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Abstract

Few-shot knowledge graph reasoning (FS-KGR)
aims to infer missing facts in knowledge graphs us-
ing limited data (such as only 3/5 samples). Ex-
isting strategies have shown good performance by
mining more supervised information for few-shot
learning through meta-learning and self-supervised
learning. However, the problem of insufficient
samples has not been fundamentally solved. In
this paper, we propose a novel algorithm based on
adversarial learning for Enhancing Negative sam-
ples in few-shot scenarios of FS-KGR, termed FS-
KEN. Specifically, we are the first to use GAN to
conduct data augmentation on FS-KGR scenario.
FS-KEN uses policy gradient GANs for negative
sample augmentation, solving the gradient back-
propagation issue in traditional GANs. The gen-
erator aims to produce high-quality negative enti-
ties. while the objective of the discriminator is to
distinguish between generated entities and real en-
tities. Comprehensive experiments conducted on
two few-shot knowledge graph completion datasets
reveal that FS-KEN surpasses other baseline mod-
els, achieving state-of-the-art results.

1 Introduction

Knowledge graphs (KGs) structure extensive, multi-
relational real-world human knowledge using heterogeneous
graph formats [Liang et al., 2024; Zhang et al., 2023;
Chen et al., 2024]. Such information is stored as triplets
(head entity, relation, tail entity), where relation signifies
relations. KGs are instrumental in numerous applications,
including recommendation systems [Wu et al., 2024b;
Wu et al., 2024al, medical recognition [Jiang et al., 2023],
financial analysis [Viswanathan and Singh, 2023], and
question answering [Saxena et al., 2020].

However, due to the complexity and diversity of relation-
ships in the human world, KGs have the inherent property
of being incomplete [Wu et al., 2023; Chen et al., 2023;
Chen et al., 2025]. To improve the quality and usability of
KGs, it is necessary to complete the missing facts based on
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Figure 1: Illustration of the long-tail distribution of KGs.

existing data. This task is termed knowledge graph reason-
ing (KGR) [Luo er al., 2025; Li et al., 2025]. Although
various methods have achieved good performance in solv-
ing KGR tasks, the performance of these methods is heav-
ily dependent on sufficient labeled data. However, real-world
knowledge graph data often has a long-tail distribution, that
is, a few relations contain sufficient triples, while most re-
lations contain too few triples. As shown in Figure 1.A, in
the FB15K237 dataset, the number of triples corresponding
to more than 60% of the relations only accounts for 10% of
the total number of triples. In addition, the knowledge graph
is dynamically changing and constantly updated. As shown
in Figure 1.b, new entities and relations may be continuously
added to the knowledge graph over time, and the sample size
is small. When the data distribution is imbalanced, traditional
methods will produce performance deviation, overfitting the
head class data and ignoring the learning of the tail class,
which will hinder performance improvement. Therefore, in-
vestigating the application of few-shot learning techniques in
knowledge graph reasoning holds substantial practical value
and relevance in contemporary research.

Current approaches of FS-KGR are predominantly divided
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into two main groups, i.e., techniques based on meta-learning
and those utilizing self-supervised learning. Specifically,
meta-learning-based approaches like GMatching [Xiong et
al., 2018] and FSRL [Zhang er al., 2020] seek to develop dif-
ferentiable metrics that expand the distance between support
sets and negative query triplets while reducing the proximity
from positive query triplets. Furthermore, Att-FMetric [Sun
et al., 2021] incorporates attention-based neighborhood ag-
gregation and path encoding to predict long-tail relationships,
while MetaR [Chen et al., 2019] trains a meta-learner with
limited instances to optimize the task-specific learner. How-
ever, these approaches rely heavily on manually crafted meta-
training tasks, incurring significant human labor costs. As a
more effective learning paradigm, self-supervised pretraining
has demonstrated powerful learning with few-shot samples
in other domains [Li et al., 2024; Li et al., 2023] but has
been less applied in FS-KGR tasks. The most representative
method is CSR [Huang et al., 2022], which learns structural
information through subgraph mining, achieving satisfactory
performance. Although both types of methods have achieved
satisfactory performance, they essentially mine richer super-
vised information from a small amount of labeled data, and do
not fundamentally solve the class imbalance problem caused
by a long-tailed distribution. In addition, although the self-
supervised-based paradigm does not require the construction
of meta-training tasks, it still requires the manual construction
of meta-testing tasks, which is time-consuming and laborious
in real-world application scenarios.

To address these challenges of insufficient sample data,
various data augmentation strategies have been proposed in
other fields such as computer vision [Kim and Hwang, 2022]
and natural language processing [Liao er al., 2022], among
which the Generative Adversarial Network (GAN) has been
proven to be an effective method. However, to our best
knowledge, GAN has not been extended to FS-KGR tasks.
To fill this gap, we introduce GAN to increase the number
of samples in FS-KGR tasks. However, triplets reflect real-
world facts in KGs, thus augmenting data for a specific rela-
tion involves fabricating entities and facts, which rules out
direct positive sample enhancement within the knowledge
graph. To tackle this challenge, we focus on the negative
augmentation, which is crucial to the hinge loss in most KGR
models. Therefore, we proposes a FS-KGR method based
on adversarial learning for negative sampling. Specifically,
the generator and discriminator aims to generate high-quality
negative entities jointly. Furthermore, to address the dis-
crete sampling issue, we combine policy gradient theory with
GAN. Finally, we integrated FS-KEN into the latest baselines
to verify its effectiveness on two datasets. Specifically, the
main contributions of our paper include three aspects:

* We propose a novel FS-KGR method, termed FS-KNE,
which leverages adversarial learning for negative aug-
mentation. To the best of our knowledge, we are the first
to address the class imbalance issue arising from long-
tail distributions through data augmentation within the
FS-KGR scenario.

» To overcome the limitation of traditional GANs that can-
not backpropagate gradients to the generator during dis-

crete sampling, we introduce a reinforcement learning
mechanism, designing a policy gradient GAN for dis-
crete data production, ensuring the creation of high-
quality negative entities.

 Extensive experiments on two FS-KGR datasets demon-
strate the superior performance of FS-KEN in the task
of FS-KGR task.

2 Related Work

2.1 Few-shot Knowledge Graph Reasoning

Meta-learning Based Knowledge Graph Reasoning

As an efficient learning paradigm, the meta-learning
paradigm achieve knowledge transfer to new tasks through
carefully designed meta-tasks. To tackle the issue of lim-
ited data availability in few-shot learning scenarios, a signifi-
cant number of FS-KGR approaches have embraced the meta-
learning framework as their primary methodology. As the
first model of FS-KGR, GMatching [Xiong ef al., 2018]based
on metric learning, which obtains embedding representa-
tions through neighborhood structures and uses an LSTM
to match the embeddings with the target, subsequently pro-
ducing similarity metrics that quantify the resemblance be-
tween the query triplet and the reference dataset. FSRL
[Zhang et al., 2020] demonstrates proficiency in extracting
insights from diverse graph configurations and synthesizing
the feature representations of few-shot instances, assigning
different weights to neighborhood information through a het-
erogeneous neighbor decoder. FAAN [Sheng et al., 2020]
incorporates an advanced approach to analyze the evolving
characteristics of both entities and relations. By employ-
ing an attention-based framework, it effectively identifies and
adapts to the shifting attributes that vary with distinct oper-
ational contexts. Furthermore, MetaR [Chen et al., 2019]
enhances entity embeddings using neighborhood information
by adopting a meta-learning framework, which includes gra-
dient meta-learning and relation meta-learning, to perform
FKGR tasks, effectively improving the performance. How-
ever, the performance of meta-learning-based methods relies
heavily on hand-designed meta-tasks. The construction pro-
cess of meta-tasks is time-consuming and laborious, which
hinders further generalization of the model.

Self-supervised Based Knowledge Graph Reasoning

In recent years, self-supervised learning has attracted sig-
nificant attention in various fields such as computer vi-
sion [Dosovitskiy et al., 2020], natural language process-
ing [Brown er al., 2020], graph learning [Yu et al., 2024;
Liu et al., 2024], and knowledge graph representation learn-
ing [Meng er al., 2024b]. Inspired by their success, some FS-
KGR methods have been designed powerful self-supervised
pre-training objectives without the need to construct meta-
tasks, significantly improving the performance of FS-KGR
tasks. Concretely, CSR [Huang et al., 2022] is based on
the theory of hypothetical induction, which represents the
few-shot relations through the maximal common subgraph,
and ultimately transforms the few-sample learning reasoning
into an inductive relational reasoning task. SARF [Meng et
al., 2024a] proposed an aliasing relation-assisted mechanism,
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Figure 2: An illustration of the FS-KEN. The FS-KEN framework includes two modules: a GAN backbone network and a self-supervised

learning network.

which mines aliasing relations from head relations that are se-
mantically similar to the target long-tail relations. Although
these approaches have achieved satisfactory performance due
to the mining of more supervision information, the class im-
balance problem caused by the long-tail distribution has not
been fully solved.

2.2 Few-shot Data Augmentation Strategy

The few-shot data augmentation strategy aims to solve the
class imbalance challenge caused by the long-tail distribu-
tion and provide sufficient and high-quality samples for train-
ing. A large number of methods have been proposed recently.
Specifically, H-SMOTE [Chao and Zhang, 2023] proposed a
new paradigm based on the reasonable and stable data aug-
mentation. ALP [Kim ef al., 2022] proposes a novel text
augmentation method that increases the diversity of sentence
structure and word choice in sentences while preserving se-
mantic content. CDE-GAN [Chen et al., 2021] utilized gener-
ative adversarial networks to try to generate high-quality neg-
ative samples for novelty detection. Although these strategies
are considered effective, It is difficult to perform data aug-
mentation for the KGs since the data in the KGs is factual.

3 Methodology
3.1 Preliminaries

A knowledge graph can be conceptualized as a directed net-
work structure consisting of three fundamental components:
a collection of entities denoted as E = {ej, ea, ..., e, }, a set
of relationships represented by R = {ry,r2,...,7n}, and a
series of triplets 7. Each triplet within this framework is
structured as an ordered tuple (h,r,t), where h and ¢ are el-
ements of I, and r belongs to R, signifying the head entity,

tail entity, and their relations, respectively. For a incomplete-
ness triplet ¢; € T, where t; = (h,r,?) or t; = (?,r,t)
ort; = (h,?,t), which has a missing entity/relation, knowl-
edge graph reasoning aims to infer the missing entity/relation
based on existing facts 7.

Compared with the conventional knowledge graph reason-
ing, few-shot knowledge graph reasoning refers to the task
of reasoning over a knowledge graph where the number of
labeled triplets associated with a particular relation is lim-
ited. In such scenarios, the goal is to leverage the limited
number of labeled examples to generalize to other unseen
triplets involving the same or similar relations. Formally, let
S = {(hk,tr) | (hg,r tr) € T,r € R} denote a set of entity
pairs (hg, tx) associated with a specific relation » within the
triplet set 7', the goal of the few-shot knowledge graph com-
pletion is to predict triplets for the under-sampled relation 7.

3.2 FS-KGR Framework

The FS-KGR based on adversarial learning for negative sam-
pling is shown in Figure 2. Specifically, the FS-KEN algo-
rithm consists of two modules, i.e., a GAN backbone network
and a self-supervised learning network. The GAN backbone
network aims to generate high quality negative samples for
the training process. Specifically, it takes instances in the
support set as positive samples and generates high-quality
negative samples through a policy gradient GAN. The self-
supervised learning network try to learn the representation of
few-shot relations. Concretely, it inputs positive and nega-
tive samples to extract subgraphs and then reconstructs the
maximum common subgraph in these subgraphs using a gen-
erative self-supervised method. The detailed process of each
module of FS-KEN is introduced below.
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GAN Backbone Network

In our FS-KEN framework, both the generator and discrim-
inator are built upon knowledge graph embedding (KGE)
models, utilizing softmax probabilities to represent the likeli-
hood of each entity. Specifically, the generator is designed to
produce high-quality negative entities by leveraging feedback
from the discriminator. These rewards guide the generator in
generating negative samples that align more closely with the
underlying structure of the knowledge graph. Conversely, the
discriminator is tasked with encoding the graph, integrating
both true and generated negative entities, and evaluating the
quality of the generated samples.

The generator aims to minimize the discrepancy between
the negative entities it generates and the true entities in the
knowledge graph to ensure that the generated negative sam-
ples resemble realistic entities, rather than easily distinguish-
able false ones. Meanwhile, the goal of the discriminator is
to minimize the hinge loss between the target triplets and the
generated negative triplets, which can ensure the discrimi-
nator can effectively differentiate between true and negative
samples, thereby motivating the generator to produce nega-
tive samples that are increasingly difficult to distinguish from
true ones. During the training process, the generator and dis-
criminator undergo alternating training.

For a positive triplet T}, € T', we first define the probabil-
ity distribution of the generator to produce a negative triplet
as pe(T,|T},), where T,, denotes the negative triplet. After
that, a set of negative triplets {7, } will be generated by sam-
pling. Furthermore, the scoring function for the discriminator
is denoted by fp (7). We employ the knowledge graph em-
bedding model as fp(T") to learn embeddings from few-shot
data. Finally, the discriminator tries to minimize the margin-
based loss function, which is defined below:

Lp= Z [fD(Tp)_fD(Tn)"‘Vh

(h,rt)eT
Tn ~ PG (Tn | Tp)a (1)

where [-]* denotes the hinge loss function, while  is a hyper-
parameter representing a fixed margin. The triplet 7, rep-
resents a negative triplet, generated by replacing one of the
head or tail entities of a positive triplet with an entity ran-
domly selected from the KG. Formally, T,, € {(W/,r,t)|h €
E}YU{(h,rt"|t' € E}.

The goal of the generator is to optimize the anticipated
value of the negative distance below:

Lo= Y E[-fp(Tn) 2
(h,rt)eT
(T) ~pa (Tn | Tp) - 3

However, this process involves discrete sampling steps, mak-
ing it difficult to compute gradients through direct differentia-
tion. Drawing inspiration from reinforcement learning, which
selects optimal actions from a discrete action space accord-
ing to a policy, we conceptualize the Generative Adversarial
Network (GAN) as an agent. In this framework, the entity
sampling process is modeled as the agent’s behavior of sam-
pling from the discrete action space, effectively addressing
the challenges associated with gradient computation.

Specifically, a policy gradient [Sutton er al., 1999] genera-
tive adversarial network (PG-GAN) is employed to derive the
gradient of L with respect to the generator parameters:

VGLG - Z ]E(T,L)NPG(TH‘TP)
(h,r,t)ET

[_fs (Tn) vG IngG (Tn | Tp)]

1
= Z N Z
ToeT ~ (Ti)~mg(Tal|Tp),i=1...N

[_fs (Tn) VG' 1ngG (Tn ‘ Tp)] (4)

Where the approximate sign indicates that the expectation
has been feasibly approximated through sampling. Therefore,
the gradient of L can be calculated, and optimization can be
performed using gradient-based methods.

For the PG-GAN framework, we further explain the conno-
tation by analogy with RL. In the context of RL terminology,
the generator is analogous to the agent, while the discrim-
inator corresponds to the environment. The set of positive
triples T}, defines the state space, and the sampling proba-
bility m (T, |T,) represents the policy. The set of negative
triples 7,, constitutes the action space, and the final score
assigned to the negative sample serves as the reward. In
our model, the generator interacts with the environment, tak-
ing actions and evolving to maximize the cumulative reward.
Note that in contrast to the conventional RL framework where
an agent may take multiple actions within a single episode,
our agent takes only one action in each episode. This distinc-
tion arises because the agent’s action does not influence the
state, thereby limiting the interaction to a single action at each
step.

Self-Supervised Learning Network

The self-supervised learning framework is designed to iden-
tify the subgraph connection patterns associated with specific
few-shot relations for the purpose of few-shot relation rea-
soning. Note that the subgraph connection pattern refers to
the largest common subgraph within a set of neighborhood-
closed subgraphs, which are sampled based on triplets con-
taining the same relation. Specifically, the self-supervised
learning framework consists of two main components, i.e.,
the enclosing subgraph construction module and the self-
supervised backbone network.

Enclosing Subgraph Construction Module: Following
the existing work [Teru er al., 2020], we hypothesize that cru-
cial evidence for the target relation is located in the connec-
tions between the two target entities. Numerous prior studies
have extracted closed subgraphs around triplets to facilitate
relational reasoning [Wang et al., 2021]. In our paper, we
adopt the GralL-based model [Teru er al., 2020] to sample
the enclosing subgraphs. Concretely, entities of each triplet
within the support and query sets are denoted as N, and N;.
Subsequently, a closed subgraph is formed by intersecting
these neighbor sets, after which any isolated nodes that are
more than k hops away from either target entity are removed.

Self-Supervised Backbone Network: The self-supervised
backbone network learns the maximal common subgraph fea-
tures for few-shot relations within the framework of a genera-
tive self-supervised paradigm, which comprises three distinct
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Dataset #E #R #T Tasks
NELL-One 68544 291 181109 11
FB15K-237 14543 200 268039 30

Table 1: Statistics of all two datasets

stages. Firstly, the module applies a soft edge mask in order
to extract the maximal common subgraph from all subgraphs
in the support set as the representative subgraph of the target
few-shot relation. After that, the representative subgraph is
encoded into the vector space over the graph encoder f.(-).
Finally, the features of the representative subgraph are de-
coded and reconstructed by integrating them with the query
subgraph. Consequently, the overarching objective of the net-
work is to train a reconstructor R that ensures the recon-
structed representative subgraph closely resembles the origi-
nal subgraph before encoding. The objective function for this
process is formalized as follows:

L, = CE (M, R¢ (G, f.(G,M))), 5)

where M : [0, 1]® represents the mask matrix of the inductive
hypothesis subgraph, C'r represents the graph reconstructor,
which has the same form as the graph encoder f.(-), G rep-
resents the target subgraph. We expects the distance between
the mask matrix of the hypothesis subgraph before and after
reconstruction to be minimized in the vector space.

To enable collaborative training with f., we introduce a
contrastive loss function, denoted as L,:

Z; 1 (ej x e'p)

\/Zjlj \/Zle

Z] 1(ej><e)

Vet x [T e

Here, e; = f.(G, M) represents the embedding of the graph
G masked by M, while eP and e™ correspond to the embed-
dings of the positive and negative graphs, respectively.

Therefore, combining the discriminator loss from Section
3.2.1, the overall optimization objective of FS-KEN is:

L:A1.£T+)\2'£67 (®

where A\ and \s are hyper-parameters. Note that in our target
function, two hyper-parameters are utilized due to the differ-
ent dimensions of the loss terms on different datasets. Fur-
thermore, the proposed generative adversarial negative sam-
ple enhancement strategy is a plug-and-play module, and the
choice of the self-supervised backbone network is robust.

L= max[ (6)

+ ’v] . @)

4 Experiments and Discussion

This chapter elaborates on the experimental framework
through three critical dimensions: datasets, assessment cri-
teria, implementation details. Subsequently, an extensive se-
quence of empirical investigations is undertaken to substanti-
ate the efficacy of the newly developed FS-KEN framework
by addressing the following research questions.

* Q1: Superiority. Does FS-KEN demonstrate supe-
rior performance when integrated with existing few-shot
knowledge graph reasoning models?

* Q2: Effectiveness. Does the proposed model exhibit ac-
ceptable training efficiency? Is FS-KEN robust to varia-
tions in its components? How do these individual mod-
ules contribute to the overall performance?

* Q3: Sensitivity. How sensitive is the performance
of FS-KEN to hyper-parameters, especially the graph
encoder loss weight (A1) and the reconstructor weight
(A2)?

* Q4: Case Study. Does the proposed FS-KEN gener-
ate high-quality negative triplets during the experimental
evaluation?

In addressing the aforementioned questions, we conduct a
range of comprehensive experiments. Specifically, answers
of Q1 to Q4 are provided in Section 4.2 to Section 4.4.

4.1 Experiment Settings

Datasets and Evaluation Metrics

In order to show the effectiveness of the proposed FS-KEN,
we assessed the FS-KEN on two real-world few-shot datasets,
i.e., NELL-One [Mitchell et al., 2018] and FB15K-237 [Bol-
lacker et al., 2008]. For the NELL-One, the meta-evaluation
and meta-test splits provided in the dataset were used for eval-
uating and testing few-shot tasks. We also focused on re-
lations containing between 50 and 500 triplets as few-shot
tasks. In the case of FB15K-237 [Bollacker et al., 2008],
a minority ratio of 7:30 was selected for the target few-shot
evaluation and test tasks. Table 1 presents the statistical de-
tails of all three datasets.

The performance of the models is evaluated using tradi-
tional ranking metrics, namely mean reciprocal rank (MRR)
and Hits@h. In this paper, the value of h are set to 1, 5, and
10. Moreover, each test triplet is compared with 50 possible
negative triplets.

Implementation Details

The FS-KEN experiments were primarily executed using the
PyTorch [Paszke ef al., 2019] library and were performed on
a single NVIDIA GeForce 3090Ti. Furthermore, the few-shot
instance count K was configured to 3. In practice, the meth-
ods presented in we can be generalized to any K. For the step
of generating closed subgraphs, we generate 2-hop subgraphs
in NELL-One and 1-hop subgraphs in FB15K-237. We em-
ployed AdamW with a learning rate of 1 x 10~°. Moreover,
the training epochs of model were set to 5000, and the train-
ing batch size was set to 8. Various knowledge graph embed-
ding models were employed for the generator to validate its
robustness (refer to Table 3).

4.2 Performance Comparison (RQ1)

To highlight the effectiveness of the model in the FS-KGR
task, this chapter compares the proposed model with 13 base-
line models on two datasets. These include 7 traditional KGR
models, 3 meta-learning-based FS-KGR models, and 3 gen-
erative self-supervised FS-KGR methods. As shown in Ta-
ble 2, FS-KEN outperforms all other models across all met-
rics. For instance, compared to the state-of-the-art baseline
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NELL-One FB15K-237
Methods MRR Ho@1 Ht@5 Hit@10 MRR Ho@1 HiG@s His@10
Tranditional KGR Models
TransE 0.118 0.061 0.132 0.223 0.120 0.570 0.137 0.238
DistMult 0.134 0.083 0.143 0.233 0.094 0.053 0.101 0.172
ComplEx 0.124 0.077 0.134 0.213 0.104 0.058 0.114 0.188
RotatE 0.112 0.060 0.131 0.209 0.115 0.069 0.131 0.200
R-GCN 0.199 0.141 0.219 0.307 0.140 0.082 0.154 0.255
MEAN 0.180 0.124 0.189 0.296 0.114 0.058 0.119 0.217
LAN 0.172 0.116 0.181 0.286 0.112 0.055 0.119 0.218
Meta learning-based FS-KGR Models
GMatching 0.322 0.225 0.432 0.510 - - - -
FIRE 0.273 0.225 0.364 0.497 0.478 0.413 0.502 0.577
FSRL 0.490 0.327 0.695 0.853 0.684 0.573 0.817 0.902
MetaR 0.471 0.322 0.647 0.763 0.805 0.740 0.881 0.937
Self Supervised-based FS-KGR Models

CSR-OPT 0.463 0.321 0.629 0.760 0.619 0.512 0.747 0.824
CSR-GNN 0.560 0.435 0.703 0.821 0.678 0.612 0.746 0.792
SARF 0.626 0.493 0.797 0.875 0.753 0.688 0.814 0.884
FS-KEN 0.6317 0.490 0.8127 0.8871 0.773 0.699 0.856 0.915

Table 2: Performance comparison of our FS-KEN with other state-of-the-art models on the few-shot knowledge graph link prediction tasks.

Datasets Methods MRR  Hi@l  Hi@5  Hie@l0
FS-KEN 0773 069 0856 0.915
FS-KEN w.0. GAN 0678 0612 0746 0.792
FBISK-237 FS-KEN w.o. SSL 0635 0571 0.657 0.693
FS-KEN wo. GANASSL 0478 0413 0502 0.577
FS-KEN 0631 049 0812 0.887
ES-KEN w.o. GAN 0560 0435 0703 0.821
NEIOne FS-KEN w.0. SSL 0528 0419 0.657 0.788
FS-KEN wo. GANASSL 0273 0225 0.367 0.497

Table 3: Ablation study of two main components of FS-KEN.

00
(B). FBI5K-237

(A). NELL-ONE

Figure 3: Sensitive analysis result of hyper-parameters A, and Aa.

model SARF [Meng et al., 2024a], FS-KEN improves the
testing MRR by 0.7% and Hits@5 by 1.8% on the NELL-
ONE dataset. On the FB15K-237 dataset, FS-KEN further
enhances Hits@5 and Hits@ 10 by 5.16% and 3.5%, respec-
tively. The experimental results indicate that FS-KGR pro-
vides high-quality negative samples for model training, ef-
fectively enhancing the model’s reasoning ability. Specifi-
cally, the model achieves greater performance improvement
on the FB15K-237 dataset compared to NELL-ONE. This is
because FB15K-237 contains a larger set of entities, provid-
ing a broader sampling space. Additionally, the entities in
the FB15K-237 exhibit higher homogeneity, i.e., the direct
neighboring entities of an entity are closely related, making it
easier to sample high-quality negative entity samples.

4.3 Ablation Study (RQ2)

To demonstrate the robustness of the model to different gen-
erators in the GAN backbone, we verified and analyzed the
performance using three different KGE models as generators
on the NELL-ONE dataset, namely: TransE [Bordes et al.,
2013], TransD [Ji et al., 2015], and DistMult [Yang et al.,
2014]. For the discriminator, we selected TransE. The abla-
tion study results are shown in Table 5.

The results demonstrate that, on both the NELL-ONE and
FB15K-237 datasets, all three generators achieved outstand-
ing performance, showing the robustness of the FS-KEN
model in selecting GAN generators. Specifically, on the
NELL-ONE dataset, the Hit@ 1 metric for FS-KEN under the
three generators was 62.9%, 62.4%, and 63.1%, with a perfor-
mance variance of only 1.12%. On the FB15K-237 dataset,
the Hit@ 1 metric for FS-KEN under the three generators was
76.2%, 77.3%, and 76.5%, with a performance variance of
1.44%. Our future research will explore the application of a
broader range of knowledge graph embedding models.

Furthermore, we conducted further ablation experiments
to demonstrate the effectiveness of the two main modules of
FS-KEN on two datasets, i.e., GAN backbone and the self-
supervised learning module. Note that in order to demon-
strate the effectiveness of self-supervised learning, we re-
placed it with the meta-learning method FIRE. The results
in Table 3 show that both of the GAN backbone and the self-
supervised network are effective in our model.

4.4 Efficiency Study (RQ2)

Considering that the introduction of GANs provides addi-
tional negative samples during training, which may increase
computational cost, we further measure the inference time of
our method compared to three other FS-KGR baselines, i.e.,
FSRL, CSR-GNN, and SARF. As shown in Figure 4, we ob-
serve that the inference runtime of our FS-KEN is reduced
compared to the state-of-the-art model SARF. Additionally,
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Target Triplet Low-quality Entities  Similarity Score  High-quality Entities  Similarity Score
disease:diabetes 0.17 sport:golf 0.44
(person:Brandon, plays_sport, sport:baseball) artery:vessels 0.21 sport:football 0.78
clothing:pants 0.15 sport:basketball 0.93
clothing:white 0.07 city:petoskey 0.47
(person:Mario, person_born_in, city:york) river:chena 0.24 city:riyadh 0.52
city:number 0.35 county:york_city 0.63

Table 4: Case study of FS-KEN on real-world toy cases derived from NELL-One.

[ FSRL [ CSR-GNN M SARF B FS-KEN

25.56
25 23.51 gy 2403
. 20.97 7 20.96
g 20 18.33 18.94
[ 15.43
§ 15
2
<10
5
0
FB15K-237 NELL-One

Figure 4: Comparison of inference time of our FS-KEN with other
state-of-the-art baselines.

Methods MRR Hit@1 Hit@5 Hit@10
TransE 0.762 0.706 0.831 0.898
FB15K-237 TransD 0.773 0.699 0.856 0.915
DistMult 0.765 0.695 0.823 0.887
TransE 0.629 0.495 0.81 0.877
NELL-One TransD 0.624 0.481 0.804 0.883
DistMult 0.631 0.490 0.812 0.887

Table 5: Ablation study on FB15k-237 of different generators.

compared to CSR-GNN, the inference time of FS-KEN on
the FB15K-237 dataset is only 0.5 seconds longer per epoch,
which remains acceptable. Since the GAN backbone is not
involved in the inference process, the introduction of GANs
does not significantly affect the model’s inference time. Over-
all, FS-KEN demonstrates both acceptable time consumption
and significant performance improvements.

4.5 Sensitivity Analysis (RQ3)

We analyze the sensitivity of the reconstruction loss weight
A1 and the discriminator loss weight A, in the FS-KEN al-
gorithm on the MRR metric for both datasets. Specifically,
We perform a grid search on both hyper-parameters and re-
port the optimal hyperparameter combination. Both values of
the two parameters are chosen from {0.01, 0.1, 1, 10, 100},
which as depicted in Figure 3. The experimental results show
that when A1 and A\, both take the value of 0.1, the model
achieves the best performance on NELL-One dataset. For
the FB15k-237 dataset, our model achieves best performance
when A; = 1 and Ay = 0.1. Furthermore, the experiment
results demonstrated that our proposed FS-KEN is robust to
the hyper-parameters.

4.6 Case Study (RQ4)

In this section, we show several cases from NELL-One
dataset in order to qualitatively show the effectiveness of the
proposed negative augmentation strategy, which is shown in
Table 4. Specifically, for the target triplet, we sample negative
tail entities over the traditional random sampling mechanism
and the proposed method as low-quality entities and high-
quality entities, respectively. Finally, we calculate the cosine
similarity score of sampled negative entities and the tail entity
of the target triplet. Table 4 shows that FS-KEN can gener-
ate high-quality negative samples that are closer to the target
triples in the implicit vector space. Taking the target triple
(person:Brandon, plays_sport, sport:baseball) as an example,
the negative entities generated by the random sampling strat-
egy may be disease, artery, and clothing, which have much
smaller semantic similarity with the tail entities of the target
triple than those generated by FS-KEN.

5 Conclusion

In this paper, we proposed a novel adversarial learning strat-
egy for few-shot knowledge graph reasoning, termed FS-
KEN. Specifically, FS-KEN uses policy gradient GAN for
negative sample enhancement on the data in the support set,
solving the problem of traditional GANs in preventing gra-
dient back-propagation to the generator during discrete sam-
pling to obtain high-quality and high-quantity negative sam-
ples. The generator aims to generate high-quality negative
entities, while the discriminator aims to distinguish between
generated entities and real entities. To show the superiority
of our FS-KEN, various experiments on two few-shot bench-
mark datasets are conducted. The results indicate that FS-
KEN generally outperformed other methods.
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