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Abstract
Decision trees and forests have achieved successes
in various real applications, most working with all
testing classes known in training data. In this work,
we focus on learning with augmented class via
forests, where an augmented class may appear in
testing data yet not in training data. We incorporate
information of augmented class into trees’ splitting,
that is, augmented Gini impurity, a new splitting
criterion is introduced to exploit some unlabeled
data from testing distribution. We then develop
the Learning with Augmented Class via Forests
(short for LACForest) approach, which constructs
shallow forests according to the augmented Gini
impurity and then splits forests with pseudo-labeled
augmented instances for better performance. We
also develop deep neural forests via an optimization
objective based on our augmented Gini impurity,
which essentially utilizes the representation power
of neural networks for forests. Theoretically, we
present the convergence analysis for our augmented
Gini impurity, and we finally conduct experiments
to evaluate our approaches. The code is available at
https://github.com/nju-xuf/LACForest.

1 Introduction
How to handle distribution changes has become an important
problem in a non-stationary learning environment [Zhou,
2022], and recent years have witnessed increasing attentions
with various applications [Gama et al., 2014; Geng et al.,
2021; Wang et al., 2024]. This work focuses on learning
with augmented class, that is, the class distribution changes
and an augmented class unseen in the training data may
emerge during the testing process [Da et al., 2014]. Here, we
take object recognition in autonomous driving for example:
new objects may appear on roads yet not in the historical
labeled data, and a reliable learning system should make good
predictions over both known classes and augmented class.

Various approaches have been developed for learning with
augmented class. Da et al. [2014] studied decision bound-
aries for augmented class under the low-density assumption.
Bendale and Boult [2016] and Rudd et al. [2017] estimated
the probability of an instance belonging to augmented class

on the basis of extreme value theory. Mendes Júnior et
al. [2017] detected augmented class by a nearest neighbor
method, and Liu et al. [2018] presented PAC guarantees for
the detection of augmented class. Some generative networks
have also been applied to learn augmented class [Ge et al.,
2017; Neal et al., 2018; Chen et al., 2021]. Zhang et
al. [2020] gave an unbiased risk estimation by exploiting un-
labeled data, and Shu et al. [2023] generalized such approach
to arbitrary loss functions.

Decision trees and forests have achieved great successes
in various applications with strong generalization in handling
discrete features and exploring local regions [Cutler et al.,
2007; Qi, 2012; Grinsztajn et al., 2022; Costa and Pedreira,
2023]. Most previous studies worked on the same distribution
between training and testing data. For augmented class, Mu
et al. [2017] and Liu et al. [2018] only studied its detection
from labeled data of known classes, whereas it remains open
on how to construct trees for learning with augmented class
by exploiting unlabeled data from testing data.

This work aims to incorporate some useful information of
augmented class into the construction of forests, and our main
contributions can be summarized as follows:

• We introduce a new splitting criterion, i.e., augmented
Gini impurity, to incorporate information of augmented
class from unlabeled data during the trees’ splitting.
We develop the LACForest approach for learning with
augmented class, which constructs shallow forests by
augmented Gini impurity and considers pseudo-labeled
augmented instances for better performance.

• For complex data with intrinsic structures (e.g., images),
we develop deep neural forests for learning with aug-
mented class, because of their powerful representations
with an end-to-end training manner. We propose a new
optimization objective for deep neural forests to learn
augmented class, and the basic idea is to extend our
augmented Gini impurity into a differentiable form by
considering the mechanism of deep neural trees.

• From a theoretical view, we present the convergence
analysis of our augmented Gini impurity with respect
to both decision trees and deep neural trees. We finally
conduct extensive experiments to validate the effective-
ness of our proposed approaches and perform some
parameter influence analysis.
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The rest of this work is organized as follows: Section 2
gives some preliminaries. Section 3 introduces augmented
Gini impurity and LACForest approach. Section 4 presents
our deep neural approach. Section 5 conducts some extensive
experiments. Section 6 concludes with future works.

2 Preliminaries
Let X ⊆ Rd and Y = {1, . . . , κ, κ + 1} be the instance and
class spaces, respectively. Suppose that D is an underlying
(unknown) distribution over X × Y , and denote by DX its
marginal distribution over X . We focus on learning with
augmented class [Da et al., 2014], where the first κ classes
can be observed in training data, while the (κ + 1)-th class
will merely emerge in testing data, which is known as an
augmented class in training phase.

For known classes and augmented class, let Dkc and Dac
be the marginal distributions over space X × {1, . . . , κ} and
X ×{κ+1} from distribution D, respectively. We introduce
the class shift assumption as follows:

Assumption 1. We say that distribution D and its marginal
distributions Dkc and Dac satisfy class shift assumption if

D = (1− θ)Dkc + θDac for some constant θ ∈ (0, 1) . (1)

This assumption correlates data distributions for known
classes and augmented class, which has been well-studied for
learning with augmented class [Zhang et al., 2020; Shu et al.,
2023] and open-set recognition [Scheirer et al., 2013].

We focus on the semi-supervised setting for learning with
augmented class [Da et al., 2014; Liu et al., 2018; Zhang et
al., 2020; Shu et al., 2023], and the goal is to learn a function
f : X → Y from labeled data Sl and unlabeled data Su with

Sl = {(xl
1, y1), . . . , (x

l
nl
, ynl

)} and Su = {xu
1 , . . . ,x

u
nu

} .

Here, each labeled example (xl
i, yi) is drawn i.i.d. from Dkc,

and each unlabeled instance xu
j is sampled i.i.d. from DX .

Let I[·] be the indicator function, which returns 1 if the
argument is true and 0 otherwise. For integer k > 0, we write
[k] = {1, 2, · · · , k}, and denote by ∆k the k-dimensional
simplex. For z ∈ R, we denote by ⌊z⌋ the largest integer no
more than z, and define (z)+ = max(0, z). Let |A| be the
cardinality of set A.

3 Our LACForest Approach
This section proposes the LACForest approach for learning
with augmented class based on random forests, and the core
idea is to introduce a new splitting criterion, augmented Gini
impurity, to incorporate potential information of augmented
instances during the construction of decision trees.

3.1 Augmented Gini Impurity
For instance space C ⊆ X , unlabeled data Su and labeled
data Sl, we introduce

SC,u = Su∩C and SC,l = {(x, y) : (x, y) ∈ Sl and x ∈ C}.

Denote by nC,l = |SC,l| and nC,u = |SC,u|. We could define
the augmented Gini impurity as a splitting criterion.

Figure 1: An intuitive illustration on the difference between our
criterion and original Gini impurity over a 2-dimensional dataset,
by considering augmented class.

Definition 1. For an instance space C ⊆ X , we define the
augmented Gini impurity GC(Sl, Su) w.r.t. Sl and Su as

GC(Sl, Su) = 1−
∑

k∈[κ+1]

ϑ2
C,k(Sl, Su) . (2)

Here, ϑC,κ+1(Sl, Su) is defined as

ϑC,κ+1(Sl, Su) = I[nC,u > 0]
(
1− (1− θ)nunC,l

nl max(1, nC,u)

)
+
,

where θ is given in Eqn. (1); and for k ∈ [κ], we define

ϑC,k(Sl, Su) =
∑

(x,y)∈Sl

(1−ϑC,κ+1(Sl, Su))
I[x ∈ C, y = k]

max(1, nC,l)
.

This definition essentially follows the original Gini im-
purity [Breiman, 1984], except with an additional term
ϑC,κ+1(Sl, Su), which aims to incorporate some information
of augmented class into impurity measure.

Figure 1 presents an intuitive illustration on the difference
between our augmented and original Gini impurity over a
2-dimensional synthetic dataset. It is observable that our
augmented Gini impurity could properly take augmented data
into consideration compared with Gini impurity.

For ϑC,κ+1(Sl, Su), we also have
Lemma 1. For δ ∈ (0, 1) and instance space C ⊆ X , the
following holds with probability at least 1− δ over Sl and Su∣∣∣∣ Pr

(x,y)∈D
[y = κ+ 1|x ∈ C]− ϑC,κ+1(Sl, Su)

∣∣∣∣
≤ O

(√
ln(1/δ)

γ

(
1

√
nl

+

√
γ + 1
√
nu

))
,

if nC,u/nu ≥ γ for some constant γ ∈ (0, 1).
Let L∗

C be the optimal squared loss over distribution D
under the condition x ∈ C as follows:

L∗
C = min

w∈∆κ+1

E(x,y)∼D
[
∥w − ỹ∥22|x ∈ C

]
, (3)

where ỹ ∈ Rκ+1 is the one-hot encoding of y ∈ [κ + 1].
Intuitively, L∗

C shows the minimum expected squared loss
under the same prediction for all instances in space C.

Based on Lemma 1 and Assumption 1, we have
Theorem 1. For δ ∈ (0, 1) and instance space C ⊆ X , the
following holds with probability at least 1− δ over Sl and Su

|L∗
C − GC(Sl, Su)| ≤ O

(
κ
√
ln(κ/δ)

γ/(1 +
√
γ)

(
1

√
nl

+
1

√
nu

))
if nC,u/nu ≥ γ and nC,l/nl ≥ γ for constant γ ∈ (0, 1).
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This theorem shows that our augmented Gini impurity can
be viewed as a good estimation of L∗

C with the convergence
rate O(1/

√
min{nl, nu}). The detailed proof is given in our

full work [Xu et al., 2025], which involves the equivalence
between splitting criterions and loss functions, as well as the
convergence of ϑC,κ+1(Sl, Su) in Lemma 1.

3.2 Construction of LACForest
A tree model can be constructed by partitioning instance
space into disjoint rectangular nodes recursively. Given node
C ⊆ X , splitting feature j ∈ [d] and splitting point a ∈ R, we
denote by the left and right children as

Cl
j,a = {x ∈ C : xj ≤ a} and Cr

j,a = {x ∈ C : xj > a} ,

respectively. We then solve the optimal splitting feature j∗

and splitting point a∗ from the following optimization

(j∗, a∗) ∈ argmaxj,a {RC(Sl, Su, j, a)} , (4)

where the reduction of augmented Gini impurity is given by

RC(Sl, Su, j, a) = GC(Sl, Su)

−
nCl

j,a,u

nC,u
GCl

j,a
(Sl, Su)−

nCr
j,a,u

nC,u
GCr

j,a
(Sl, Su) .

From Theorem 1, we can distinguish augmented class from
known classes in node C by solving Eqn. (4), as it converges
to optimizing the squared loss as training data increases.
From a theoretical view, we require sufficient training data
in each node C, i.e., nC,l ≥ γnl and nC,u ≥ γnu for some
γ ∈ (0, 1) in Theorem 1; therefore, we should construct
relatively shallow tree models.

On the other hand, we should take deeper tree models for
better performance, and it is well-known that better predic-
tions could be obtained by deepening tree models sufficiently
[Quinlan, 1986; Hastie et al., 2009]. Hence, our algorithm
includes two main steps as follows:

Step-I: Exploration of Augmented Instances
We preliminarily construct m random trees T ′

1 , · · · , T ′
m for

the exploration of augmented instances from Eqn. (4). For
simplicity, we present the detailed construction of tree T ′

1 ,
and consider other trees similarly. We initialize T ′

1 with
one root node of instance space X , and recursively repeat a
procedure for each leaf node as follows:

• Select a τ -subset S from d available features randomly
without replacement;

• Solve the optimal splitting feature j∗ ∈ S and point a∗
according to Eqn. (4) under the constraints

min(nCl
j,a,l

, nCr
j,a,l

) ≥ γnl , (5)

min(nCl
j,a,u

, nCr
j,a,u

) ≥ γnu . (6)

This ensures sufficient instances in each splitting node
from Theorem 1;

• Split current node into left and right children via the
optimal splitting feature j∗ and position a∗.

Algorithm 1 Our LACForest approach
Input: Labeled data Sl, unlabeled data Su, proportion θ,
hyper-parameters m, τ, γ

% Step-I: Exploration of Augmented Instances.
1: for i ∈ {1, · · · ,m} do
2: Grow random tree T ′

i based on Sl and Su according
to the reduction of augmented Gini impurity

.

3: end for
% Step-II: Improvement of Prediction Performance
4: Calculate LF ′

κ+1(x) for x ∈ Su by Eqn. (7).
5: Label top np = ⌊θnu⌋ instances in Su of the highest

LF ′
κ+1(x) and obtain S̃.

6: for i ∈ {1, · · · ,m} do
7: Split random tree T ′

i based on Sl∪ S̃ according to the
reduction of Gini impurity and obtain Ti.

8: end for
9: return LF(x) = argmax

k∈[κ+1]

∑
i∈[m] Ti,k(x).

The above procedure is stopped if there is no feasible solution
for Eqn. (4) under constraints in Eqns. (5) and (6).

Given random tree T ′
1 with t′ leaves C′

1, C′
2, · · · , C′

t′ , we
present the probability of augmented class for x ∈ X as

T ′
1,κ+1(x) =

∑
j∈[t′]

ϑC′
j ,κ+1(Sl, Su)I[x ∈ C′

j ] ,

where ϑC′
j ,κ+1(Sl, Su) is an unbiased estimator for the pro-

portion of augmented instances in C′
j , given by Definition 1.

Step-II: Improvement of Prediction Performance
Given m trees T ′

1 , · · · , T ′
m, we calculate the average aug-

mented score of instance x ∈ X by

LF ′
κ+1(x) =

1

m

∑
i∈[m]

T ′
i,κ+1(x) . (7)

We then select ⌊θnu⌋ instances in Su of the highest average
augmented scores, and label them with pseudo-labels of
augmented class. Without loss of generality, we denote by

S̃ = {(xu
1 , κ+ 1), (xu

2 , κ+ 1), · · · , (xu
⌊θnu⌋, κ+ 1)} .

Intuitively, S̃ retains the most likely augmented instances for
further partition, and similar approaches have been studied by
[Liu et al., 2002; Tanha et al., 2017].

We further partition T ′
1 , · · · , T ′

m for better predictions
based on S̃ ∪ Sl. We also repeat the following procedure
recursively for each leaf C of T ′

1 :
• Select a τ -subset S from d available features randomly

without replacement;
• Solve the optimal splitting feature j∗ ∈ S and position
a∗ w.r.t. Gini impurity and instances in S̃ ∪ Sl;

• Split the current node into left and right children via the
optimal splitting feature j∗ and position a∗.

The above procedure is stopped if all instances have the same
label in a leaf, and get the final random tree T1. Similarly, we
repeat the above procedure for T ′

2 , · · · , T ′
m.
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Given m random trees T1, · · · , Tm, we predict the final
label of instance x ∈ X as

LF(x) = argmax
k∈[κ+1]

∑
i∈[m]

Ti,k(x) ,

where Ti,k(x) is the probability of the k-th category of tree
Ti with leaves Ci,1, Ci,2, · · · , Ci,ti , i.e.,

Ti,k(x) =
∑
j∈[ti]

I[x ∈ Ci,j ]
∑

(x′,y)∈Sl∪S̃ I[x′ ∈ Ci,j , y = k]

max(1,
∑

(x′,y)∈Sl∪S̃ I[x′ ∈ Ci,j ])
.

Algorithm 1 gives detailed descriptions of our LACForest
approach. Notice that our method requires the proportion θ of
augmented class, which is usually unknown in practice. One
feasible solution is to consider the kernel mean embedding
method from [Ramaswamy et al., 2016], and this is similar to
previous studies on learning with augmented class [Zhang et
al., 2020; Shu et al., 2023].

4 Deep Neural LACForest
This section explores deep neural forests via augmented Gini
impurity for learning with augmented class, which presents
powerful representations with an end-to-end training manner
for complex data such as images and texts. For neural forests,
another advantage is to take soft splits rather than hard
splits of decision trees, which could yield smoother decision
boundaries and avoid overfitting [Kontschieder et al., 2015].
In this work ,we take one step on learning with augmented
class via deep neural forests, while previous works mostly
focused on all known classes [Kontschieder et al., 2015;
Tanno et al., 2019; Ji et al., 2020; Li et al., 2024].

4.1 Augmented Gini Impurity for Neural Trees
A deep neural forest is constructed with a DNN encoder
h and m differentiable neural trees DT1,DT2, · · · ,DTm.
The key point is how to learn differentiable neural trees by
incorporating information of augmented class, and our idea
is to consider augmented Gini impurity as an optimization
objective for neural trees.

We take neural tree DT1 as an example, and it is essentially
an l-layer complete binary tree with l ≥ 2. We denote by
{B1, · · · ,Bt} and {Bt+1, · · · ,B2t+2} all internal and leaf
nodes of DT1, respectively, where t = 2l−1 − 1.

For every internal node Bi (i ∈ [t]), we associate with a
function fi : X → [0, 1] to represent the probability of being
assigned to the left child, and hence the probability of the
right child is 1− fi(x). Given encoder h, we define

fi(x) = sigmoid(wT
i h(x) + bi) ,

where sigmoid(z) = (1+exp(−z))−1 and wi, bi are learned
parameters, as in [Kontschieder et al., 2015].

For every leaf node Bi (i ∈ [2t + 2] \ [t]), let I(x → Bi)
be the event that x is assigned to leaf Bi, and denote by

µBi(x) = Pr [I(x → Bi)]

=
∏
j∈[t]

fj(x)
I[Bi↙Bj ](1− fj(x))

I[Bj↘Bi] ,

Algorithm 2 Deep Neural LACForest
Input: Labeled data Sl, unlabeled data Su, proportion θ,
hyper-parameters m, l, T, λce

1: Randomly initialize h and DT1, · · · ,DTm.
2: for j ∈ {1, · · · , T} do
3: Break Sl and Su into random mini-batches.
4: for mini-batches S′

l and S′
u from Sl and Su do

5: Compute L by Eqn. (10) and compute gradients.
6: Update h and DT1, · · · ,DTm by SGD.
7: end for
8: end for
9: return DF(x) = argmax

k∈[κ+1]

∑
i∈[m] DTi,k(x).

where Bi ↙ Bj and Bj ↘ Bi represent that Bi belongs to the
left and right subtrees of Bj , respectively. We also denote by

nBi,u =
∑
x∈Su

µBi
(x) and nBi,l =

∑
(x,y)∈Sl

µBi
(x) ,

for unlabeled data Su and labeled data Sl, respectively.
Definition 2. For i ∈ [2t+ 2] \ [t], we define the augmented
Gini impurity w.r.t. Sl and Su as

GBi(Sl, Su) = 1−
∑

k∈[κ+1]

ϑ2
Bi,k(Sl, Su) , (8)

where ϑBi,κ+1(Sl, Su) is defined as

ϑBi,κ+1(Sl, Su) =

(
1− (1− θ)nunBi,l

nlnBi,u

)
+

,

and for k ∈ [κ], ϑBi,k(Sl, Su) is given by

(1− ϑBi,κ+1(Sl, Su))
∑

(x,y)∈Sl

µBi
(x)

nBi,l
I[y = k] .

This definition follows the augmented Gini impurity of
decision trees in Definition 1, whereas deep neural trees
consider probabilistic assignment of instances to nodes while
the latter focuses on deterministic assignment. Essentially,
ϑBi,k(Sl, Su) estimates the probability of the k-th class under
the condition I(x → Bi). Based on Assumption 1, we have
Lemma 2. For k ∈ [κ+ 1], δ ∈ (0, 1) and i ∈ [2t+ 2] \ [t],
we have, with probability at least 1− δ over Sl and Su,∣∣∣∣ Pr

(x,y)∼D
[y = k|I(x → Bi)]− ϑBi,k(Sl, Su)

∣∣∣∣
≤ O

( √
ln(1/δ)

γ2/(γ + 1)

(
1

√
nl

+
1

√
nu

))
,

if ED[µBi(x)] ≥ γ, EDkc [µBi(x)] ≥ γ, nBi,u ≥ γnu and
nBi,l ≥ γnl for some constant γ ∈ (0, 1).

Denote by L∗
Bi

the optimal squared loss under I(x → Bi):

L∗
Bi

= min
w∈∆κ+1

E(x,y)∼D
[
∥w − ỹ∥22|I(x → Bi)

]
,

where ỹ ∈ Rκ+1 is the one-hot encoding of y ∈ [κ + 1].
Based on Assumption 1 and Lemma 2, we have
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Datasets #inst #feat #class Datasets #inst #feat #class Datasets #inst #feat #class Datasets #inst #feat #class
segment 2,310 19 7 mfcc 7,195 22 4 drybean 13,661 16 7 mnist 70,000 784 10
texture 5,500 40 11 usps 9,298 256 10 letter 20,000 16 26 fmnist 70,000 784 10

optdigits 5,620 64 10 har 10,299 562 6 shuttle 58,000 9 7 kuzushiji 70,000 784 10
satimage 6,435 36 6 mapping 10,845 28 6 drive 58,509 48 11 svhn 99,289 3072 10
landset 6,435 73 6 pendigits 10,992 16 10 senseveh 61,581 100 3 cifar10 60,000 3072 10

Table 1: Details of datasets.

Theorem 2. For δ ∈ (0, 1) and i ∈ [2t+2]\[t], the following
holds with probability at least 1− δ over Sl and Su∣∣L∗

Bi
− GBi

(Sl, Su)
∣∣ ≤ O

(
κ
√
ln(κ/δ)

γ2/(γ + 1)

(
1

√
nl

+
1

√
nu

))
,

if ED[µBi(x)] ≥ γ, EDkc [µBi(x)] ≥ γ, nBi,u ≥ γnu and
nBi,l ≥ γnl for some constant γ ∈ (0, 1).

This theorem shows that GBi
(Sl, Su) could be seen as an

unbiased estimation of L∗
Bi

. The detailed proof is presented
in [Xu et al., 2025], which is similar to that of Theorem 1, but
takes different analysis on the convergence of ϑBi,k(Sl, Su)
by considering the probabilistic assignment of neural trees.

4.2 Deep Neural LACForest
In the training phase, we randomly initialize encoder h and
neural trees DT1, · · · ,DTm, and update the encoder and
neural trees iteratively. In each iteration, we receive two mini-
batches of labeled data S′

l and unlabeled data S′
u sampled

randomly from Sl and Su, respectively. We introduce

Lag(DTi) =
∑

j∈[2t+2]\[t]

ωi,j(S
′
u)GBi,j (S

′
l , S

′
u) , (9)

where {Bi,j}j∈[2t+2]\[t] denote all leaf nodes of DTi, and
ωi,j(S

′
u) is the proportion of unlabeled data in Bi,j , i.e.,

ωi,j(S
′
u) =

1

|S′
u|
∑
x∈S′

u

µBi,j
(x) .

The augmented Gini loss in Eqn. (9) is a weighted average
augmented Gini impurity for all leaf nodes of DTi.

For better representation, we introduce an auxiliary linear
predictor g : Rd′ → ∆κ as done in [Yan et al., 2021], and
take the cross entropy loss on known classes w.r.t. S′

l as

Lce = − 1

|S′
l |

∑
(x,y)∈S′

l

∑
t∈[κ]

ỹt log (gt (h (x))) .

We finally get the optimization objective as follows:

L =
∑
i∈[m]

Lag(DTi)
m

+ λceLce , (10)

where λce > 0 is a trade-off parameter. Intuitively, the cross
entropy loss is beneficial to learning a basic representation of
target data, and the augmented gini loss could improve the
ability of neural trees to distinguish augmented class from
known classes, as shown by Theorem 2.

Notice that the optimization objective L in Eqn. (10) is
differentiable w.r.t. the parameters of feature encoder h and

neural trees DT1, · · · ,DTm, and we could update the entire
model with stochastic gradient descent directly.

Given feature encoder h and neural trees DT1, · · · DTm,
we could present the prediction for instance x ∈ X as

DF(x) = argmax
k∈[κ+1]

∑
i∈[m]

DTi,k(x) ,

where DTi,k(x) shows the probability of the k-th class w.r.t.
neural tree DTi, i.e.,

DTi,k(x) =
∑

j∈[2t]\[t−1]

µBi,j (x)ϑBi,j ,k(Sl, Su) ,

with ϑBi,j ,k(Sl, Su) given by Definition 2.
Algorithm 2 presents the detailed description of our deep

neural LACForest approach. In experiments, we should take
relatively large batch sizes for mini-batches S′

l and S′
u, since

GBi,j
(S′

l , S
′
u) in Eqn. (9) converges to the optimal squared

loss in the rate of O(1/
√
min{|S′

l |, |S′
u|}) from Theorem 2.

4.3 Related Works
Zhou and Chen [2002] introduced the problem of class-
incremental learning via a few labeled augmented instances.
Fink et al. [2006] learned multiple binary classifiers for this
problem and Topalis and Polikar [2008] considered voting
classifiers. Recent years have witnessed increasing attention
on the design of practical algorithms for this problem [Li
and Hoiem, 2017; Rebuffi et al., 2017; Yan et al., 2021;
Zou et al., 2022; Zhou et al., 2024]. These methods can not
be applied to our learning scenario directly, since we have no
access to any labeled augmented instances.

Another relevant problem is open-set recognition in com-
puter vision. Scheirer et al. [2013] introduced open space
risk to penalize predictions outside the support of training
data. Along this line, various approaches have been de-
veloped based on open space risk [Scheirer et al., 2014],
extreme value theory [Bendale and Boult, 2016; Rudd et al.,
2017], nearest neighbors [Mendes Júnior et al., 2017] and
generative neural networks [Ge et al., 2017; Neal et al., 2018;
Chen et al., 2021]. Those studies are strongly based on some
geometric assumptions.

5 Experiments
We conduct experiments on 15 benchmark datasets and 5
image datasets, and the details are summarized in Table 1.
Most datasets have been well-studied in previous works on
learning with augmented class.
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Datasets Our LACForest GLAC EULAC EVM PAC-iForest OSNN LACU-SVM OVR-SVM
segment .9436±.0186 .8838±.0390• .9256±.0276• .8612±.0746• .6678±.0763• .5467±.0384• .4918±.0796• .6109±.0901•
texture .9151±.0176 .9130±.0328 .9138±.0208 .8724±.0270• .7107±.0518• .5956±.0405• .5829±.0478• .6078±.0587•

optdigits .9260±.0203 .8842±.0384• .9243±.0186 .9069±.0234• .7202±.0415• .6572±.0282• .7385±.0326• .7547±.0552•
satimage .8791±.0322 .8215±.0526• .8644±.0371• .7238±.0664• .7460±.0566• .5101±.0380• .6324±.0165• .5228±.0568•
landset .9243±.0206 .8627±.0262• .8857±.0236• .8120±.0464• .7572±.0671• .5302±.0257• .6289±.0124• .5366±.0316•

mfcc .9418±.0144 .8937±.0194• .9506±.0137◦ .8669±.0888• .7901±.0710• .5329±.0311• .7751±.0362• .6428±.0215•
usps .8931±.0198 .8645±.0382• .8955±.0250 .7959±.0697• .5695±.0894• .6413±.0317• .7642±.0379• .7488±.0464•
har .9020±.0319 .8772±.0460• .8922±.0269• .5016±.0558• .5963±.0699• .5048±.0386• .5570±.0408• .5046±.0251•

mapping .8612±.0199 .7964±.0350• .8515±.0309• .7111±.1320• .6712±.1046• .6218±.0605• .6538±.0559• .5210±.0596•
pendigits .9281±.0215 .8872±.0241• .9276±.0245 .9266±.0330 .7709±.0742• .5822±.0243• .7352±.0513• .6424±.0469•
drybean .8932±.0208 .9026±.0528◦ .9038±.0202◦ .7834±.0428• .7555±.0693• .5661±.0580• .6384±.0397• .5471±.0478•

letter .7402±.0335 .6331±.0394• .6057±.0387• .7004±.0460• .4875±.0373• .5980±.0231• .5547±.0538• .6238±.0399•
shuttle .9750±.0197 .9444±.0506• .9770±.0116 .6245±.0347• .6042±.0326• .5464±.0649• .6734±.0218• .4862±.0249•
drive .8529±.0532 .6114±.0824• .7844±.0460• .7708±.0476• .4296±.0578• .5474±.0246• .6032±.0783• .5287±.1040•

senseveh .7977±.0295 .7545±.0406• .7925±.0196• .5685±.0572• .5580±.1089• .5331±.0499• .5973±.0425• .5726±.0688•
mnist .8540±.0299 .7947±.0408• .8390±.0380• .6181±.0475• .5369±.0827• .6504±.0386• .6481±.0496• .7234±.0505•
fmnist .8008±.0269 .7592±.0343• .7672±.0382• .6508±.0368• .6090±.0577• .5152±.0534• .5674±.0629• .5499±.0727•
average .8840±.0591 .8285±.0916 .8648±.0862 .7468±.1204 .6459±.1042 .5694±.0486 .6378±.0774 .5955±.0822

win/tie/loss 15/1/1 10/5/2 16/1/0 17/0/0 17/0/0 17/0/0 17/0/0

Table 2: Experimental comparisons of accuracy (mean±std) for compared methods, and •/◦ indicates that our approach is significantly
better/worse than the corresponding method (paired t-test at 95% significance level).

segment texture optdigits satimage landset mfcc usps har mapping pendigits drybean letter shuttle drive senseveh mnist fmnist
datasets
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0.8

0.9

1.0
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Our LACForest GLAC EULAC EVM PAC-iForest OSNN LACU-SVM OVR-SVM

Figure 2: Experimental comparisons of AUC on the detection of augmented class.

5.1 Evaluation of Our LACForest Approach
For our LACForest approach, we compare with seven state-
of-the-art approaches: GLAC [Shu et al., 2023], EULAC
[Zhang et al., 2020], PAC-iForest [Liu et al., 2018], EVM
[Rudd et al., 2017], OSNN [Mendes Júnior et al., 2017],
LACU-SVM [Da et al., 2014] and OVR-SVM [Rifkin and
Klautau, 2004]. More details on these approaches could be
found in our full work [Xu et al., 2025].

For each dataset, we randomly select half of classes as the
augmented class with the rest as known classes, following
[Zhang et al., 2020]. We then randomly sample 500 examples
of known classes as labeled data Sl, and 1000 instances as
unlabeled data Su and 100 instances as testing data. We take
θ = 0.5 in Eqn. (1), and more experimental settings could be
found in [Xu et al., 2025]. The performance is evaluated by
10 trials of random selections of augmented class, and with 10
times of random data sampling. The average test accuracies
are obtained over these 100 runs, as shown in Table 2.

It is clear that our LACForest method achieves significantly
better performance than previous EVM, OSNN, PAC-iForest
and OVR-SVM, as our LACForest wins in most times and
never loses. This is because those methods mainly focus
on labeled data from known classes, but without exploring
information from unlabeled data.

Our LACForest also outperforms LACU-SVM, which is
heavily dependent on the low-separation assumption over

data. In comparison to GLAC and EULAC, our LACForest
achieves better and comparable performance in most times,
except for datasets mfcc and drybean, partially because of
class imbalance in these datasets, which makes it difficult to
accurately estimate proportions of augmented class in nodes.

We also take the average AUC to show the performance on
the detection of augmented class in Figure 2. It is obvious
that our LACForest takes better and comparable performance
on the detection of augmented class over most datasets, since
our method could explore augmented class effectively in each
leaf node, as shown by Lemma 1.

5.2 Evaluation of Our Deep Neural LACForest
For our deep neural LACForest, we compare with seven deep
learning methods for augmented class: Deep-GLAC [Shu et
al., 2023], ARPL [Chen et al., 2021], Deep-EULAC [Zhang
et al., 2020], OSRCI [Neal et al., 2018], G-Openmax [Ge et
al., 2017], Openmax [Bendale and Boult, 2016] and Softmax-
T [Hendrycks and Gimpel, 2016]. More details on these
approaches are presented in our full work [Xu et al., 2025].

We take a three-layer convolutional neural network as the
backbone neural network on mnist, fmnist and kuzushiji,
and consider VGG16 [Simonyan and Zisserman, 2015] on
svhn and cifar10, as done in [Shu et al., 2023]. We randomly
select four classes as the augmented class and take the rest as
known classes, and set θ = 0.4 similarly to [Shu et al., 2023].
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Datasets Our approach Deep-GLAC Deep-EULAC ARPL G-Openmax OSRCI Openmax Softmax-T
mnist .9844±.0021 .9778±.0039 .9596±.0033 .9304±.0203 .8934±.0064 .9114±.0047 .8876±.0042 .8834±.0029
fmnist .9024±.0114 .9010±.0148 .8464±.0085 .7682±.0102 .6820±.0148 .6912±.0070 .6672±.0139 .5878±.0054

kuzushiji .9636±.0044 .9516±.0032 .8872±.0032 .9002±.0143 .8570±.0055 .8602±.0046 .8426±.0070 .8282±.0069
svhn .9238±.0134 .8926±.0168 .8330±.0087 .8060±.0069 .7868±.0161 .7912±.0072 .7888±.0057 .7252±.0047

cifar10 .8008±.0331 .7840±.0426 .7168±.0231 .7208±.0032 .6560±.0125 .6788±.0084 .6612±.0293 .6350±.0203
average .9150±.0639 .9016±.0669 .8486±.0793 .8251±.0790 .7750±.0933 .7866±.0914 .7695±.0915 .7319±.1117

Table 3: Experimental comparisons of accuracy (mean±std) over 5 image datasets, and the best performance is highlighted in bold.
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Figure 3: Evaluations of LACForest over different proportions of augmented data. The larger the curve, the better the performance.
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Figure 4: Evaluations of LACForest under different sizes of unlabeled data Su. The larger the curve, the better the performance.
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Figure 5: Influence of parameter λce.

We take average test accuracies over 5 random selections
of augmented class as our performance measure, and the
experimental comparisons are shown in Table 3. It is clear
that our approach takes better performance than ARPL, G-
Openmax, OSRCI, Openmax and Softmax-T, due to some
additional geometric assumptions over those methods. For
Deep-GLAC and Deep-EULAC, our method achieves better
and comparable performance in most times, and an intuitive
explanation is that our approach could effectively explore
augmented class from each local region during tree partitions.

Parameter Influence. We analyze the influence of various
parameters on several datasets, and the trends are similar for
other datasets. Figure 3 shows that our LACForest gets better
performance under different proportions θ ∈ [0.3, 0.8] for
augmented data. Figure 4 shows the performance with dif-
ferent sizes of unlabeled data, where our LACForest achieves
better and stable performance with the increase of unlabeled
data, in consistency with Theorem 1. For deep neural LAC-
Forest, Figure 5 shows that our approach is insensitive to
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Figure 6: Influence of neural trees’ depth.

parameter λce and generally works well for λce ∈ [0.2, 2].
Figure 6 shows the influence of the depth of neural trees, and
our method takes stable results when the tree depth l ≥ 5.

6 Conclusion
This work studies learning with augmented class via forests,
where an augmented class may appear in testing data yet not
in training data. We introduce the augmented Gini impurity
as a new splitting criterion by incorporating information of
augmented class during tree construction. We develop the
approach on Learning with Augmented Class via Forests,
which constructs shallow forests based on augmented Gini
impurity and further splits forests with pseudo-labeled aug-
mented instances. We also explore deep neural forests with a
new optimization objective via our augmented Gini impurity.
We validate the effectiveness of our methods both empirically
and theoretically. An interesting future direction is to exploit
our methods under other learning settings such as streaming
datasets and multiple augmented classes.
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