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Abstract
Multi-view graph clustering (MVGC) has been of
widespread interest owing to the ability of captur-
ing the complementary information among views,
thereby enhancing the performance of node clus-
tering. Despite the impressive achievements of ex-
isting methods, they are limited by a common defi-
ciency, namely, the curse of local manifold while
failing to perceive the global manifold structure.
In light of this drawback, we propose a Consistent
Context-Aware Representation Learning (CCARL)
method for MVGC, aiming to learn node repre-
sentations from global space rather than just lo-
cal topology. Concretely, we define a set of an-
chors to establish the global coordinate, which are
optimally mapped to multi-view graphs with min-
imal cost via fused Gromov-Wasserstein optimal
transport. To fuse the complementary informa-
tion in various views, the attention mechanism is
employed to integrate multiple graph embeddings
into a consistent representation. By transforming
to the global coordinate connecting with anchors,
the consistent representation captures the contex-
tual information, and its clustering-friendliness is
further enhanced through a self-training strategy.
Finally, extensive experiments on four multi-view
graph datasets demonstrate the effectiveness of the
proposed CCARL over existing MVGC methods.

1 Introduction
Graph clustering [Xia et al., 2022; Liu et al., 2024c; Deng
et al., 2025] is an important data mining technique, aiming
to couple node features and topology for grouping nodes into
different clusters. Conventional graph clustering is frequently
oriented towards single-view graph data, i.e., both node fea-
tures and topology are unique. Nevertheless, with the diversi-
fication of information collection, the features or connections
between nodes can be portrayed from various perspectives.
For example, different products can be connected by the simi-
larity or by sharing the same buyers. Such graph data integrat-
ing rich information from multiple sources is dubbed multi-

∗ Corresponding author.

(b) GAE (c) CCARL(a) YELP-View0 

Figure 1: (a) illustrates extensive inter-class edges in YELP dataset.
(b) and (c) show the learned consistent representations by GAE and
the proposed CCARL. Notably, GAE averages multi-view graph
embeddings into a consistent representation. It can be seen that the
embedding of GAE fails to exhibit well intra-class aggregation and
inter-class separation, whereas the proposed CCARL excels.

view graph data. Compared to the single-view graph data,
multi-view graph data can provide the complementary infor-
mation to enhance the discriminability of latent embedding,
thereby improving the performance of downstream tasks.

While multi-view data [Fu et al., 2020; Yang et al., 2022;
Zhang et al., 2023; Zhang et al., 2025; Yu et al., 2025] has
more advanced information, it also poses a key challenge
to the conventional graph clustering, namely how to effec-
tively fuse information from multiple views. In response to
the concern, extensive multi-view graph clustering (MVGC)
methods surge to be encouraging solutions. [Fu et al., 2022;
Tang et al., 2022; Wang et al., 2024] learned a consistent
label indicator matrix via spectral decomposition. [Liu et
al., 2024a; Guan et al., 2024; Fu et al., 2024] projected
the multiple raw features into a common subspace with
structural constraints. [Li et al., 2023a; Li et al., 2023b;
Feng et al., 2024] explored the high-order correlations be-
tween views by low-rank tensor optimization. The above
methods lack a coupled treatment of features and topol-
ogy for nodes, then the learned embedding might be sub-
optimal. In light of this drawback, [Chen et al., 2023;
Tu et al., 2021; Tsitsulin et al., 2023; Tu et al., 2024;
Chen et al., 2024] introduced the graph convolutional neu-
ral networks (GCNs) to learn the latent embedding, which
recursively handled the features and topology with a coupled
manner. Generally, they adopted the GCNs to project the raw
multi-view graph data into the latent space with some con-
straints, then the fusion strategies were developed for inte-
grating heterogeneous information. Specifically, the fusion
process is either prioritized or posteriorized [Lin et al., 2024;
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Chen et al., 2024], depending on whether the consistent rep-
resentation is obtained during training or after training.

Thanks to the integration of the complementary infor-
mation between views, the above MVGC methods achieve
promising results. Nevertheless, they are inevitably trapped
into an identical limitation, namely focusing on utilizing local
manifold structure while ignoring the global manifold struc-
ture. Concretely, traditional MVGC methods frequently in-
troduce the Laplacian regularization to enhance the latent rep-
resentations. Likewise, GCN-based methods essentially use
the Laplacian filters to fuse the neighboring node informa-
tion. Laplacian-induced operations make close embeddings
more similar, but also cause the model to fall into the curse
of locality and fail to perceive the global context, which is
dangerous for clustering tasks. Especially in graphs, there
may be connection edges between two nodes of different cat-
egories as shown in Fig. 1(a), whose corresponding embed-
dings yielded by GAE are similar after graph convolution,
resulting in a significant difficulty for correct clustering like
in Fig. 1 (b). Hence, it is important not to refine the node
embeddings only from a local perspective, but to consider the
positions of them in the global context for making the most
reasonable judgment. Just like in natural language process-
ing, the same word expresses various meanings in different
sentences, the specific meaning can only be accurately deter-
mined by connecting to the context. Furthermore, in addi-
tion to complementarity across views, consistency is another
important principle for multi-view learning, which requires
maximizing agreement among multiple heterogeneous views
so that they can converge to a uniform clustering space. In
a nutshell, how to capture the consistent contextual infor-
mation in global space is a challenging issue for achieving
advanced MVGC.

In this paper, we propose a Consistent Context-Aware Rep-
resentation Learning (CCARL) method for MVGC in re-
sponse to the above challenge. First, we attempt to use a set
of anchors beyond multiple views to span the global space.
Intuitively, these anchors are viewed to establish the new
global coordinate. Thus, the global anchor graph is optimally
mapped to multi-view graphs via fused Gromov-Wasserstein
optimal transport (GW-OT), guaranteeing the global space
being intact. To integrate the complementary information in
diverse views, the attention mechanism is employed to com-
bine various graph embeddings into a consistent representa-
tion. Importantly, the consistent representation is endowed
with the context-awareness by connecting with the anchors
for projecting it into the global coordinate. Last but not least,
considering the peculiarity of the clustering task, samples in
the same clusters have to be as close as possible to the cluster
centroids. A self-training strategy, which tightens the predic-
tion distribution to the target distribution, is adopted to drive
the consistent context-aware representation to be clustering-
friendly. Fig. 2 illustrates the overall framework for the pro-
posed CCARL. In conclusion, the principal contributions of
this paper are summarized from three-fold:

• We define a set of anchors beyond multiple views, which
are used to span the global space and establish the global
coordinate. Thus, the fused GW-OT is leveraged to
find the optimal mapping between the anchor graph and

multi-view graphs, ensuring that the anchors can cover
the global space.

• The attention mechanism is employed to adaptively fuse
the various graph embeddings into a consistent repre-
sentation. By connecting with the global anchors, the
consistent representation captures the context-aware in-
formation. Further, a self-training strategy is used to en-
hance its clustering-friendliness.

• A large number of experiments on four multi-view graph
datasets are conducted to verify the effectiveness of the
proposed CCARL. The comparative and ablation exper-
imental results demonstrate the superiority of CCARL
over the typical and SOTA methods.

2 Related Works
2.1 Multi-View Graph Clustering
Multi-view graph clustering improves the downstream clus-
tering performance by fusing the complementary information
among multi-source graph data. Current methods can be cat-
egorized into two types, one is based on conventional matrix
factorization (MF) and the other is based on GCN. MF-based
methods aim to decompose the raw matrix into several low-
dimensional matrices, thereby discovering the underlying
structure. For instance, [Huang et al., 2022; Fu et al., 2022;
Liu et al., 2024b] explored a uniform label indicator matrix
from multiple similarity matrices, thus directly acquiring the
clustering results. [Chen et al., 2021; Guan et al., 2024;
Fu et al., 2024] learned a self-expression representation from
multi-view data, on which the low-rank constraint was of-
ten imposed for enhancing the clustering properties. Ten-
sor is a high-order form of matrix that carries more com-
plex data structures. [Li et al., 2021; Pan et al., 2024;
Qin et al., 2024] leveraged the low-rank tensor decomposi-
tion to capture the consistency and complementarity among
various views. [Lin and Kang, 2021; Lin et al., 2023;
Qian et al., 2024] introduced graph filters to smooth the node
embedding, then performed the integration process. GCN is
a simple yet powerful network for graph data, which aggre-
gates the neighborhood information of nodes to enhance the
embedding, many GCN-based MVGC approaches are wit-
nessing a high moment in the spotlight. [Fan et al., 2020;
Lin et al., 2024] jointly learned the fusion embedding and
cluster assignment via drawing the Student’s t-distribution to
the target distribution. [Pan and Kang, 2021; Cai et al., 2024;
Liu et al., 2025] performed the cross-view contrastive learn-
ing to promote the consensus between views. [Wang et al.,
2023; Zhuang et al., 2024] developed novel multi-graph fu-
sion mechanisms to aggregate multi-source information.

2.2 Optimal Transport
Optimal transport [Montesuma et al., 2024] refers to the min-
imum cost for transferring one distribution to another dis-
tribution, which is often used to measure the distance be-
tween two distributions. Due to the well-established theory
and delicate solution, OT has been introduced into substan-
tial research works involving distribution alignment. For in-
stance, [Courty et al., 2016; Liu et al., 2023; Groppe and
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𝐺(1)

𝐺(𝑉)

𝑓1

𝑓𝑉

{𝑍(𝑉), 𝐴(𝑉)}

{𝑍(1), 𝐴(1)}

…

𝑊𝑎

𝐾𝐿(𝑈||𝑉)

𝑍𝑐 = 𝑍𝑃𝑇

{𝑃, 𝑆}
𝑍𝑐

Cluster 1

Cluster 2

Cluster C

Global space

𝐿𝐶𝐸

𝐿𝐶𝐸

…

Figure 2: The framework of the proposed CCARL. The global anchor graph {P,S} is optimally mapped to multi-view graphs {Z(v),A(v)}
via GW-OT. The consistent context-aware representation Zc is used to perform the clustering with Kmeans algorithm.

Hundrieser, 2024] achieved the alignment between differ-
ent data domains via OT mapping. [Arjovsky et al., 2017;
Tolstikhin et al., 2018] introduced the theory of OT into gen-
erative modeling methods for strengthening the data gener-
ation. Above OT methods can only measure the distance
of distributions in the same space and fail when the distri-
butions are in different spaces. In light of this drawback,
GW-OT [Mémoli, 2011] was proposed and focused on the
keeping minimal cost in terms of the structures during the
alignment. Hence, GW-OT is naturally suitable to han-
dle structured data such as graphs. [Titouan et al., 2019;
Ma et al., 2024] took into account the peculiarities when
aligning multiple graphs, and achieved the optimal mapping
between varying topologies using GW-OT. Inspired by GW-
OT, we leverage the fused GW-OT to align the anchor graph
and multi-view graphs in this paper, exploring the consistent
context-aware coordinate information. Then, then a unified
representation incorporating context information can be fur-
ther obtained.

3 Methodology
3.1 Notations
Given a multi-view graph data G = {G(v)}Vv=1, where V de-
notes the number of views. G(v) = {V, E(v),X(v)} is the
graph of the v-th view, where V is the node set, E(v) is the
edge set, X(v) ∈ RN×d is the feature matrix (N is the num-
ber of nodes, d is the dimension). According to the edge set
E(v), the adjacency matrix A(v) ∈ RN×N is constructed. For
the v-th view, a L-layer GCN fv : Rd → Rde is used to en-
code the raw data into latent embedding, where de denotes the
dimension of embedding. The computation of the l-th layer
is formulated as

Z
(v)
l = σ

(
D(v)−

1
2 Â(v)D(v)−

1
2 Z

(v)
l−1W

(v)
l

)
(1)

where σ(·) denotes the activation function. Z
(v)
l and W

(v)
l

are the embedding and the parameters for the l-th layer, re-
spectively. Â(v) = (A(v) + I) is the adjacency matrix,
D(v) ∈ RN×N is the degree matrix and defined as D

(v)
ii =∑

j Â
(v)
ij , I ∈ RN×N denotes an identity matrix. For a multi-

view graph data G = {G(v)}Vv=1, a set of global anchors
P = {p1, ...,pM} ∈ RM×de are expected to be explored.

3.2 Graph Alignment via Fused GW-OT
To establish a new coordinate system in global space, we ex-
pect to explore M anchors P = {p1, ...,pM} beyond multi-
view graphs. For good global anchors, they can be transferred
to each view’s graph with minimal cost. The alignment is nat-
urally an OT problem. In terms of node features, the formu-
lation of OT between the anchors and the i-th view’s features
is written as

min
π(v)∈Π

Tr(−PZ(v)T π(v))− ϵH(π(v))

s.t. Π = {π(v) ∈ RN×M
+ |π(v)1M = ν, π(v)T 1N = µ},

(2)

where Z(v) = fv(X
(v),A(v)) is the embedding after encod-

ing, ϵ > 0 is a hyperparameter adjusting the smoothness of
the unnormalized assignment, H(·) denotes the entropy for a
variable. π(v) denotes the transport matrix and its marginal
distributions subject to node marginal distribution ν and an-
chor marginal distribution µ. 1M and 1N denote the M -
dimensional and N -dimensional all-one vectors, respectively.
Notably, the product PZ(v)T measures the similarity between
the v-th view’s embedding Z(v) and the anchors P, then the
negative product is viewed as the cost between them. The ob-
jective of Eq. (2) is to learn an optimal transport matrix π(v).
Intuitively, each entry π

(v)
i,j records the unnormalized transfer

probability from the i-th node to the j-th anchor.
However, general OT like Eq. (2) can only find the best

mapping at the feature level and ignore the mapping at the
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topological level for graph data, resulting in the suboptimal
solution. Considering this issue, we resort to the GW-OT,
which emphasizes maintaining the structural variance in dis-
tribution transferring. Thus, it is used to perform the topology
alignment between anchor topology and multi-view topolo-
gies. First, the anchor graph S ∈ RM×M is constructed
based on anchor relationships. The definition of GW-OT is
expressed as follows.
Definition 1. Given two metric measure spaces M1 =
(V1,D1, µ1) andM2 = (V2,D2, µ2) with size N1 and N2,
where V1 and V2 denote the node sets, D1 and D2 denote the
distance matrices, µ1 and µ2 denote the data marginal distri-
butions. Then, the GW-OT distance between the two metric
measure spaces is defined as

inf
π∈Π

N1∑
i,j

N2∑
k,l

([D1]i,j − [D2]k,l)
p
πi,kπj,l

s.t. Π = {π ∈ RN1×N2
+ |π1N2 = µ1, π

T1N1 = µ2},

(3)

In terms of structures, the alignment between anchor topol-
ogy and the i-th view’s topology based on Definition 1 is for-
mulated as

min
π(v)∈Π

N∑
i,j

M∑
k,l

∣∣∣[A(v)]i,j − [S]k,l

∣∣∣π(v)
i,k π

(v)
j,l ,

s.t. Π = {π(v) ∈ RN×M
+ |π(v)1M = ν, π(v)T 1N = µ}.

(4)

Incorporating alignments of feature and topology, the fused
GW-OT problem between anchor graph and the i-th view’s
graph is formulated as

min
π(v)∈Π

N∑
i,j

M∑
k,l

(
(1− α)(−[P]k[Z

(v)T ]i)

+α
∣∣∣[A(v)]i,j − [S]k,l

∣∣∣)π(v)
i,k π

(v)
j,l − ϵH(π)

s.t. Π = {π(v) ∈ RN×M
+ |π(v)1M = ν, π(v)T 1N = µ},

(5)

where α denotes the trade-off parameter that regulates the
strength of topology alignment. The fused GW-OT simulta-
neously performs the distribution matching from feature and
structure, more accurately locating the anchors in the global
space. For the problem (5), we use the solution proposed by
[Titouan et al., 2019] for finding an optimal transport matrix
π(v). Based on π(v), the normalized node-anchor assignment
matrix Q(v) can be obtained by

[Q(v)]n,m =
[π(v)]n,m∑
m′ [π(v)]n,m′

. (6)

[Q(v)]n,m is viewed as the transfer probability from the n-
th node to the m-th anchor, and larger indicates that the two
are closer together. As mentioned above, PZ(v)T depicts the
similarity between graph embedding Z(v) and anchors P, the
normalized similarity is also viewed as the transfer probabil-
ity matrix, which is formulated as

[F(v)]n,m =
exp

(
[Z(v)]n[P

T ]m/τ
)∑

m′ exp
(
[Z(v)]n[PT ]m′/τ

) . (7)

Then, we expect to draw F(v) closer to Q(v), since the lat-
ter is optimal. Notably, anchor graph S is conducted by
F(v)F(v)T for each view. By constructing this optimization
objective, the anchors can be iteratively optimized. In gen-
eral, to achieve view alignment, F(v) has to be drawn closer
to {Q(u)}u ̸=v in pairs, but the cross-computation imposes
an excessive computational burden. To simplify the calcu-
lation, we obtain a uniform transfer probability matrix F via
F = 1

V

∑
v F

(v), then the cross-entropy (CE) between Q(v)

and F is written as

Lce = −
1

V

V∑
v=1

N∑
n=1

M∑
m=1

(
[Q(v)]n,m log[F]n,m

)
. (8)

3.3 Consistent Context-Aware Representation
How to effectively handle multi-view graph embeddings is
consistently a principal concern in MVGC. To fuse the com-
plementary information in multi-view graphs, we leverage the
attention mechanism to adaptively integrate multi-view graph
embeddings into a consistent representation. As well known,
the attention mechanism essentially measures the contribu-
tion of various components. Different from the common
weighting mechanism, which assigns a view-level weight for
each view by assessing the similarities of view-specific repre-
sentations to consistent representation, the adopted weighting
manner based on attention mechanism is at the element-level
and more flexible in assessing in the importance of different
views. Specifically, the attention layer is introduced for the
fusion, the calculation is formulated as

Z = σ

(
V∑

v=1

Wa(D
(v)−

1
2 Â(v)D(v)−

1
2 Z

(v)
L−1W

(v)
L )

)
, (9)

where σ(·) denotes the activation function, L is the number of
layers, Wa denotes the parameters of attention layer. Z is the
consistent representation incorporating complementary infor-
mation from multiple views with a balanced manner. Then,
the consistent context-aware representation Zc can be further
obtained via Zc = ZPT . Simply speaking, we transform
the consistent representation Z into the global coordinate by
connecting with the anchors P. Since the anchors span the
whole global space, the global manifold structure can be per-
ceived. Therefore, Zc is considered to be context aware. Fur-
thermore, to enhance the clustering structure of embedding
space, the self-training strategy is imposed on Zc with fol-
lowing optimization objective:

Lclu = KL(U||V) =

N∑
i

C∑
j

[U]i,j log
[U]i,j
[V]i,j

, (10)

where C denotes the number of categories, U ∈ RN×C is the
target distribution, V ∈ RN×C is the prediction distribution.
[V]i,j describes the probability that the i-th sample belongs
to the j-th cluster center, which is computed by

[V]i,j =

(
1 + ||[Zc]i − ρj ||2

)− ξ+1
2∑

j′

(
1 + ||[Zc]i − ρj′ ||2

)− ξ+1
2

, (11)
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where ρ = [ρ1, ...,ρC ] is the learnable cluster centroids,
[Zc]i is the embedding for the i-th sample, ξ is the hyperpa-
rameter adjusting the tightness of prediction distribution V.
Based on V, the target distribution U is calculated by

[U]i,j =
[V]2i,j/

∑
i′ [V]i′ ,j∑

j′

(
[V]2

i,j′
/
∑

j′ [V]i,j′
) . (12)

Lclu draws the prediction distribution V closer to the target
distribution U, aiming to make the samples in same clusters
more compact and in various clusters more distant. Finally,
the overall loss function is formulated as

L = Lce + λLclu, (13)

where λ denotes the trade-off parameter. The overall loss L
guides the training of multi-view GCNs {fv}Vv=1 and global
anchors P. After the training process, the consistent context-
aware representation Zc is explored, then the Kmeans algo-
rithm is used to obtain the final clustering results. Algorithm
1 lists the main steps of the proposed CCARL.

4 Experiments
4.1 Datasets
Four real-world multi-view graph datasets are selected to con-
duct the experiments, including AMINER, BDGP, IMDB,
and YELP. Specifically, AMINER is an academic graph net-
work, recording the relationships of 6,564 papers, four cate-
gories and two views are included. BDGP is a genetic graph
network containing 2,500 samples covering five categories, it
records two kinds of topologies. IMDB is a movie network
containing 4,780 movies with three classes, two kinds of re-
lationships are recorded. YELP is a business network with
2,614 nodes covering three classes of nodes, three views are
contained.

4.2 Compared Methods
We compare the proposed CCARL with fifteen algorithms,
which are classified into three categories. Specifically,
Kmeans [Krishna and Murty, 1999], LINE [Tang et al.,
2015], GAE [Kipf and Welling, 2016] are three typical
single-view clustering algorithm. When using the Kmeans,
only the data feature is fed. The best performance is reported
among all views for LINE and GAE. SwMC [Nie et al.,
2017], GMC [Wang et al., 2020], CGL [Li et al., 2022],
RCAGL [Liu et al., 2024b] are four conventional MVGC
methods with decoupled processing features and topologies.
O2MA [Fan et al., 2020], O2MAC [Fan et al., 2020],
MvAGC [Lin et al., 2023], AHMcV [Pan and Kang, 2023],
CMGEC [Wang et al., 2023], LMGEC [Fettal et al., 2023],
CMAGC [Chen et al., 2024], DIAGC [Lin et al., 2024] are
eight GCN-based MVGC approaches.

4.3 Performance Comparison
The experimental results on four multi-view graph datasets
are reported in Tables 1 and 2. Three salient observations are
revealed. First, the single-view approaches achieve inferior
performance, even when picking the best among all views,
the results are less than satisfactory, which is because it is

Algorithm 1 The main steps of CCARL

Input: Multi-view graph G = {G(v)}Vv=1, the number of
anchors M , the trade-off parameters α and ϵ in fused
GW-OT, the regularization parameter λ, training epoch
E, learning rate η.

Output: The consistent context-aware representation Zc.
1: for e = 1 : E do
2: for view v = 1 : V do
3: Calculate the transport matrix π(v) via the fused

GW-OT;
4: // Normalize π(v) to the assignment matrix Q(v) //
5: Q(v) ← Normalize(π(v)) via Eq. (6);
6: // Calculate the transfer probability matrix F(v) //
7: F(v) ← Softmax(Z(v)PT ) via Eq. (7);
8: end for
9: Obtain the uniform transfer probability matrix F via

F = 1
V

∑
v F

(v);
10: // Calculate the CE loss //
11: Lce ← 1

V

∑
v CE(Q

(v),F) via Eq. (8);
12: // Embedding fusion via attention mechanism //
13: Z← Attention(Wa, {Z(v)}Vv=1) via Eq. (9);
14: Obtain the consistent context-aware representation Zc

via Zc = ZPT ;
15: Calculate the predicted distribution V and target dis-

tribution U via Eqs. (11) and (12), respectively;
16: // Calculate the clustering loss //
17: Lclu ← KL(U||V);
18: L ← Lce + λLclu;
19: // Update the multi-view GCNs and global anchors //
20: fv ← fv − η∇L;
21: P← P− η∇L;
22: end for
23: Perform Kmeans algorithm on the consistent context-

aware representation Zc to acquire the clustering results.

difficult to get a clear depiction of samples from the single-
view data. Second, the conventional MVGC approaches im-
proves the performance compared to single-view ones, but
shallow variables and decoupled graph processing limit their
abilities to capture the complicated data distributions. Third,
the GCN-based approaches bring the performance to the fore-
front. Undoubtedly, GCN has better expression capability for
graph data. However, all these methods only focus on the
aggregation of local information and ignore the global con-
textual information, which may cause difficulties in cluster-
ing. Hence, the proposed CCARL aims to establish the new
coordinate in global space, based on which the consistent
context-aware representation is explored. This ability helps
CCARL achieve the optimal results. In addition, the visual-
izations on BDGP dataset are presented in Fig. 3. It can be
seen that CCARL achieves better intra-class aggregation and
inter-class separation compared to other MVGC algorithms.

4.4 Ablation Study
Three important components GW-OT, Attention, ST (Self-
training) are ablated to verify their roles, the ablation results
are reported in Tables 3 and 4. Notably, when GW-OT is dis-
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AMINER BDGPMethod ACC NMI Purity ARI Fscore Precision ACC NMI Purity ARI Fscore Precision
Kmeans 38.68 23.60 69.40 - 53.68 51.69 71.36 58.55 66.20 35.60 63.94 63.73
LINEbest 26.68 0.10 62.72 0.07 30.12 37.65 21.96 0.17 40.00 -0.02 20.24 20.11
GAEbest 42.77 13.14 68.76 1.75 44.54 45.91 31.08 7.09 47.76 4.37 25.90 24.62
SwMC 61.64 33.95 73.77 22.21 55.18 48.91 72.44 73.36 77.96 64.39 72.48 63.73
GMC 49.77 15.28 62.16 1.82 48.47 38.32 56.60 51.07 58.60 42.21 57.87 42.64
CGL 51.01 0.93 54.71 2.23 51.50 36.81 36.40 17.17 37.04 13.57 34.05 28.70

RCAGL 50.42 14.11 61.56 0.19 48.01 37.48 78.64 55.84 78.64 55.52 64.60 63.18
O2MA 52.25 35.44 74.36 29.91 57.48 61.59 53.40 35.74 68.68 31.99 45.22 44.24

O2MAC 50.91 34.37 74.50 29.01 56.31 61.04 51.08 34.29 65.00 30.00 43.90 43.12
MvAGC 55.63 16.33 70.88 10.65 55.76 46.41 82.32 69.57 89.56 58.16 74.09 74.65
AHMcV 57.51 31.10 70.64 26.74 60.51 63.77 87.20 70.95 87.72 71.06 77.83 78.08
CMGEC 58.83 32.23 77.42 32.29 54.68 59.07 89.20 79.59 91.96 77.41 82.57 82.16
LMGEC 61.76 35.61 80.83 21.57 61.06 59.54 67.52 55.73 67.64 35.49 58.42 60.73
CMAGC 60.91 34.41 74.79 29.63 52.61 59.75 86.88 77.65 88.08 72.89 80.32 79.65
DIAGC 55.24 26.64 75.81 24.44 51.48 56.46 52.80 27.88 56.36 21.42 40.26 39.37
CCARL 73.96 39.11 83.47 53.94 66.30 63.76 91.08 81.08 94.36 80.11 84.59 84.44

Table 1: Comparison of experimental results (%) on AMINER and BDGP datasets for all compared methods, the optimal results are bolded
and the suboptimal results are underlined.

IMDB YELPMethod ACC NMI Purity ARI Fscore Precision ACC NMI Purity ARI Fscore Precision
Kmeans 53.43 0.41 55.73 1.79 51.84 40.61 49.08 15.13 81.34 5.25 57.48 43.41
LINEbest 36.55 0.10 54.58 0.20 36.74 40.47 34.39 0.02 82.02 -0.08 35.17 36.88
GAEbest 43.87 0.53 54.58 0.46 48.15 40.68 65.15 38.66 82.01 42.33 62.35 61.36
SwMC 54.75 0.46 54.98 0.39 57.37 40.51 46.79 9.10 54.59 7.04 41.73 41.20
GMC 54.37 0.29 54.71 0.00 57.37 40.39 43.69 1.54 44.30 0.52 52.22 37.02
CGL 37.68 0.00 54.58 0.00 38.66 40.40 35.34 0.00 42.19 0.00 35.16 36.84

RCAGL 48.09 0.10 54.58 0.25 49.57 40.49 61.17 25.80 66.56 27.81 56.74 52.18
O2MA 49.77 5.18 61.95 5.43 43.71 43.79 65.07 39.02 82.01 42.53 62.40 61.63

O2MAC 48.74 3.50 59.10 4.25 42.53 42.60 46.25 4.74 82.02 5.60 38.77 40.53
MvAGC 55.50 2.30 59.16 5.71 53.22 41.73 70.39 32.93 83.58 37.00 61.70 56.68
AHMcV 55.25 1.80 60.21 4.34 31.88 41.50 64.31 42.30 76.17 31.90 66.95 57.67
CMGEC 46.67 0.11 54.58 0.41 47.88 40.45 64.30 38.21 82.01 41.94 61.81 61.53
LMGEC 56.17 3.81 62.41 9.74 51.85 42.79 69.17 44.22 82.02 44.82 65.68 64.75
CMAGC 54.06 4.33 63.10 9.06 43.44 43.54 67.71 35.78 82.02 36.65 63.59 54.81
DIAGC 58.39 6.58 66.27 13.16 43.01 45.06 65.34 39.26 82.02 42.85 62.64 61.73
CCARL 61.51 9.59 68.24 16.60 53.45 46.25 73.60 44.83 82.02 46.34 70.97 61.57

Table 2: Comparison of experimental results (%) on IMDB and YELP datasets for all compared methods, the optimal results are bolded and
the suboptimal results are underlined.

carded, only the general OT is used for distribution alignment
at the node feature level. Overall, each component plays an
influential role in achieving the best results, the absence of
any one can result in the performance degradation. Interest-
ingly, the performance drops the most when the self-training
strategy is removed, which means it has a more crucial ef-
fect. This is because the clustering task puts more emphasis
on intra-class aggregation.

4.5 Parameter Sensitivity Investigation
The proposed CCARL contains three important trade-off pa-
rameters for balancing the optimization objective, including
α, ϵ, and λ. Fig. 4 shows the effect on the results with
different values for α and ϵ, where α and ϵ are varied in

AMINERGW-OT Attention ST ACC NMI ARI Fscore
✗ ✓ ✓ 63.54 36.47 38.82 57.98
✓ ✗ ✓ 69.15 34.53 48.13 59.11
✓ ✓ ✗ 62.07 23.42 31.58 50.96
✓ ✓ ✓ 73.96 39.11 53.94 66.30

Table 3: Ablation results (%) with respect to three components on
AMINER dataset, where ST denotes the self-training strategy.

{0.1, ..., 0.9}, {0.01, ..., 1}, respectively. It can be observed
that different datasets are not equally tolerant to the value in-
tervals, the proposed CCARL is more sensitive on AMINER
dataset than YELP dataset, indicating that suitable values are
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(b) MvAGC (c) AHMcV (d) CMGEC(a) O2MA

(e) LMGEC (f) CMAGC (g) DIAGC (h) CCARL

Figure 3: Scatter visualizations on BDGP dataset for eight MVGL methods, where the t-SNE is used for dimension reduction and different
colors indicate different clusters.

necessary. Analogously, this situation is also shown for λ in
Fig. 5, a larger λ induces a significant performance decrease
on AMINER dataset. The reason for this is that the target dis-
tribution is inaccurate at the early training, then causing the
model to converge to a undesirable solution.

YELPGW-OT Attention ST ACC NMI ARI Fscore
✗ ✓ ✓ 71.77 40.65 43.85 68.41
✓ ✗ ✓ 72.49 41.13 44.84 68.96
✓ ✓ ✗ 68.86 36.84 41.28 64.03
✓ ✓ ✓ 73.60 44.83 46.34 70.97

Table 4: Ablation results (%) with respect to three components on
YELP dataset, where ST denotes the self-training strategy.

(a) AMINER (b) YELP

Figure 4: Sensitivity study with respect to α and ϵ on AMINER
and YELP datasets, where α and ϵ are varied in {0.1, ..., 0.9},
{0.01, ..., 1}.

5 Conclusion
In this paper, we propose a novel consistent context-aware
representation learning approach for MVGC, which learns

(a) AMINER (b) YELP

Figure 5: Sensitivity study with respect to λ on AMINER and YELP
datasets, where λ is varied in {0.001, ..., 10}.

from the global space and is not limited to the local struc-
tures. To outline the global space, a set of anchors are de-
fined. Then, the anchor graph is optimally mapped to multi-
view graphs via the fused GW-OT. The attention mechanism
is employed for adaptively fusing the complementary infor-
mation in multiple graph embeddings. After that, a consis-
tent representation is obtained. Through the transformation
of global coordinate spanned by anchors, the consistent repre-
sentation is equipped with the contextual information, achiev-
ing the better clustering. However, the multi-view graph data
is frequently incomplete in the practical applications, which
imposes a tricky challenge for the distribution matching pro-
cess via the fused GW-OT. Therefore, in the future work, we
will further optimize the fused GW-OT procedure to adapt it
to the incomplete scenario.
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