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Abstract

Blind image assessment aims to simulate human
prediction of image quality distortion levels and
provide quality scores. However, existing uni-
modal quality indicators have limited representa-
tional ability when facing complex contents and
distortion types, and the predicted scores also fail
to provide explanatory reasons, which further af-
fects the credibility of their prediction results. To
address these challenges, we propose a multimodal
quality indicator with explanatory text descriptions,
called kgMBQA. Specifically, we construct an im-
age quality knowledge graph and conduct in-depth
mining to generate explanatory texts. The text
modality is further aligned and fused with the im-
age modality, thereby improving the model per-
formance while also outputting its corresponding
quality explanatory description. The experimen-
tal results demonstrate that our kgMBQA achieves
the best performance compared to recent represen-
tative methods on the KonlQ-10k, LIVE Challenge,
BIQ2021, TID2013, and AIGC-3K datasets.

1 Introduction

With the rapid development of multimedia, social networks
generate billions of digital images every day. However,
throughout their entire lifecycle, including stages such as ac-
quisition, processing, compression, transmission and display,
these images inevitably generate distortion [Zhai and Min,
2020; Wang et al., 2025], leading to visual quality changes.
Low-quality images not only provide visual experiences for
users but can also have serious negative impacts on ma-
chine vision (e.g., classification, recognition, and segmenta-
tion). Therefore, developing reliable image quality assess-
ment (IQA) models is a highly hot research topic.

Existing blind IQA methods can be categorized into tradi-
tional and deep learning methods [Wang er al., 2024]. Tradi-
tional IQAs generally predict quality scores by utilizing sta-
tistical features, such as texture [Liu and Liu, 2017], struc-
tural information [Liu et al., 2019], and semantic informa-
tion [Siahaan et al., 2018]. However, these methods heavily
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Figure 1: Illustration of the proposed multimodal blind image qual-
ity assessment method with explanatory text descriptions (kgM-
BQA), using quality knowledge graph construction (QKGC).

rely on the selected features, making it difficult to comprehen-
sively express the quality information of various content. In
contrast, deep learning-based IQAs have developed rapidly,
including adaptive network proposed to address the diversity
of authentic distortions [Su et al., 2020], hybrid dataset it-
erative training strategies proposed to solve the problem of
insufficient training samples [Sun et al., 2023], and the in-
troduction of meta-learning to address generalization issues
[Zhu et al., 2020]. Although these IQA models have achieved
promising results, they use quantitative scores to represent
image quality and seldom provide semantic text descriptions
that humans are more adept at using to perceive visual qual-
ity. As a result, this makes it difficult for users to understand
the predicted quality results.

In view of this, we propose a knowledge graph-based mul-
timodal blind quality assessment (kgMBQA) framework with
explanatory text description, as shown in Figure 1. Specif-
ically, we generate explanatory texts by a quality knowl-
edge graph, which consists of a global quality representa-
tion and a local quality representation. Subsequently, we uti-
lize Llama3.2 to remove parts of the unrelated text, generat-
ing information-rich explanatory text consistent with human
quality perception system. This text modality and the image
modality are used as the inputs to obtain quality scores as well
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as interpretable quality descriptions. To effectively fuse text
and image features, a multimodal learning framework is also
developed. Our contributions are summarized as follows.

* To generate explanatory descriptions for blind IQAs,
we propose a quality knowledge graph to generate the
text modality, consisting of the quality descriptions from
global and local views.

To enhance visual quality descriptions, we utilize a large
language model (LLM) to integrate global and local
texts. Specifically, we obtain effective prompts to guide
the LLM in better removing irrelevant descriptions,
thereby improving quality assessment performance.

L]

To address the heterogeneity between image and text
modalities, we further design three key network modules
in multimodal learning: feature extraction, fusion, and
prediction head, aiming to further enhance the quality
prediction accuracy. Experimental results validate the
superior performance of our method on five benchmark
image datasets.

2 Related Work

We review recent advances from the perspectives of unimodal
and multimodal image quality assessment methods.

2.1 Unimodal Methods

Recently, a significant progress has been made in single
modality quality assessment methods. For instance, Liu ef al.
proposed the RankIQA method [Liu et al., 2017]. Yan et al.
introduced a two-stream convolutional network comprising
two subcomponents that process the raw image and gradient
image to more effectively learn image feature representations
[Yan ez al., 2018]. Zhu et al. presented a meta-learning-based
blind IQA approach [Zhu et al., 2020], allowing it to easily
adapt to unknown distortions. Zhang et al. trained a con-
volutional network to improve the characterization of image
distortion [Zhang et al., 2021]. Yang et al. introduced the
multi-dimensional attention network (MANIQA) to improve
performance on GAN-based distortions [Yang et al., 2022].
Madhusudana et al. proposed an improved convolutional net-
work to obtain the type and degree of image distortions [Mad-
husudana et al., 2022]. Golestaneh et al. first extracted local
image features and then used the Transformer to address the
locality bias issue, thereby obtaining more accurate predic-
tion [Golestaneh et al., 2022]. Qin ef al. proposed a light-
weight architecture based on Transformer that efficiently gen-
erates quality-aware features with less data to reduce predic-
tion uncertainty [Qin et al., 2023]. To address the complex-
ity and diversity of distortion types in natural images, Saha
et al. presented the Re-IQA by training a quality-aware and
content-aware model via unsupervised methods [Saha et al.,
2023]. Wang et al. has explored the CLIP ability to predict
the image quality [Wang et al., 2023]. Agnolucci et al. mod-
eled the image distortion manifold through self-supervised
learning [Agnolucci er al., 2024], thereby obtaining intrin-
sic quality representations and emphasizing the importance
of distortion type.
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Figure 2: Illustration of our quality knowledge graph construction.

2.2 Multimodal Methods

In addition, multimodal information has been introduced into
the field of quality assessment region. For instance, Patil et
al. proposed a multispectral-oriented multimodal blind IQA
method for satellite stereoscopic images [Patil and Mane,
2024]. To address the complex characterization of noise in
low-light images, Wang et al. proposed a multimodal blind
IQA framework for low-light images using textual descrip-
tions and image content, effectively improving prediction
performance [Wang er al., 2024]. Yuan er al. proposed a
Text-Image Encoder-based Regression (TIER) framework to
tackle issues in Al-generated image (AIGI) quality assess-
ment based on human perception (AIGCIQA) [Yuan er al.,
2024]. Luu et al. introduced a blind IQA model based on
multimodal prompt learning, utilizing the pre-trained MaPLe
network [Luu er al., 2023]. You er al. proposed the De-
pictQA, a painting image quality indicator based on a mul-
timodal large language model, which overcomes the limita-
tions of traditional score-based methods through descriptive
and comparative evaluations [You er al., 2023].

3 Methodology

Our kgMBQA consists of two main parts: quality knowledge
graph construction (QKGC) and multimodal quality learning
(MQL). The overall pipeline is shown in Figure 2.

3.1 Quality Knowledge Graph Construction

In the QKGC module, we build a quality knowledge graph,
which is comprised of an entity set F, a relation edge set
R, and an attribute set A, denoting as the triple (E, R, A).
Specifically, E is further partitioned into two subsets: the
normal entity set N and the quality entity set (), expressed
as E = N U Q. R encompasses three subsets: the textual re-
lation subset R;, the spacial relation subset R, and the sub-
set Ry formed by new relation edges derived from knowledge
reasoning, that is, R = R; U Ry U Ry. Currently, only the
embedded positional information of A is utilized to discrimi-
nate among entities. Consequently, A contains solely the po-
sitional information as its sole element type.

Entity Extraction Module. For a given image X4, we
aim to extract the entity information that is representative and
can fully reflect the perceived image quality. Specifically, an
entity extraction module is established by combining an in-
stance detector F;,s (-) and a text decoder Figr. Fins (+) is
used to detect the target elements, and then the text decoder
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is utilized to convert the detected elements into text descrip-
tions, thus obtaining the corresponding entity information.
This entity information includes the entity N and its posi-
tion (‘entity’ + ‘position’), providing a basis for subsequent
processing such as relation construction.

In F;,s (+), we consider a visual encoder Fy ;7 (-) and a
foreground object extractor Fopject () to obtain local fore-
ground object features. First, to more effectively extract im-
age contextual features for extracting entities, we employ
a visual encoder backbone with a global self-attention, de-
noted as Fy;r(-). To address the incompatibility between
image contextual feature scales and foreground object extrac-
tor Fopject (+), we further introduce a five-level feature pyra-
mid network model {1, -, 25, &, 15< }, denoted as Fpy-(+).
Second, we employ a two-stage foreground object extractor
Fobject(+), consisting of a proposal generator and a region-of-
interest head to detect foreground objects through bounding
boxes and object scores.

‘/—"ins () = fobject(fpyr(fViT ())) (1)

In the text decoder, we generate corresponding foreground

object text descriptions from the object features obtained in
the instance detector. Specifically, we resize these object
features to a fixed size (e.g., 32x32), then flatten them into
one-dimensional vectors, resulting in 7,;. Further, we feed
these into a text decoder with a start token ‘[Dense Caption]’,
which generates text tokens in an auto-regressive manner un-
til the end token ‘[EOF]’ is generated. However, when the
text descriptions are used to name entities, it will result in
different entities having the same text description. Therefore,
we propose to embed the position information into the enti-
ties through the position embedding and use it as an attribute
of the entities, so that each entity can be unique.
Relation Construction Module. The relation construction
module serves as a linchpin within the overall QKGC system.
By capitalizing on textual relation construction, space rela-
tion construction and knowledge transmission, it constructs
the edge relations among entities embedded with position in-
formation, culminating in the generation of the ultimate qual-
ity knowledge graph.

To be more precise, image captions are incorporated to for-
mulate semantic edges interconnecting relevant entities. For
example, BLIP-V2 [Li et al., 2023b] is employed to gener-
ate captions. Subsequently, entities are distilled from these
captions via text matching techniques, while the residual text
descriptions lying between the entities are designated as the
relationship edges. Meanwhile, with the aim of bolstering
the quality relevance to a greater extent, a quality descrip-
tor is brought into this process with a well-trained ResNet-34
model as its basis. We map the distortion intensities from
low to high to five levels in the subjective quality assessment:
{“Excellent Quality’, ‘Good Quality’, ‘Fair Quality’, ‘Poor
Quality’, ‘Bad Quality’}, and convert them into commonly
used verbal descriptions to more clearly express the subjec-
tive feelings. For ease of classification, we have normalized
the subjective scores of the training images, where the sub-
jective score intervals are (0.85, 1], (0.7, 0.85], (0.55, 0.7],
(0.4, 0.55], and [0, 0.4], corresponding to the five quality lev-
els mentioned above. Our quality descriptor introduces a new

entity (), and it has a descriptive relationship with the entities
in the caption, that is (), describe, V).

In the spacial relation construction module, by comparing
the positional attributes of different entities, we can derive
the ‘inclusion’ relationship (where the position of entity X
completely encompasses that of entity Y') and the ‘side’ rela-
tionship (where the position of entity X and that of entity Y
are right next to each other).

In the knowledge reasoning module, the pre-existing

knowledge gets disseminated in accordance with the ‘inclu-
sion’ relationship among entities. Let us assume there exist
entities X and Y having the relationship (e.g., X includes Y).
In such a case, the novel relationship set for entities X and Y’
is formulated by taking the union of the relationship set of en-
tity X and that of entity Y, which can be precisely expressed
as Rxuy = Rx U Ry.
Explanatory Text Generation We combine the resulted
quality knowledge graph with independently designed ques-
tions to form our ‘Prompt’. This ‘Prompt’ information is then
input into Llama3.2-11B [Touvron er al., 2023] for informa-
tion filtering and integration, resulting in the final explanatory
image quality text modality Xy,;.

For example, the specific structure of our ‘Prompt’ is given
as follows. First, there is the guiding text with the specific
content: “Here is the reference information:”, indicating to
the model that this is the knowledge graph we have con-
structed and can be used as the reference information. Next,
we input the quality knowledge graph through sets of triples
with a specific structure of (head entity, relationship, tail en-
tity). As a result, our question can be with the specific con-
tent: “Based on the reference information, please summarize
the clarity, contrast, color accuracy, brightness uniformity,
detail preservation, and whether there are factors such as
noise, blur or distortion of the image, so as to summarize the
quality description of the main image content in a sentence of
no more than 30 words.” By integrating our quality knowl-
edge graph, the model can effectively overcome the halluci-
nation phenomenon and has a better effect on image quality
description.

3.2 Multimodal Quality Learning

Our mulimodal quality learning (MQL) module consists of
three parts, as shown in Figure 3: an image-text feature ex-
traction module, a multimodal feature fusion module, and a
quality prediction head.

Image-Text Feature Extraction. We have designed an ef-
fective image feature extractor F;,,,. For convenience, we
choose ResNet-50 as the backbone, and add a convolutional
neural network (CNN) block to the features extracted from
each stage of the backbone to enrich the features. The CNN
block is composed of three stacked convolutional layers: the
first convolutional layer has a stride of one and reduces the
input channel dimension to one-fourth of the original, mak-
ing the channel information more compact; the second con-
volutional layer has a stride of three and performs an identity
mapping on the channels to enrich the channel information;
the third convolutional layer has a stride of one and maps the
channels to the target channel dimension. The features ex-
tracted after enrichment at each stage are summed up to ob-
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Figure 3: Illustration of the proposed multimodal quality learning (MQL) framework. It consists of 1) an image-text feature extraction module
that extracts the basic features of images and texts, 2) a multimodel fusion module which fuses the image and text features, and 3) a quality
prediction head which is a simple fully-connected layer to predict the quality score.

tain our preliminary image features. Subsequently, to facili-
tate interaction with text features more conveniently, we map
the channel dimension to the specified dimension through a
fully-connected layer to obtain the image feature F;,, .
Furthermore, to reduce the burden on computing resources,
we propose a sequence aggregator, which merge the spatial
information of the resulted features through a multi-head self-
attention with 32 heads and an L2 normalization layer JF,, ;- ,

obtaining the final feature f‘img:

f‘img - fnorm(fmhsa(fimg(ximg))a (2)

where F,snq tepresents a 32-head self-attention pooling
module, and the projection dimension is set to 2048.

For the input text X;,, we first perform a tokenization op-
eration using the BERT vocabulary. Subsequently, we carry
out padding or truncation processing, and adjust the channel
dimension to 512. We have designed a text feature extrac-
tor F;;: that has an embedding layer capable of converting
text features into continuous dense vectors. Then, we use
learnable position encoding F,,, to achieve the position em-
bedding. To effectively highlight the features of the quality
description part, we extract the text features Fy,; by stacking
12 encoder blocks of the Transformer with 32-head encoder.
Considering the limitations of computing resources, we adopt
the same structure as the image feature extractor F;,,,, that
is, we use a sequence aggregator to aggregate the informa-
tion of the text features, and finally obtain the required text

features F'; ;.

tht = fnorm(thsa(ftazt(xtxt)))' (3)

Multimodal Feature Fusion. To enrich multimodal features,
we utilize a multi-head self-attention mechanism: the ob-
tained image feature F,,, 4 is used as the query, and the non-
dimensional-reduced image feature F,,  is used as the key
and value to guide the feature interaction, thereby further ag-
gregating the global information and obtaining the interacted
image feature f‘img. The same operation is carried out on the

text features to obtain tht-

For the enhanced features Fimg and Fmt, we need to con-
duct further intra-modal feature interactions to explore richer
semantic information and potential correlations within each
respective modality.

We quantify the relative disparity between the two en-
hanced features, namely f‘img and f‘mt, by leveraging the
cosine similarity metric. In the process of feature fusion,
our objective is to construct an embedding space in which the
paired ]?‘img and Fy, originating from the same instance are
in close proximity to one another, whereas the non-paired fea-
tures derived from different instances are substantially sepa-
rated in the feature space.

For example, given the i-th image feature FZm , and the j-th

text feature Fgrt in the current training batch B, the matching
probability can be expressed as:

P} Fl.
exp(( T et=) /7)

mQH [

Pimg (Za .7) Bk &7 ’ (4)
OF,,
img _
Lken exp((an )/ ™)
where (©) represents the dot product, ||-|| denotes the Eu-

clidean distance, and 7 represents the temperature parame-
ter, with an empirical value of 0.07. Similarly, the match-
ing probability between the j-th text feature and the i-th im-
age feature in the current training batch B is expressed as
P,.:(j,i). We need to ensure that the matching probabil-
ity of Fmg and Ftu in each training batch is maximized,
that is, Ping(i,1) = maxpepPimg(i, k) and Py (j,7) =
maxyepPirt(k, j). Therefore, the learning objective for our
multimodal feature alignment is:

max log ZP””Q i) + ZPm:t ) S))

Oimg,0tot ;

Quality Prediction Head. The multimodal feature fusion
module integrates Flmg and tht to predict the overall image
quality score. The feature fusion module combines comple-
mentary information and broadens the feature representation
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Datasets | Year | Number | Dis-type Size label
LIVE-Challenge | 2015 1162 Authentic | 500x500 | MOS
KonIQ-10k | 2020 | 10073 | Authentic | 1024x768 | MOS
BIQ2021 | 2022 | 12000 | Authentic | 512x384 | MOS
TID2013 | 2015 3000 Synthetic | 512x512 | MOS
AIGC-3K | 2023 2982 Synthetic | 512x512 | MOS

Table 1: Summary of datasets used in the validation of our method,
including dataset names, publication years, number of images, dis-
tortion types (Authentic or Synthetic), image sizes, and the type of
labels (Mean Opinion Score, MOS).

capability. We first perform L2 normalization on the aligned
features, concatenate them horizontally to get fused features,
and then pass it through a fully connected layer to obtain the
final predicted score.

Fimg tht
= y T A
[Eimgll - [[Feat]

where W denotes the weight vector of size 1x128 for the
fully-connected layer, where it is multiplied with the output
of the concatenated and potentially transformed feature vec-
tor from the fusion process. b denotes the bias term that is
a scalar value added to the result of the multiplication of the
feature vector with the weight vector to adjust the final pre-
dicted score. The loss function of our model uses the mean
squared error L, s, as shown in Figure 3.

),dim=1)x W+b.  (6)

score — ((

4 Experimental Validations

We have implemented the proposed kgMBQA on the PyTorch
platform, conducted comparison experiments with recent rep-
resentative methods, and carried out ablation experiments.

4.1 Experimental Setups

All experiments in this paper have been conducted on
a computing platform with an Intel(R) Xeon(R) Silver
42]10R@2.40GHz CPU, 62GB RAM, and NVIDIA Al100-
PCIE-40GB <6 GPUs.

In the experiments, we randomly split the dataset into train-
ing, validation, and test sets in an 8:1:1 ratio. To allevi-
ate memory pressure, we crop the input images to 224 x224.
During the training, the initial learning rate is set to Se-5 and
decreased to 90% of the original value every 10 epochs. Ad-
ditionally, the batch size is set to 20, and the adaptive moment
estimation method (Adam) is used to optimize the learning
parameters. We directly use a pre-trained model [Wu ez al.,
2022] for local text generation. In the experiments, we train
our kgMBQA model for a total of 100 epochs.

4.2 Validation Datasets

We have carried out the comparison experiments on five dif-
ferent image datasets:

KonIQ-10k [Hosu et al., 2020]: This dataset contains
10,073 natural images with a resolution of 1024 x768. The
original images are selected by the authors from YFCCI100m
using an algorithm and do not undergo artificial distortion,
maintaining their authenticity. Each image score is obtained
through subjective evaluations conducted by crowdsourcing,
with the label recorded as the mean opinion score (MOS).

LIVE-Challenge [Ghadiyaram and Bovik, 2015]: This
dataset contains 1,162 natural images with a resolution of
500x500, covering various content, including faces, people,
animals, close-ups, wide-angle shots, and natural landscapes.
These images are captured by cameras, including various
types of distortions such as low light noise, motion blur, over-
exposure, underexposure, and compression artifacts. Subjec-
tive scores are obtained through crowdsourcing, with over
8,100 testers providing more than 350,000 ratings.

BIQ2021 [Ahmed and Asif, 2022]: Each image in the
BIQ2021 dataset has a MOS. This dataset is divided into three
subsets. The MOS values are scaled to a range of 0-1, and
classified into three categories according to the content type.
The first subset contains 2000 images selected from an image
gallery captured by Nisar Ahmed between 2007 and 2020.
These images have varying degrees and types of distortions
due to the use of various image acquisition devices, serving
as true representatives for evaluating IQA algorithms. The
second subset contains 2000 images that are captured specifi-
cally for image quality measurement. This subset ensures the
coverage of the entire spectrum of quality scores by introduc-
ing images ranging from the worst to the best. The third sub-
set contains 8000 images acquired from Unsplash.com. The
downloaded images are searched using various keywords to
introduce content diversity and are specifically chosen. These
scores are derived from human observers with a scale from 1
to 5 (e.g., “excellent” to “very bad”). According to ITU-T
P.910 recommendations, using up to 30 diverse subjects en-
sures reliable judgments. The experiments are performed in
a controlled lab environment, and the average of the ratings
from 30 observers is used to obtain the MOS.

TID2013 [Ponomarenko et al., 2015]: TID2013 contains
25 reference images and 3,000 distorted images (25 reference
images x24 types of distortions x5 levels of distortions). The
reference images are obtained by cropping from the Kodak
Lossless True Color Image Suite. All images are saved in the
dataset in Bitmap format without any compression. The MOS
is obtained from the results of 971 experiments carried out by
observers from five countries (116 experiments in Finland, 72
in France, 80 in Italy, 602 in Ukraine, and 101 in the USA).
In total, 971 observers assess 524,340 comparisons of the vi-
sual quality of distorted images, or 1,048,680 evaluations of
relative visual quality in image pairs.

AIGC-3K [Li et al., 2023a]: The AIGC-3K dataset em-
ployed six different image generation models to generate
2,982 images. The MOS value is derived from a 14-session
experiment, involving 21 graduate students (10 males and 11
females, from 6 different countries) who have participated in
the rating process.

4.3 Evaluation Metrics

We use three commonly adopted evaluation metrics to mea-
sure the quality assessment results, including the Spearman
rank order correlation coefficient (SRCC), Pearson linear cor-
relation coefficient (PLCC), and root mean squared error
(RMSE). PLCC describes the linear correlation between the
distorted and original images, SRCC measures the monotonic
relationship, and RMSE represents the mean square error.
Both SRCC and PLCC range from O to 1. A superior per-
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' othods KonIQ-10k LIVE-Challenge BIQ2021 TID2013 AGIQA-3K
SRCCT PLCCT RMSE] | SRCCT PLCCT RMSE] | SRCC]  PLCCT RMSE] | SRCCT PLCCT RMSE] | SRCCT PLCCT RMSET
Zhu2020CVPR | 0.8555 0.8796  0.0839 | 0.7765 0.8037 0.1291 | 0.8367 0.8747 0.0923 | 0.9368 09575 0.0463 | 0.8457 0.8890 0.0955
Su2020CVPR | 0.8711 0.8811 0.0848 | 0.8000 0.8256 0.1236 | 0.8862 09001 0.0729 | 0.9644 09722 0.0391 | 0.7560 0.8289  0.1146
Zhang202ITIP | 0.8253 08316 0.1435 | 0.6936 07189  0.1845 | 0.8711 08711 0.8711 | 0.5770 0.6733 0.0688 | 0.7155 0.7751  0.0398
Madhusudana2022TIP | 0.8895 0.8896 0.0814 | 0.8218 07754 0.1346 | 0.7964 0.8327 0.1033 | 0.8181 08374 0.0956 | 0.7490 0.7818  0.1526
Golestaneh2022WACY | 0.8911  0.8814  0.0827 | 0.8483 0.8001 0.1911 | 0.8350 0.7939  0.1022 | 0.9711 09701 0.0410 | 0.8985 0.8632  0.0899
Yang2022CVPR | 0.9277 09412 0.0580 | 0.8773 0.9003  0.0935 | 0.9015 09198 0.0729 | 0.9644 09741 00379 | 0.8964 0.9268  0.0771
Sa2023CVPR | 0.7424 07665  0.1202 | 0.5517 0.5477 02065 | 0.6870 0.7574 0.1286 | 0.7511 0.8096 0.0980 | 0.7741 0.8216 0.1262
Qin2023AAAI | 0.8398 0.8391  0.1285 | 0.7788 0.8214 0.1193 | 0.8830 0.8923 0.0900 | 0.9708 09791  0.0394 | 0.8555 0.8981  0.0901

Wang2023AAAI | 0.6786  0.6945  0.2107 | 0.5905 0.5848  0.2274 | 0.6567 0.7569  0.2022 | 0.4994 0.5832 0.2148 | 0.6470 0.7075  0.3112
Agnolucci2024WACV | 0.8787 0.8856  0.1334 | 0.7722 0.8563  0.1739 | 0.7057 0.7603  0.7516 | 09163 09346 0.1697 | 0.8158 0.8739  0.0997
Proposed | 0.9442 09614  0.0480 | 0.9019 0.9486 0.0933 | 0.8880 0.9328 0.0699 | 0.9732 0.9793 0.0328 | 0.9570 0.9766 0.0584

Table 2: Quantitative comparison experiments. Performance comparison of different methods on five benchmark IQA datasets.

. LIVE-Challenge BIQ2021 TID2013 AGIQA 3K
Methods (train on KonlQ-10K) s proct  RMSE] [ SRCCT PLCCT  RMSE] | SRCC] PLCCT RMSE] | SRCCT PLCCT  RMSE]
Zhu2020CVPR | 07770 0.8344  0.1250 | 0.7386  0.7751 0.1301 | 0.4462 05777 0.1683 | 0.6297 0.6595 0.1980
Su2020CVPR | 07296 07911  0.1306 | 0.6760 07111  0.1306 | 04430 0.6017 0.1333 | 0.6657 0.7070  0.1449
Zhang2021TIP | 0.7164 07283  0.0661 | 02151 03944  0.0901 | 0.6283 0.6716 0.0825 | 0.6253 0.6898  0.0861
Madhusudana2022TIP | 0.6787 0.6781 0.1891 | 0.5904 0.6282  0.1578 | 03005 0.3057 0.1608 | 0.6305 0.6638 0.2178
Golestaneh2022WACY | 0.7964  0.7188  0.1291 | 07468 0.7042  0.1235 | 05978 05500 0.1378 | 0.6646 0.6716  0.1531
Yang2022CVPR | 0.8717 0.8946  0.0960 | 0.7727 0.8242 0.1052 | 04508 05727 0.1374 | 0.7443 07977  0.1238
Sa2023CVPR | 0.6133  0.6621 0.1744 | 05674 0.5867 0.1511 | 03156 04422 0.1711 | 0.5250 0.5775  0.2602
Qin2023AAAI | 07405 07570  0.1327 | 07671 07951 0.1149 | 04305 05191 0.1427 | 0.6570 0.6973  0.1469
Agnolucci2024WACV | 0.6710 07351  0.1674 | 0.7057 07603  0.1646 | 0.5839 0.6044  0.1322 | 0.6739  0.7129  0.1562
Proposed | 0.8911 09770  0.0630 | 0.7857 0.8396 0.0982 | 0.6166 07339  0.1090 | 0.7540 0.8612 0.1126

Table 3: Cross-dataset comparison. Methods are trained on KonlQ-10k, and tested on LIVE-Challenge, BIQ2021, TID2013, and AIGC-3K.
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a blurry person and a
white keyboard on a
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blue and yellow computer

ball on a black table

a with fair contrast,
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accuracy, and some detail preservation,
- “The noise and distortion. also with some noise and

= brown with i 1 he blur.
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The image features a
clear and vibrant beach
scene with accurate
color representation,
good contrast, and
preserved details, but
with a slightly cloudy
sky and minor noise.

The image features a
clear and vibrant beach
scene with accurate
g-aA color representation,
good contrast, and

h a Preserved details, but
e with a slightly cloudy
sky and minor noise.

The image quality is

excellent, featuring a
large pile of rocks in a
mountainous settin
large dark rock_an
large brown boulder are
also visible, along wit
brown rock overhang. Th
image is of high quality,
with clear details and a
sharp focus.

Figure 4: Qualitative comparison results of visual quality evaluation. The original mean opinion score (MOS) and the predicted quality score
are provided. For comparison, the generated explanatory texts of our kgMBQA are also provided.

formance should result in the absolute values of SRCC and

PLCC close to 1, and RMSE should close to 0.

4.4 Quantitative Experiments

Comparison Experiments. To demonstrate the over-
all performance of the model, we quantitatively com-
pared kgMBQA with ten representative blind IQA
methods, including Zhu2020CVPR [Zhu et al., 2020],

Su2020CVPR [Su et al., 20201, Zhang2021TIP [Zhang et
al., 20211, Madhusudana2022TIP [Madhusudana et al.,
2022], Golestaneh2022WACV [Golestaneh et al., 2022],
Yang2022CVPR [Yang et al., 2022], Sa2023CVPR [Saha et
al., 20231, Qin2023AAAI [Qin et al., 20231, Wang2023AAAI
[Wang et al., 2023], and Agnolucci2024WACV [Agnolucci et
al., 2024]. As shown in Table 2, our kgMBQA demonstrates
stable performance on different datasets, predicting the
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Method (a): Quality Knowledge Graph-based Prompt for LLaMa
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Description Text

{ [Prompt1]

Here is reference information:{The gazelle has excellent quality,
the horns have excellent quality, the grass have excellent quality;
Animals stands in the field has excellent quality}.Based on the
;reference information, please describe the quality of this picture.

rompt2]

ere is reference information:{The gazelle has excellent quality, the horns have excellent quality, the grass have excellent quality;
nimals stands in the field has excellent quality}.Based on the reference information, please summarize the clarity, contrast, color
curacy, brightness uniformity, detail preservation, and whether there are factors such as noise, blur or distortion of the image, so
to summarize the quality description of the main image content in a sentence of no more than 30 words.

[Answer1]

The image is of excellent quality, with a clear and detailed display
of the gazelle's brown spots, horn, tall grass, small green tree,
giraffe's ear and white ears, tree branch, deer's head and the tree
green leaves.

nswer2]

e image showcases a high-quality photograph of a gazelle in an outdoor setting, characterized by excellent sharpness and contrast
ong its brown spots and vibrant, natural colors, with attention to detail and minimal distortion, suggesting a good reconstruction,
icontrast, and brightness.

Method (b): Prompt for LLaMa

{[Prompt1] rompt2]

Please describe. the AUality. of SIS RISUIS s
[Answerl]

This picture of a male impala is of high visual quality: The light in
this image contributes to accentuating the details within the shot,
such as the wonderful natural lighting ....(more than 300 words

di
nswer2]

ase summarize the clarity, contrast, color accuracy, brightness uniformity, detail preservation, and whether there are factors such as noise,
ion of the i N - - . .

image showcases a striking photograph of a male impala, boldly facing the camera with an expressive off-center orientation,
ding composition for aesthetic appeal...(more than 100 words)
Method (c): Prompt for GPT-4v

h lity d f th f han 30 word:

i[Prompt1]
lease describe the quality of this picture.

rompt2]

ase summarize the clarity, contrast, color accuracy, brightness uniformity, detail preservation, and whether there are factors such as noise, :

\d iThe picture is of good quality, featuring a clear and sharp image of : {[Answer2]

an antelope in a natural setting. The lighting is well-

r or distortion of the image, so as to summarize the quality description of the main image content in a sentence of no more than 30 words :

e image features clear detail preservation, accurate colors, good contrast, and brightness uniformity, with minimal noise and no
iinoticeable blur or distortion

Figure 5: Comparisons of different explanatory text generation methods: (a) quality knowledge graph-based prompt for Llama, (b) question-

based prompt for Llama, and (c) question-based prompt for GPT-4v.

M@l 3 KonIQ-10k LIVE-Challenge
SRCC PLCC RMSE | SRCC PLCC RMSE
- - - | 09070 0.9352 0.0620 | 0.7658 0.7945 0.1264
v - v | 09464 0.9688 0.0433 | 0.8958 0.9419 0.0990
v |V - 109390 0.9607 0.0498 | 0.8391 0.9087 0.1230
VvV v 09442 09614 0.0480 | 0.9019 0.9486 0.0933
Table 4: Ablation experiments. ‘(1" represents the

quality knowledge graph construction module, ‘(2)° repre-
sents the explanatory text generation module, and ‘(3)’ represents
the multimodal feature fusion module.

quality scores of authentic and synthetic images more accu-
rately. In addition, Table 3 provides the cross-dataset results,
demonstrating the robust performance of our kgMBQA.
Ablation Study. To demonstrate the effectiveness of each
module, we have performed additional ablation study, which
includes separately removing the explanatory text generation
module (Llama3.2-11B) and removing the multimodal fea-
ture fusion module. Finally, we tested the performance of the
single image modality to verify the superiority of image-text
modalities. Table 4 validates the effectiveness of each mod-
ule in kgMBQA. Performance after removing a module is in-
dicated by different symbols, where ‘-’ indicates the module
is removed, and ‘v’ indicates the module is retained.

4.5 Explanatory Text Experiment

To verify the effectiveness of explanatory text in interpret-
ing objective scores, we present some quality prediction re-
sults of four representative types of images (e.g., In-the-Wild,
Artificially-distorted, Al-generated, and Low-light) in Fig-
ure 4, including objective scores and corresponding explana-
tory text. We can see that when the input images with lower
scores correspond to explanatory text indicating poor qual-

ity, such as ‘bad’, ‘poor’, ‘blur’, ‘noise’, etc. When the in-
put image has extremely lower quality, containing words like
‘significant’, ‘noticeable’ to emphasize the distortion. Higher
quality images include words like ‘good’, ‘excellent’, ‘clear’,
and ‘accurate’.

Furthermore, we compare the differences in the explana-
tory texts generated by three different methods under prompts
of varying complexity levels as shown in Figure 5. The com-
parison results consists of three different settings on two pop-
ular large language models including Llama and GPT-4V.
The prompts are divided into two types: 1) the simple one
is a question: ‘Please describe the quality of this picture.’,
and the complex one, by incorporating the Chain-of-Thought
(CoT), guides the model to decompose the task of generating
quality-related texts. When using relatively simple prompts,
we observe that both Llama and GPT-4V exhibit a strong hal-
lucination phenomenon, containing a large amount of redun-
dant words. In contrast, with the quality knowledge graph,
the hallucination phenomenon is effectively mitigated. More-
over, the output text is more in line with the requirements,
with its content closely related to the quality description.

5 Conclusion

In this paper, we propose a multimodal blind image assess-
ment method with explanatory text descriptions for predicting
quality scores, called kgMBQA. By constructing the quality
knowledge graph, we provide more comprehensive textual in-
formation for image quality assessment. Additionally, we de-
sign a multimodal blind quality model that forecasts quality
prediction scores with explanatory quality texts. Experimen-
tal results demonstrate that our proposed kgMBQA achieves
stable prediction performance on the KonlQ-10k,LIVE Chal-
lenge, BIQ2021, TID2013, and AIGC-3K datasets.
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