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Abstract

Feature generation is a critical step in machine
learning, aiming to enhance model performance
by capturing complex relationships within the data
and generating meaningful new features. Tradi-
tional feature generation methods heavily rely on
domain expertise and manual intervention, mak-
ing the process labor-intensive and challenging to
adapt to different scenarios. Although automated
feature generation techniques address these issues
to some extent, they often face challenges such as
feature redundancy, inefficiency in feature space
exploration, and limited adaptability to diverse
datasets and tasks. To address these problems, we
propose a Two-Stage Feature Generation (TSFG)
framework, which integrates a Transformer-based
encoder-decoder architecture with Proximal Policy
Optimization (PPO). The encoder-decoder model
in TSFG leverages the Transformer’s self-attention
mechanism to efficiently represent and transform
features, capturing complex dependencies within
the data. PPO further enhances TSFG by dy-
namically adjusting the feature generation strat-
egy based on task-specific feedback, optimizing the
process for improved performance and adaptabil-
ity. TSFG dynamically generates high-quality fea-
ture sets, significantly improving the predictive per-
formance of machine learning models. Experimen-
tal results demonstrate that TSFG outperforms ex-
isting state-of-the-art methods in terms of feature
quality and adaptability.

1 Introduction

Feature generation is a critical aspect of the construction of
high-performance machine learning models. High-quality
features can enhance the robustness, generalization capabil-
ity, and interpretability of models [Zheng and Casari, 2018;
Dong and Liu, 2018]. For instance, as Figure 1 shows,
combining weight and height features into a Body Mass In-
dex (BMI) [Obese, 1998] feature can significantly improve a
model’s ability to predict health conditions. As the scale and
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Figure 1: The original dataset is preprocessed and then fed into the
feature generation algorithm. This algorithm creates new features
and produces an enhanced dataset. The enhanced dataset is used for
downstream tasks. Results show that the F1 score of the enhanced
dataset is better than the original dataset.

complexity of data increase, traditional feature engineering
methods often struggle to uncover the complex patterns and
underlying relationships within the data. Consequently, au-
tomatic feature generation techniques, especially those based
on deep learning, have become a focal point of research [He
et al., 2021]. Recently, reinforcement learning has also pro-
vided new ideas for feature generation [Liu et al., 2019;
Wang et al., 2022]. Despite their ability to extract com-
plex features, deep learning methods still face challenges in
adapting to different tasks and achieving efficient optimiza-
tion [LeCun et al., 2015]. This study introduces a two-stage
feature generation framework that integrates pre-training with
reinforcement learning-based fine-tuning to achieve more ef-
ficient and precise feature generation.

The novelty of this framework lies in its staged train-
ing method, which enables stepwise optimization of fea-
ture generation through pre-training and reinforcement learn-
ing fine-tuning. In the first stage of pre-training, we em-
ploy an Encoder-Decoder architecture [Sutskever, 2014],
optimizing the model using cross-entropy loss or mean
squared error loss. The encoder extracts latent infor-
mation from the raw dataset, while the decoder recon-
structs this information into logically coherent sequences
of feature combinations. For example, initial features
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might appear as [V'1,EOS, V2,EOS, V3,STOP], and dur-
ing decoding, more intricate feature combinations like
[+V1,+V2 EOS,—V3,xV1 STOP| are generated. The
goal of this stage is to build a stable initial model for feature
generation.

Upon completing the first stage of pre-training, the second
stage incorporates the Proximal Policy Optimization (PPO)
algorithm [Schulman er al., 2017] from reinforcement learn-
ing to fine-tune the model. This phase dynamically adjusts
the model weights through a reward mechanism tied to spe-
cific downstream tasks, ensuring that the generated features
better align with the requirements of these tasks. Specifically,
the reward value of the generated feature combinations will
be calculated. Based on the reward signal, the model op-
timizes its generation strategy, progressively learning high-
quality feature representations. The PPO algorithm excels at
balancing the magnitude of updates, preventing issues such
as gradient explosion during the training process.

This two-stage training strategy offers several advantages.
In the first stage, the Encoder-Decoder structure generates
features step by step and computes the loss at each step, en-
suring the stability and consistency of the generated features.
In the second stage, the introduction of the PPO algorithm en-
dows the feature generation process with dynamic optimiza-
tion capabilities, enhancing task adaptability.

In summary, this paper introduces a novel feature genera-
tion framework, which leverages an encoder-decoder archi-
tecture integrated with Proximal Policy Optimization (PPO).
The proposed framework enhances feature generation by dy-
namically adjusting the optimization strategy and improving
adaptability across different tasks. Using a two-stage train-
ing process, we address the challenges of feature redundancy
and inefficient exploration in traditional methods. Our main
contributions include:

* Encoder-Decoder Architecture for Efficient Feature
Generation: We propose an encoder-decoder architec-
ture that effectively models the feature generation pro-
cess, allowing for the extraction of meaningful latent
representations from raw data. This ensures high-quality
feature combinations for downstream tasks.

Two-Stage Training with PPO Fine-Tuning: We intro-
duce a two-stage method where pre-training initializes
the model, and reinforcement learning fine-tuning opti-
mizes feature generation based on specific task require-
ments. This allows the framework to dynamically adjust
its strategy and enhance task performance.

Enhanced Adaptability and Efficiency: By incorporat-
ing reinforcement learning and task-specific feedback,
our framework can efficiently generate features tailored
to diverse datasets and models, offering better perfor-
mance and computational efficiency compared to exist-
ing methods.

2 Related Work

Automated feature generation plays a critical role in enhanc-
ing the performance of machine learning models [Domin-
gos, 2012]. Common methods in this field can generally

be divided into expansion-reduction methods and search-
based methods, both aiming to generate meaningful and high-
quality features for predictive modeling.

Expansion-reduction methods generate a large pool of can-
didate features through various transformations and then re-
duce redundancy by selecting the most relevant subset. For
example, ExploreKit [Katz et al., 2016] follows a three-step
workflow: candidate feature generation, ranking, and evalua-
tion. It applies transformation functions to the entire dataset
and evaluates the performance of the predictive model to se-
lect the most valuable features. Similarly, FEADIS [Dor and
Reich, 2012] generates new features by randomly combining
original features with mathematical functions, while Autofeat
[Horn e al., 2020] expands the feature space using nonlinear
transformations before selecting a small subset of features
for inclusion. OpenFE [Zhang er al., 2023] is an efficient
expansion-reduction method that combines FeatureBoost and
a two-stage pruning algorithm, enabling it to rapidly and ac-
curately identify useful new features on large-scale datasets.

Despite their contributions, these methods often face chal-
lenges related to the computational burden and redundancy
caused by the exponential growth of candidate features. As
the number of features increases, selecting truly relevant ones
becomes increasingly difficult, This prompts researchers to
develop alternative approaches that enhance representation
completeness [Wang et al., 2021].

Search-based methods adopt a more targeted method by
using search algorithms to explore potential feature transfor-
mations and combinations. These methods have shown po-
tential in overcoming the limitations of expansion-reduction
techniques. For instance, GRFG [Wang et al., 2022] utilizes
group reinforcement learning to select operations for groups
of features and performs operations between them, effectively
managing feature dependencies. TransGraph [Khurana ez al.,
2018] uses a transformation graph and Q-learning algorithm
to generate higher-order features. DIFER [Zhu et al., 2022]
introduces a feature optimizer within an encoder-predictor-
decoder structure that maps features to a continuous vector
space, optimizes embeddings along the gradient direction in-
duced by the predictor, and recovers better features from the
optimized embeddings via the decoder.

In addition, some studies on multi-label feature selection
have proposed relevance metrics and feature decomposition
strategies to ensure task-specific feature quality while reduc-
ing redundancy [Zhang er al., 2021; Zhang and Gao, 2021;
Li et al., 2024].

In summary, while expansion-reduction methods can cre-
ate a vast array of potential features, search-based methods
offer a more strategic exploration of the feature space [Komer
et al., 2014], potentially leading to more effective and effi-
cient feature engineering.

3 The Proposed Method

3.1 Problem Settings

Given a dataset D = {F, y}, where F represents the original
feature set and y represents the target label set. The feature
set F = {V1, Va,..., Vn} consists of N discrete features.
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Figure 2: Overview of TSFG. In the first phase, the encoder-decoder model is optimized by calculating the loss. In the second phase,
the encoder-decoder model serves as a policy network using Proximal Policy Optimization (PPO) to fine-tune the model based on reward
feedback. This optimizes feature generation to adapt to specific downstream tasks, ensuring that feature generation can efficiently adapt to a

variety of task requirements.

We aim to find the optimal feature set /™ that maximizes
the performance metric of downstream tasks, defined as:

F* = argmax Ma(F',y), (D
f/

where A represents a downstream machine learning model
(e.g., random forests, SVM, or neural networks), and M de-
notes the evaluation metric, such as accuracy, FI-score, or
mean squared error.

For continuous features, mathematical operations include
“absolute value”, “square”, “inverse”, “logarithm”, “square
root”, “cube”, “addition”, “subtraction”, “multiplication”,
and “division”. For discrete features, mathematical opera-
tions include “cross” [Luo et al., 2019] and “addition”.

3.2 Overall Framework

The framework combines reinforcement learning, an
encoder-decoder architecture, and a feature transformation
mechanism, aiming to generate optimized features to address
challenges such as avoiding redundant feature generation and
optimizing feature transformation sequences. The workflow
is based on an encoder-decoder architecture as the main struc-
ture, a pre-training phase for initialization, and a reinforce-
ment learning phase for fine-tuning.

At the core of the framework is an encoder-decoder archi-
tecture that can efficiently explore the feature space and gen-
erate new features. We select the Transformer architecture
[Vaswani et al., 2017] as the encoder-decoder model due to
its superior capability in handling sequential problems [Raf-
fel et al., 2020]. Its self-attention mechanism effectively cap-
tures long-range dependencies and complex patterns within
the data [Bahdanau, 2014]. The encoder processes the in-
put dataset, mapping it into a latent representation that cap-

tures the structure and interdependencies of the original fea-
tures. This latent representation serves as the foundation from
which the decoder generates sequences of feature transforma-
tions.

The decoder is responsible for generating feature transfor-
mation sequences, which are produced step-by-step through
an autoregressive mechanism [Graves, 2013al. The output
of each step depends on the result of the previous step, en-
suring that the feature transformation process proceeds co-
herently and effectively captures the dependencies among
features. To avoid generating invalid features, operations
are combined with features to form a unified token. For
example, operations like +V'1, —V2, etc., are treated as
tokens. The sequence output by the decoder is similar
to [+V1,+V2,EOS, —V3, xV1,STOP], where EOS repre-
sents the end-of-feature token and STOP represents the end-
of-sequence token. In this way, we generate two new features:
V14 V2and —V3 x V1, thereby expanding the feature set
and improving the data representation for downstream ma-
chine learning tasks.

The pre-training phase focuses on initializing the encoder-
decoder model. The encoder extracts latent representations of
the dataset, and the decoder generates feature transformation
sequences based on these representations. These transforma-
tions generate an augmented feature set, which is optimized
by evaluating its performance on a pre-trained MLP model.
The optimization objective is to minimize the cross-entropy
loss or mean squared error loss, thereby enhancing the quality
of feature generation and its adaptability to tasks.

To encourage exploration during training, a sampling
mechanism with temperature scaling is adopted [Guo et al.,
2017]. This mechanism adjusts the sampling probabilities
of certain transformations, enabling the model to explore a
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wide range of feature combinations. The pre-trained encoder-
decoder provides a solid foundation for the reinforcement
learning phase, accelerating convergence and enhancing per-
formance.

After pre-training, the model is fine-tuned using the Prox-
imal Policy Optimization (PPO) algorithm. This phase fo-
cuses on iteratively improving the feature generation pro-
cess to maximize cumulative rewards. The reward function
is based on improvements in the performance of the down-
stream task, such as increased classification accuracy or F1
score. In each iteration of the PPO phase, similar to the pre-
training stage, the encoder generates a latent representation of
the dataset, and the decoder proposes candidate feature trans-
formations based on this representation. These transforma-
tions are evaluated using external performance metrics, and
a reward is calculated for the generated sequence. The PPO
algorithm adjusts the parameters of the encoder-decoder to
maximize the expected reward, balancing exploration and ex-
ploitation.

The PPO fine-tuning enables the framework to dynami-
cally adapt to the data, generating task-optimized feature sets.
This method not only ensures that the generated features en-
hance performance but also maintains their interpretability
and relevance to the problem domain.

3.3 Pre-Training Phase for Encoder-Decoder
Model

The goal of the pre-training phase is to enable the encoder-
decoder model to learn an initial strategy. A new feature set
is generated by the transformation sequence, which is then
processed by the pre-trained MLP to compute predictions and
calculate the prediction loss based on the true labels. By min-
imizing the prediction loss between the generated transfor-
mation sequences and the true labels, the model learns how to
enhance the representations of features. The encoder-decoder
is implemented based on the Transformer architecture.

Input: The input for the pre-training phase includes a
dataset Dyin = {F,y}, where F represents the original fea-
ture set, and y is the target variable. Additionally, a validation
dataset D, is used to evaluate the model’s performance and
generalization ability during training.

QOutput: The output is a pre-trained encoder-decoder
model capable of generating feature transformation se-
quences for creating new features.

The encoder maps the input features F' into a latent space
Z, where the latent representation z € Z captures the struc-
tural relationships among the features. This ensures that the
decoder has a comprehensive understanding of the data, al-
lowing it to extract hierarchical feature representations. For-
mally, this process is expressed as:

z = Encoder(F;6.), 2)
where 6, represents the parameters of the encoder. The la-
tent space Z effectively captures the complex relationships
between features, providing a compact yet informative repre-
sentation for subsequent transformation.

The decoder then receives the latent representation z and
predicts the transformation operation a, which is applied to
the features. This process can be formalized as:

a = Decoder(z;0y), 3)

where 6, represents the parameters of the decoder.

Furthermore, the decoder uses a temperature parameter 7'
to adjust the probability distribution of the output sequence
[Graves, 2013b].

exp(a/T)
Yoiexp(ai/T)’
where T is the temperature parameter, a; represents one of
all possible actions. The temperature parameter controls the
smoothness of the output probability distribution. When the
temperature 7' is high, the generated features become more
random, leading to a more exploratory method. Conversely,
when 7' is low, the model tends to select features with higher
probabilities, resulting in more deterministic outputs.

In this process, the decoder generates new feature transfor-
mation operations. These operations are applied to the origi-
nal training dataset Diin, creating a new dataset D5 . The

dataset DS is then fed into a pre-trained MLP, which out-
puts the predicted probability distribution for each sample’s
class. Finally, the loss between these predicted probabili-
ties and the true labels is calculated to evaluate the quality
of the generated feature transformations. The parameters of
the encoder-decoder model are adjusted through backpropa-
gation to minimize the loss function. The framework inputs
the data into the MLP to compute the loss after generating
a complete feature (i.e., when the EOS token is generated),
rather than waiting to generate the entire transformation se-
quence. This step-by-step evaluation provides timely feed-
back on the effectiveness of each generated feature, thereby
promoting faster convergence during training and further im-
proving the quality of the generated features.

For classification tasks, the cross-entropy loss is defined as:

P(a,z) = )

N
> [yilog(@i) + (1 — i) log(1 — )],
i=1

&)
where N is the number of training samples. y; is the true label
of the ¢-th training sample. ¢; is the predicted probability

for the i-th sample, obtained by the pre-trained MLP after
applying the current generated features to the training dataset

1
N

Lclassiﬁcation =

train
For regression tasks, the mean squared error (MSE) loss is
defined as:

N
1 N 2
Lregression = N Z (yj - yj) ) (6)
j=1
where NV is the number of training samples. 7j; is the pre-

dicted value of the j-th feature. y; is the true value of the
target feature for the j-th sample.

3.4 Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) fine-tuning phase
is designed to refine the feature generation process by lever-
aging reinforcement learning. While the pre-training phase
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provides a strong initialization for the encoder-decoder archi-
tecture, the PPO phase ensures that the model continues to op-
timize feature transformations based on feedback from down-
stream tasks. This phase is critical for dynamically adapting
to specific datasets and tasks. The final new dataset is gener-
ated at this stage.

The objective of the PPO fine-tuning phase is to iteratively
improve the feature generation process by maximizing a re-
ward function that reflects the performance improvement of
downstream tasks. Unlike the pre-training phase, where train-
ing is performed after generating each feature, in the PPO
phase, the model parameters are optimized based on feed-
back from downstream tasks after generating the complete
transformation sequence. This method comprehensively eval-
uates the overall performance of the complete feature set and
the synergistic relationships among features, ensuring that the
optimization direction aligns more closely with the require-
ments of downstream tasks, thereby producing higher-quality
feature sets with greater global coherence.

The feature generation process is modeled as a Markov
Decision Process (MDP). The encoder-decoder serves as the
policy network, with the state, action, and reward defined as
follows:

State (s): The current state represents the feature set.

Action (a): An action corresponds to a transformation op-
eration selected by the decoder. For example, +V7, —V5, V5.

Reward (r): The reward is the performance improvement
of the new dataset in the downstream task. The reward can be
expressed as:

r = AMetric = Metric(Dyew) — Metric(D), ™

where Dy, is the dataset with the newly generated feature
set.

Policy (7): The policy determines which action to apply,
given the current state. PPO is used to iteratively optimize
the policy to maximize cumulative rewards.

The PPO fine-tuning workflow begins with initializing the
encoder-decoder model using the weights obtained during the
pre-training phase. This ensures that the model starts fine-
tuning with a well policy for feature generation.

At each iteration, the encoder generates latent represen-
tations of the current dataset, which are passed to the de-
coder. The decoder samples candidate transformation se-
quences based on the current policy 7y (a|s). The sequence
is applied to the original dataset to generate a new dataset.
The updated dataset is evaluated using a downstream machine
learning model (e.g., a classifier or regressor). The model
calculates the sequence’s reward based on the performance
improvement achieved by the new dataset.

Using the computed rewards, PPO adjusts the policy pa-
rameters 6 to maximize the expected cumulative reward. The
policy objective is defined as:

Lovo(0) = E, [min (rt(a)/it, clip(r(6),1 — €, 1 + E)At)} ,
®
is the probability ratio, A; is the

mo(ai|se)
T (@t]5¢)
advantage function, and ¢ is a clipping parameter to limit the

magnitude of policy updates. To encourage the exploration

where r;(6) =

Algorithm 1 Encoder-Decoder Training with PPO Fine-
Tuning

I: Input: Dataset D = {F,y}, where F =
{WV1,Va, ..., Vn} is the feature set and y is the target la-
bel.

2: Output: Optimized feature set F*.
3: Pre-Training Phase:
Train the encoder-decoder model using a supervised
loss function (cross-entropy or MSE).
For each feature:
ComPUte loss Lclassiﬁcation or Lregression~
Backpropagate and update model parameters.
Store the best model with minimal validation loss as
the initialization for PPO fine-tuning.
9: PPO Fine-Tuning Phase:
10: For each iteration ¢t = 1 to Tpax:
11:  Sample transformation operations a from the policy
mo(als).
12:  Apply transformations to D to generate a new feature
set D"V,
13:  Evaluate the performance of D"V on downstream task
using a performance metric (e.g., accuracy, FI-score).
14:  Compute reward r based on the performance improve-
ment:

=

AN

r = Metric(D"") — Metric(D)
15:  Compute PPO objective:

Lyvo(0) = Eq [min (rt(H)At, clip(re(6),1 — ¢, 1+ e)At)]

16: End for PPO Iterations

of diverse transformations, an entropy regularization term is
added to the PPO objective [Cai er al., 2023]. This term
prevents the policy from converging prematurely to subop-
timal solutions by promoting randomness in action selection.
The process of sampling, evaluation, and policy updates is
repeated for a predefined number of iterations or until con-
vergence criteria are met.

The PPO fine-tuning phase offers several advantages. Sta-
bility is achieved through PPO’s clipping mechanism, which
ensures stable training by limiting large updates to the policy.
The reward-driven method allows the model to dynamically
adapt to specific datasets and tasks.

4 Experiments

4.1 Experimental Setup

Data Description. We conducte experiments on 13 datasets
from UCI [Public, 2024b], Kaggle [Howard, 2024], and
OpenML [Public, 2024al, LibSVM [Lin, 2024], comprising
9 classification tasks and 4 regression tasks. Table 2 shows
the statistics of the data.

Evaluation Metrics. For classification tasks, we use FI-
score, accuracy, and precision to evaluate the dataset. For re-
gression tasks, we use 1-relative absolute error (1-RAE) and
R? to evaluate the dataset. The equation for 1-RAE is as fol-
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Datasets ACC F1-Score Precision
classification | Base = GRFG DFS  OpenFE DIFER TSFG Base GRFG DFS  OpenFE DIFER TSFG Base GRFG DFS  OpenFE DIFER TSFG
australian 0.8613 0.8759 0.8467 0.854 0.8467 0.8832 | 0.8613 0.8757 0.8466 0.854 0.8467 0.8832 | 0.8613 0.8765 0.8472 0.8544  0.8475 0.8832
credit_g 0.71 0.775 0.725 0.71 0.78 0.785 | 0.698 0.7756 0.7257 0.7116  0.7773 0.7817 | 0.6913 0.7763 0.7266  0.7133  0.7754  0.7795
diabetes 0.719 0719 0.7059  0.732  0.7273 0.7582 | 0.7062 0.7115 0.6954 0.7233  0.7179 0.7503 | 0.7182 0.7151 0.7021 0.73 0.7182  0.7583
5 0.795 0.76  0.7725 0.805 0.7925  0.825 | 0.7943 0.7602 0.7719 0.8034 0.7913  0.824 | 0.7956 0.7623 0.7726 0.888 0.7945  0.8273
hepatitis 0.8387 0.8387 0.871 0.8387  0.9355 0.871 | 0.8214 0.8215 0.8628 0.8342  0.9355 0.8762 | 0.8289 0.8289 0.8655 0.8318  0.9355 0.8895
ionosphere | 0.9143 0.9 0.9286 09143 09143 0.9286 | 0.9125 0.8986 0.9266 09114 09126 0.9267 | 0.9176 0.9008 0.9359 0.9246 09176 0.9359
NPHA 0.4577 0.3803 03943 04225 04155 0.4718 | 04465 0.3914 03898 0.4199  0.4003 0.4599 | 0.4418 0.4091 0.3859 0.418 0.3896  0.4534
Pimalndian 0.719  0.7190 0.7059  0.732 0.7272  0.7321 | 0.7062 0.7115 0.6945 0.7233  0.7179 0.7111 | 0.7182 0.7151 0.7021 0.73 0.7182  0.7461
seismic 09167 09176 0.9205 0.9186 0.9201 0.9205 | 0.8854 0.8822 0.8936 0.8896  0.8896 0.8961 | 0.8793 0.8723 0.8965 0.889 0.9076  0.8968
1-RAE R?
regression Base GRFG DFS OpenFE DIFER TSFG | Base GRFG DFS  OpenFE DIFER TSFG
Openml_582 | 0.6551 0.5644  0.54 0.6117  0.6128 0.6612 | 0.849 0.7946 0.7735 0.8394 0.8147 0.8556
Openml_595 | 0.5724 0.4327 0.5585 0.6067 0.6193 0.6162 | 0.7636 0.6825 0.8077 0.8385 0.8444 0.8114
Openml_637 | 0.534 0.5407 0.5303 0.4631  0.5409 0.5489 | 0.7326 0.7708 0.7709 0.6718  0.7404 0.7444
Openml_639 0 0.138 0 0 0 0.1981 0 0.1104 0 0 0 0.1926

Table 1: Overall Performance. In this table, the best and second-best results are highlighted in bold and underlined fonts respectively. We
evaluate classification tasks using FI-score, accuracy, and precision, and regression tasks using 1-RAE and R?. The higher the value, the

better the quality of the transformed feature set.

Datasets C/R #Samples #Features
australian C 690 14
credit_g C 1000 21
diabetes C 768 8
5 C 267 44
hepatitis C 155 19
ionosphere C 351 34
NPHA C 714 14
Pimalndian C 768 8
seismic C 210 8
Openml 582 R 500 25
Openml 595 R 1000 10
Openml_637 R 500 50
Openml 639 R 100 25

Table 2: Dataset Information.

lows:
n
> i lyi — yi |

ZZL:l |y1 - y7n| 7

y; is the actual target value of the i-th observation, y; is the
predicted target value of the i-th observation, and y,, is the
mean of all actual target values.

Baseline Methods. We compare our method with 5 widely
used feature generation methods, as well as random genera-
tion and feature dimension reduction methods: (1) Base: us-
ing the original dataset without feature generation. (2) GRFG
[Wang et al., 2022]: iteratively generates new features and
reconstructs an interpretable feature space through group-
group interactions. (3) DFS [Kanter and Veeramachaneni,
2015]: an expansion-reduction method that first expands and
then selects feature, automatically generated features for the
dataset. (4) DIFER [Zhu et al., 2022]: Performs automated
feature engineering in a continuous vector space, introduc-
ing an encoder-predictor-decoder to optimize features. It op-

1—-RAE=1— )

timizes embeddings along the gradient direction and recov-
ers improved features from the optimized embeddings. (5)
OpenFE [Zhang er al., 2023]: Offers expert-level automated
feature generation by integrating novel enhancement meth-
ods and a two-stage pruning algorithm, effectively identifying
significant features.

Hyperparameter Settings. We utilize the Adam optimizer
[Kingma and Ba, 2015] to optimize the PPO algorithm, with
a learning rate set to 1 x 10~%. The clipping parameter ¢
for PPO is set to 0.2, and an entropy coefficient of 1 x 10~4
was applied to promote exploration. The number of PPO it-
erations is 10. The split ratios for the training set, validation
set, and test set are 0.6:0.2:0.2. The encoder-decoder model
incorporated 8 attention heads, with an embedding vector di-
mension of 128 and a model hidden layer dimension of 128.
The maximum sequence length for feature transformations
was set to 100. During pre-training, a temperature scaling pa-
rameter 7 ranging from 0.1 to 1 is used to balance exploration
and exploitation.

4.2 Overall Comparison

In this experiment, we compare the performance of TSFG
and baseline models for feature transformation. We evaluate
classification tasks using FI-score, accuracy, and precision,
and regression tasks using 1-RAE and R2. Table 1 shows the
comparison results. We can see that in most cases, TSFG per-
forms the best. By integrating the pre-training and fine-tuning
stages, TSFG can accurately capture the internal patterns of
the features, thereby identifying the optimal feature space. In
conclusion, this experiment demonstrates the effectiveness of
TSFG in feature transformation.

4.3 Ablation Study

To evaluate the contribution of each component in our frame-
work, we perform ablation experiments. This experiment
aims to verify whether each component of our method in-
deed has a positive impact on the final results. Therefore, we



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

have developed two variants: (1) No Pre-Training: The model
is trained without the pre-training phase. This variant is re-
ferred to as “TSFG+”. (2) No PPO Fine-Tuning: The model
is evaluated without reinforcement learning fine-tuning. This
variant is referred to as “TSFG#”.

As shown in Figure 3, the results indicate that pre-training
and PPO fine-tuning contribute significantly to the overall
performance.
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Q
£o.78
O

§ TSFG#
go.m l gms l .
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Figure 3: Results of ablation studies on different datasets.

4.4 Runtime Comparison

As shown in Table 3, we compare the runtime efficiency
of the proposed framework with baseline methods. Despite
incorporating reinforcement learning, our method achieves
competitive runtime efficiency due to the use of pretraining.
Compared with GRFG and DIFER, both of which use deep
learning methods, the proposed method strikes a balance be-
tween computational cost and performance improvement.

Datasets GRFG DFS OpenFE DIFER TSFG
australian 458 1 10 1310 92
credit_g 598 1 25 1335 114
diabetes 315 1 10 1950 104
5 1655 5 55 3567 129
hepatitis 575 1 8 4000 114
ionosphere 1192 2 8 2217 130
NPHA 704 2 9 1573 53
Openml_582 1533 7 10 4615 70
Openml_637 2657 2 11 7136 102
Openml 639 553 2 19 2774 73
Pimalndian 306 2 9 2103 103
seismic 704 2 14 2160 139

Table 3: Time cost comparisons with baselines, in seconds.

4.5 Comparison on Different Downstream Tasks

To evaluate the adaptability and effectiveness of the pro-
posed framework, we compare its performance across differ-
ent downstream machine learning models, including Random

Forest, XGBoost, Support Vector Machines (SVM), and Cat-
Boost (CAT). The experiment is conducted on the diabetes
dataset.

As shown in Table 4, the proposed framework performs
well across different downstream models. This highlights the
framework’s ability to generate high-quality features whose
effectiveness is not dependent on the complexity of the task
or the choice of downstream model. Furthermore, it demon-
strates the framework’s adaptability to various modeling re-
quirements and its potential for broad applications in the field
of feature generation.

RF XGB SVM CAT
Base 0.7062 0.7276 0.6829 0.7469
GRFG 0.7115 0.7478 0.7059 0.7387
DFS 0.6945 0.755 0.6603 0.7335
OpenFE | 0.7233 0.743  0.697 0.7115
DIFER | 0.7179 0.7306 0.6893 0.7658
TSFG 0.7602  0.753  0.7275 0.7693

Table 4: Performance comparison of different downstream models.

4.6 Effectiveness of Generated Features

We evaluate the quality of the generated features by analyz-
ing their importance in downstream models. Feature impor-
tance scores from tree-based models (e.g., Random Forest)
are used to measure the contribution of generated features.
Figure 4 shows that the generated features have high im-
portance scores, often surpassing original features, indicating
their effectiveness in capturing complex relationships in data.
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Figure 4: Feature importance analysis on different datasets.

5 Conclusion

In this paper, we propose a novel automated feature genera-
tion framework that integrates reinforcement learning with a
Transformer-based encoder-decoder architecture. The frame-
work addresses the challenges of feature redundancy, ineffi-
cient exploration of the feature space, and adaptability to di-
verse datasets and tasks. Our method dynamically generates
high-quality features, enhancing the performance of down-
stream machine learning models. Extensive experiments on
various datasets validate the effectiveness of the proposed
framework. The framework provides a solid foundation for
advancing automated feature generation.
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