight matrix. As a result, the thresh-
old changes were independent, which explains the lack of a
consistent downward trend in the error count.

Sensitivity Analysis of Clustering K. Sensitivity tests
about the clustering parameter K were executed on two
datasets, and the results are illustrated in Figure 5. The re-
sults show that STLSP can obtain good results under K = 2
and K = 3. In STLSP, the reasonable K value can be set as
2 (or 3), which is determined by the strong (weak) structural
balance theory.

6 Conclusions

In this paper, we proposed STLSP for link sign prediction, in-
tegrating signed networks’ structural and textual information
using LLMs to improve accuracy and reliability. In STLSP,
we design a structure-balanced method to encode and clus-
ter graph structures and convert them into natural language.
Then, through carefully designed prompts, we effectively
combine structures and text as contextual input for LLMs,
achieving state-of-the-art LSP results in terms of effective-
ness, as shown in extensive experimental results. Besides,
we evaluated the reliability of LLMs’ outputs, demonstrating
that the proposed STLSP significantly enhances the reliability
of predictions. Furthermore, verifications on different LLMs
illustrated that STLSP can work well with relatively small-
scale LLMs, such as LLama3-7B. In future work, we plan
to incorporate more prompt engineering techniques [Giray,
2023] to refine prompts further to enhance LLMs’ ability to
understand and infer signed links.
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