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Abstract
Multi-view learning has emerged as a pivotal re-
search area driven by the growing heterogeneity of
real-world data, and graph neural network-based
models, modeling multi-view data as multi-view
graphs, have achieved remarkable performance by
revealing its deep semantics. However, by assum-
ing cross-view consistency, most approaches col-
lect not only task-relevant (determinative) seman-
tics but also symbiotic yet task-irrelevant (inciden-
tal) factors are collected to obscure model infer-
ence. Furthermore, these approaches often lack rig-
orous theoretical analysis that bridges training data
to test data. To address these issues, we propose
Target-oriented Graph Neural Network (TGNN), a
novel framework that goes beyond traditional con-
sistency by prioritizing task-relevant information,
ensuring alignment with the target. Specifically,
TGNN employs a class-level dual-objective loss to
minimize the classification similarity between de-
terminative and incidental factors, accentuating the
former while suppressing the latter during model
inference. Meanwhile, to ensure consistency be-
tween the learned semantics and predictions in rep-
resentation learning, we introduce a penalty term
that aims to amplify the divergence between these
two types of factors. Furthermore, we derive an up-
per bound on the loss discrepancy between training
and test data, providing formal guarantees for gen-
eralization to test domains. Extensive experiments
conducted on three types of multi-view datasets
validate the superiority of TGNN.

1 Introduction
In the real world, data is often collected through diverse
methods, enabling each entity to be represented by differ-
ent feature sets. For instance, in medical diagnosis, imag-
ing scans, pathological reports, and genomic information col-
lectively provide a comprehensive description of a patient.

∗Corresponding authors.

This type of data, which integrates multiple sources, is re-
ferred to as multi-view data, offering richer semantic infor-
mation compared to single-view data and enhancing model
decision. Multi-view learning is specifically designed for ad-
dressing such data, which extracts essential representations
for downstream tasks through fully excavating the intrinsic
information embedded across multiple views. Over the past
few decades, a wide range of multi-view paradigms have been
developed across various domains, including image process-
ing [Tan et al., 2023; Yu et al., 2024] and biomedicine [Wen
and Li, 2025; Huang et al., 2023]. Among them, graph-
based multi-view algorithms have garnered significant atten-
tion. These approaches employ graphs to model inherent re-
lationships between instances, providing a structured frame-
work for complex multi-view data and achieving competitive
performance [Zhao et al., 2025].

As a powerful tool for handling graph-structured data,
Graph Neural Network (GNN) have driven breakthroughs
across numerous domains [Zhou et al., 2024; Guo et al.,
2024]. GNN propagates and aggregates features from neigh-
boring nodes along given graph structures to learn rich con-
textual information. This capability enables GNN suitable for
multi-view learning, where diverse interactions between en-
tities in each view can be naturally and intuitively modeled
as graphs. Currently, many multi-view GNNs have been pro-
posed, leveraging multi-view data to extract informative rep-
resentations through various relational structures [Yu et al.,
2025; Xie et al., 2020a]. Most multi-view learning models
aim to explore the consistency and specificity across views,
with GNN-based algorithms building upon this principle by
employing diverse strategies to effectively mine these essen-
tial characteristics.

Prevailing models in multi-view GNNs can be broadly di-
vided into two types: pre-fusion models and post-fusion mod-
els. The former focus on integrating multi-view graphs and
features into a unified topology and feature matrix, respec-
tively, before feeding them into a GNN to learn representa-
tions [Wang et al., 2024b]. Post-fusion models perform mes-
sage passing on each view-specific graph and then merge the
results [Xia et al., 2023; Qi et al., 2024]. However, they
primarily eliminate overtly negative information, while im-
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Multi-view GNN

Horse Grass, Trees

Determinative 
factors

?

Incidental 
factors

Consistency 
Learning

Figure 1: Captured consistent semantics across views are not always
relevant to the labels.

plicit and insignificant factors, such as illumination or envi-
ronment, persist as part of the learned consistent features.
For instance, in scenarios identifying horses from images
captured in different settings, features like grass may fre-
quently co-occur with horses across views. In such cases,
cross-view alignment may inadvertently cause the model to
misidentify grass as feature of the horse, as shown in Fig-
ure 1. In fact, features like ‘grass’, which are consistent
across views but spuriously related with labels, are consid-
ered incidental factors and should be discarded as noise.
An effective model should focus on determinative factors
like ‘horse’, capturing the intrinsic relation between fea-
tures and labels. Although some studies [Lin et al., 2022;
Liang et al., 2024] use contrastive loss and mutual informa-
tion to obtain task-relevant semantics as much as possible,
they remain: 1) constrained by the framework of consistent
representation learning; 2) neglecting the influence of inci-
dental predictions on determinative predictions; 3) overlook-
ing the exploration of generalization from training data to test
data.

In this paper, we propose a new model, termed Target-
oriented Graph Neural Network (TGNN), which goes beyond
the consistency across views and focuses on task-oriented,
pure representations. In specific, we employs two types of
feature extractors on each view to separately learn determina-
tive and incidental features. The determinative factors capture
the deep causal relationships between data and labels, while
the incidental factors represent irrelevant and external rela-
tions introduced by data bias. These transformed features are
discriminated via a classifier using a class-level dual objec-
tive loss. The loss aims to achieving: minimizing the clas-
sification similarity of the two types of features and maxi-
mizing the alignment between determinative representations
and the labels. Meanwhile, to maintain alignment between
semantics and predictions during representation learning, we
introduce a penalty term to enhance the semantic separability
between the two types of features within each view, ensuring
that distinct predictions are not derived from same semantics.
Moreover, grounded in theoretical analyses, we establish a

tight generalization bound between the losses on training and
test data, ensuring the model’s capability to generalize effec-
tively to unknown data. By uniformly optimizing the over-
all framework, a discriminative representation is learned, en-
abling optimal predictions on test data. Our contributions are
concluded as

• Propose TGNN, a novel model that eliminates inciden-
tal factors embedded in consistent features across views
and focuses on learning determinative factors that cap-
ture the intrinsic dependency between data and labels.

• Design a class-level dual objective loss to maximize the
classification discrepancy between different features to
highlight determinative representations. Moreover, we
derive an upper bound on losses between training and
test data, enhancing generalization on unknown data.

• Construct extensive experiments on three types of data
to validate the superiority of the proposed model. Fur-
thermore, TGNN works robustly when attack presents.

2 Related Work
2.1 Multi-view Learning
Multi-view learning aims to uncover intrinsic representations
for decision-making by integrating multiple views of data.
Existing paradigms in this domain can be broadly catego-
rized into two technical approaches. On one hand, tradi-
tional multi-view algorithms rely on mechanisms such as
subspace projection and matrix decomposition to obtain la-
tent consistent representations. For example, [Chang et al.,
2024] employs a partitioned strategy to divide the dictionary
matrix within the subspace framework, effectively address-
ing large-scale data. [Wen et al., 2024] introduces a matrix
factorization approach with adaptively weighted features to
identify significant and discriminative information. On the
other hand, due to the powerful expressive capacity of neu-
ral networks, deep learning-based multi-view methods have
garnered widespread attention. For instance, [Huang et al.,
2022] bridges deep learning and matrix decomposition within
a unified framework, achieving promising results. Mean-
while, [Wang et al., 2023] applies contrastive learning to bet-
ter capture the cluster structure, as reflected by the consen-
sus affinity matrix. Although these methods perform well,
they typically process affinity matrices that encode node rela-
tionships but overlook high-order structural information em-
bedded in attributed graphs. To address the limitation, vari-
ous multi-view graph neural networks have been developed
to capture high-order interactions, thereby enhancing the dis-
crimination of node representations.

2.2 Graph Neural Network
Considering the inherent relationships between entities in
real-world scenarios, graph neural network has been used in
multi-view learning field, facilitating the modeling of com-
plex instance relationships in multi-view data through mes-
sage passing mechanisms to achieve impressive performance
across various tasks [Yu et al., 2025; Ren et al., 2024]. For in-
stance, [Wang et al., 2024b] proposes a heterogeneous GNN
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Figure 2: Overview of the proposed framework. The proposed framework begins with feature disentanglement for each view, ensuring
the effective capture of target-oriented semantics. Subsequently, the separation loss is employed to amplify the classification discrepancy
between the determinative representation C and the incidental representation Hsv . By jointly optimizing Lv

sep and Lce, the CDO loss
effectively enhances the task-relevant features embedded in C.

that treats the multi-view dataset as a unified graph with mul-
tiple relation types, where nodes are shared across views and
each edge belongs to one view. [Yu et al., 2025] uses a loss
based on the Cauchy-Schwarz divergence to improve the fea-
ture extraction in a graph convolutional encoder. However,
existing models primarily emphasize consistency and speci-
ficity across views, overlooking the fundamental objective
of establishing meaningful relationships between representa-
tions and labels. In contrast, our approach transcends the con-
sistency learning by disentangling multi-view data into com-
ponents that are related and unrelated to classification tasks.
Task-relevant features inherently tied to downstream objec-
tives are defined as determinative features, while those with
only spurious associations are termed as incidental features.
This distinction enables our model to prioritize the extraction
of task-relevant semantics for robust and discriminative rep-
resentations.

3 Proposed Model
Notations. Given a set of multi-view graphs G = {Gv}Vv=1
with multiple correlations between nodes. Here, V represents
the number of views, and each graph Gv = (V, Ev) consists
of a shared set of nodes V and a view-specific set of edges
Ev . The node feature matrix is represented as X ∈ Rn×d,
where each node is associated with a d-dimensional feature
vector. For the graph Gv , its adjacency matrix is denoted by
Av ∈ Rn×n, where Av

ij = 1 if an edge eij ∈ Ev exists,
and Av

ij = 0 otherwise. To prevent gradient explosion during
training, a renormalization trick is applied to Av , yielding

Ãv = Dv− 1
2 (Av + I)Dv− 1

2 , where Dv
ii =

∑
j(A

v + I)ij .
Y ∈ Rn×c is the label matrix with the number of class c, and
each row is a one-hot vector.

Preliminary. We partition n samples into nl labeled in-
stances and nu unlabeled instances. Let P := Dtr(X,Y) be
the joint distribution defined over the input space X×Y in the
training set. Similarly, the test dataset, which is inaccessible

during training, is denoted as J := Dte(X,Y). Equivalently,
we represent the marginal distribution over variable X on the
training and test data as Dtr(X) and Dte(X), respectively.
The goal of multi-view learning is to minimize the prediction
error of a model fΘ parameterized by Θ on the test data,
leveraging nl labeled instances and the discriminative rep-
resentation C across V views. We represent the conditional
distribution over C as Dte(C|{Av,X}Vv=1), where C is com-
puted based on the multi-view graph structures {Av}Vv=1 and
the input feature X. Then, mathematically, the expected risk
of fΘ on the test data can be expressed as:

min
Θ

E(x,y)∼J
[
Ec∼Dte(C|{Av,X=x}V

v=1)
ℓ(fΘ(c),y)

]
, (1)

where ℓ(·, ·) is the loss function that quantifies the discrep-
ancy between the model prediction fΘ(c) and the ground
truth label y. The key step of the above procedure is to learn
the representation C, which captures critical information for
classification tasks, enabling the predictor to produce reliable
predictions in the context of complex multi-view data.

3.1 Disentanglement of View-wise Semantics
Multi-view graphs describe instance relationships from mul-
tiple aspects, providing richer contexts for learning discrim-
inative representations. However, these diverse view pat-
terns often introduce spurious factors that are incidentally
correlated with labels, such as light color, illumination, or
other environmental attributes. Most multi-view learning
strategies fall into two main technical categories: capturing
invariant representations across views [Zhang et al., 2025;
Yang et al., 2025] and leveraging adaptive weight learning to
aggregate semantics from multiple views [Kant et al., 2024;
Liao et al., 2024]. Despite their effectiveness, both ap-
proaches risk integrating consistent yet task-irrelevant fea-
tures into the final representation, which may hinder model
performance. To ensure the use of features that are benefi-
cial for the current task while mitigating the impact of task-
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irrelevant semantics, view disentanglement is a high-level in-
tuition. In other words, it is necessary to remove incidental
factors embedded in the consistent information and focus on
extracting determinative features in a target-oriented manner.

Semantic Disentangler. Following the line of thought, we
first design a semantic disentangler that consists of two types
of feature extractors for each view: {SEv(·)}Vv=1 which are
extractors specifically designed for each view, and a unified
extractor CE(·) shared across views. Both SEv(·) and CE(·)
are implemented using a GNN-based backbone, formalized
as follows:

Hsv = SEv
(
Ãv,X;Φsv

)
= gCov

(
ÃvX,Φsv

)
;

Hcv = CE
(
Ãv,X;Φc

)
= gCov

(
ÃvX,Φc

)
,

(2)

in which Hsv ∈ Rn×m and Hcv ∈ Rn×m denote the learned
incidental and determinative features, respectively. There fea-
tures are disentangled using the proposed loss function in Eq.
(8) and further refined by the penalty term described in Sec-
tion 3.4. “gCov” denotes a standard graph convolution net-
work with L layers followed by ReLU activation. The param-
eter set Φsv = {[Φsv ](l)}Ll=1 is specific to the v-th network,
and Φc = {[Φc](l)}Ll=1 is the set of shared learnable param-
eters across views. Specifically, SEv(·) captures incidental
features that are spuriously correlated with labels, such as bi-
ases introduced by data or superficial statistical relationships.
Conversely, the shared extractor CE(·) focuses on capturing
the deep causal relationships between features and labels.

Cross-view Feature Fusion. After obtaining {Hcv}Vv=1,
we learn the complete representation C ∈ Rn×m by

C = [Hc1 || · · · ||HcV ]Ω+ b, (3)

where || is the concatenation operation, Ω ∈ RVm×m is a
learnable weight matrix, and b ∈ Rm is a learnable bias
term. This fusion mechanism aggregates determinative fac-
tors from all views to form a comprehensive representation
C that encapsulates the meaningful semantics across views.
To guarantee the integration of view-wise variable into C, we
devise a view-shared constraint as below

Lv
sha(Φ

c,Ω) =
Lce

(
P, I

)
+ Lce

(
P⊤, I

)
2

, (4)

where

Pij =
exp(Γij)∑n
k=1 exp(Γik)

,Γ = exp(τ) · C

∥C∥F

( Hcv

∥Hcv∥F

)⊤
,

(5)
where τ is a temperature parameter, I ∈ Rn×n is an identity
matrix and Lce denotes the cross-entropy loss measuring the
difference between P and I, enabling the alignment of C with
{Hcv}Vv=1.

3.2 Class-level Dual Objective Loss
Obviously, a predictor with strong classification ability
should focus on determinative features while mitigating the
influence of incidental factors during inference. In other
words, for a classifier fΘ, the classification results derived
from the determinative features C should differ significantly

from those derived from the incidental features Hsv , while
the predictions based on C should align closely with the
ground truth labels Y. To this end, we propose the Class-
level Dual Objective (CDO) loss Lcdo, which encompasses
two key objectives: minimizing the classification similarity
between determinative and incidental features, and maximiz-
ing the alignment between determinative representations and
labels.

For simplicity, we denote the conditional distribution over
C on the test set Dte(C|{Av,X = x}Vv=1) as Dte(C |
G(x)), and Dte(H

sv |Av,X = x) over Hsv as Dte(C |
Gv(x)). Moreover, we further denote DΦc,Ω

te (C | G(x)) and
DΦsv

te (Hsv | Gv(x)) as the estimated distributions parame-
terized by Φc,Ω and Φsv , respectively. Formally, the first
goal is defined as minimizing the following prediction sepa-
ration loss,

Lv
sep(Φ

c,Ω,Φsv ,Θ) = E(x,y)∼J

[
E
c∼DΦc,Ω

te (C|G(x))

Eh∼DΦsv
te (Hsv |Gv(x))I

[
fΘ (c) = fΘ (h)

] ]
.

(6)

Here, I(·) is an indicator function1. The risk decreases when
C and Hsv achieve different classified results. Meanwhile,
since the learned representation C should be closely related
to the labels, in semi-supervised classification task, we use
the cross-entropy loss to minimize the difference between the
predictive distribution obtained from C and Y

Lce(Φ
c,Ω,Θ) =

− E(x,y)∼JE
c∼DΦc,Ω

te (C|G(x))

[
yln

(
σ
(
fΘ(c)

))]
,

(7)

where σ(·) is a non-linear Softmax activation function. Thus,
the total separation procedure for each view is accomplished
by minimizing the CDO loss combining (6) and (7),

Lv
cdo(Φ

c,Ω,Φsv ,Θ) = Lce + Lv
sep. (8)

The flowchart of the above procedure is illustrated in Figure
2.

3.3 Generalization Analysis of CDO Loss
In real-world scenarios, model optimization relies solely on
the observable training data, while test samples in Dte are
unavailable. Consequently, the CDO loss, defined on Dte,
cannot be directly employed to evaluate the learned determi-
native representation. To address this limitation, we conduct
a generalization analysis to quantify the gap between the em-
pirical risk of the model on the training data and the expected
risk on the test data. We separately discuss the losses Lv

sep
and Lce constituting Lv

cdo, and define their corresponding em-
pirical risks as L̂v

sep and L̂ce, respectively. Building on works
[Shalev-Shwartz and Ben-David, 2014; Yang et al., 2023;
Wang et al., 2024a], we derive an upper bound for the gap
between these two losses, which is expressed as follows:
Theorem 1. Given the learnable parameters Φc, Φsv

and Ω, for any Θ: Rm → Y , prior distributions πc

1The function can be instantiated using various common loss
functions, such as cross-entropy loss or mean squared error.
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and πsv that make EJ KL
(
DΦc,Ω

tr (C | G(x))∥πc

)
and

EJ KL
(
DΦsv

tr (Hsv | Gv(x))∥πsv

)
both lower than a posi-

tive constant B, then with probability at least 1 − ϵ over the
training data P := {(xi,yi)}nl

i=1, the following bound holds:

|Lv
sep(Φ

c,Ω,Φsv ,Θ)− L̂v
sep(Φ

c,Ω,Φsv ,Θ)| ≤

EP KL
(
DΦc,Ω

tr (C | G(x))∥πc

)
+

EP KL
(
DΦsv

tr (Hsv | Gv(x))∥πsv

)
+

ln nl

ϵ

4(nl − 1)
+B.

(9)

|Lce(Φ
c,Ω,Θ)− L̂ce(Φ

c,Ω,Θ)| ≤

EP KL
(
DΦc,Ω

tr (C | G(x))∥πc

)
+

ln nl

ϵ

4(nl − 1)
+ 2B.

(10)

Proof. The detailed proof can refer to Appendix A.

The above theorem demonstrates that by decreasing the KL
divergence, the gap between the empirical and expected risks
becomes smaller. In other words, we can approximate the
CDO loss on the test data by evaluating the loss on the train-
ing data, ensuring that the learned features are well-suited for
the test domain.

3.4 The Overall Objective
To ensure that the learned representations are feasible, and
to prevent the occurrence of different predictions for the
same semantics during the separation procedure, we intro-
duce an additional penalty term that enforces semantic sepa-
rability between the learned representation C and the labels
Y. Specifically, for any D ∈ {Dtr,Dte}, if c ∼ D(C|Y =
y) and h ∼ D(H|Y ̸= y), the inequality ∥c − h∥2 > θ
should hold. This term ensures distinguishable semantics be-
tween c and h, thus preventing confusion and improving in-
terpretability during the process of minimizing the CDO loss
in representation learning. Thus, combining Eqs. (4), (6), (7),
(9), (10), we obtain the following overall objective

minLce
Ω,Φc,

{Φsv }Vv=1,Θ

+ α

V∑
v=1

(
Lv
sha + Lv

sep + Lv
KL

)
,

s.t.∥c− h∥2 > θ for any view.

(11)

Here, the KL divergence term Lv
KL = EP KL

(
DΦc,Ω

tr (C |

G(x))∥πc

)
+ EP KL

(
DΦsv

tr (Hsv | Gv(x))∥πsv

)
and α is

a trade-off hyperparameter. The algorithm of TGNN is pre-
sented in Appendix B. Our code can refer to appendix.

Complexity Analysis. Review that the number of nodes
is n, the feature dimension is d and the number of edges
of view v is |Ev|. Considering the forward propagation for
C and Hsv , the graph convolution operation for all views
costs

∑V
v=1 O(|Ev|m). Moreover, for the fusion step of C

(as shown in Eq. (3)), the complexity is O(nV m2). There-
fore, the overall time complexity of the model is O(nm2 +∑V

v=1 |Ev|m), where V ≪ m. Code and Appendix refer to
https://github.com/huangsuj/TGNN.git.

4 Experiments
4.1 Experimental Setups
Datasets
To evaluate the effectiveness of the proposed TGNN, we con-
duct comprehensive experiments on three types of multi-view
datasets. These include three multi-relational datasets (ACM,
DBLP, YELP), three multi-attribute datasets (Animals, HW,
MNIST), and three multi-modal datasets (BDGP, esp-game,
Flickr). A detailed description of these datasets is provided
in Appendix C.1.

Compared Methods
To demonstrate the superior performance of TGNN, we
compare it against eight state-of-the-art methods designed
for multi-relational graphs, including HAN [Wang et al.,
2019], DMGI [Park et al., 2020], IGNN [Gu et al., 2020],
MRGCN [Huang et al., 2020], SSDCM [Mitra et al., 2021],
MHGCN [Yu et al., 2022], AMOGCN [Chen et al., 2024],
and ECMGD [Lu et al., 2024a]. Additionally, we evaluate
TGNN against eight methods developed for multi-attribute
and multi-modal data, such as Co-GCN [Li et al., 2020],
HLR-M2VS [Xie et al., 2020b], ERL-MVSC [Huang et al.,
2021], DSRL [Wang et al., 2022], IMvGCN [Wu et al.,
2023], PDMF [Jiang et al., 2023], GEGCN [Lu et al., 2024b],
and ECMGD [Lu et al., 2024a]. A comprehensive introduc-
tion to these competitors is provided in Appendix C.2.

Implemented Details
To ensure a fair comparison, we record the mean and stan-
dard deviation of all models after performing 5 runs on all
datasets. The parameters of TGNN are configured as below:
the training epoch is 300, learning rate is 0.001, the hidden
dimension is 512, the number of layers is 2, θ and α range in
{0.1, 0.5, 0.7, 1, 1.3} and {0.001, 0.005, 0.01, 0.05, 0.1, 0.5},
respectively. The Adam optimizer is adopted with a weight
decay of 5e−6 for the DBLP, Flickr, and HW datasets,
and 5e−4 for the remaining datasets. For node classifica-
tion tasks on multi-relational graphs, 10% of the samples
are used for validation, with the training set size varying
across {20%, 40%}, and the remaining data is used for test-
ing. For multi-attribute and multi-modal datasets, we split
the data into training/testing/validation sets with a ratio of
10%/10%/80%.

4.2 Performance Analysis
We evaluate the performance of TGNN through semi-
supervised node classification on multiple types of data. For
a comprehensive analysis, we use Macro-F1 and Micro-F1 as
evaluation metrics for multi-relational graphs, and ACC and
Macro-F1 for multi-attribute and multi-modal graphs.

Classification on multi-relational graphs. As shown in
Table 1, the results demonstrate that the proposed model
consistently achieves superior performance across the multi-
relational graphs. Notably, for most models, performance im-
proves as the number of training samples increases, which
aligns with expected trends in semi-supervised learning.
Classification on multi-attribute and multi-modal graphs.
For these datasets, we construct graphs based on the origi-
nal features using the k-nearest neighbor algorithm, with k
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Datasets Metrics Training HAN DMGI IGNN MRGCN SSDCM MHGCN AMOGCN ECMGD Ours

ACM

Macro-F1 20% 87.95 (0.42) 66.73 (1.84) 82.90 (0.03) 87.58 (0.19) 84.34 (3.46) 69.04 (1.76) 90.14 (0.48) 92.24 (0.40) 93.22 (0.09)
40% 91.28 (0.33) 71.17 (2.24) 85.01 (1.01) 88.44 (0.20) 85.05 (3.66) 70.74 (1.29) 91.03 (0.50) 92.07 (0.13) 94.09 (0.09)

Micro-F1 20% 87.98 (0.38) 70.43 (1.13) 82.70 (0.03) 87.45 (0.24) 85.23 (2.86) 69.07 (1.40) 90.01 (0.50) 91.24 (0.41) 93.18 (0.09)
40% 91.20 (0.33) 74.06 (1.50) 84.91 (1.01) 88.32 (0.20) 85.77 (3.09) 70.78 (1.22) 90.97 (0.51) 92.07 (0.14) 94.07 (0.09)

DBLP

Macro-F1 20% 89.30 (0.21) 75.35 (1.28) 86.81 (0.01) 89.49 (1.61) 55.72 (2.71) 92.52 (0.29) 92.27 (0.42) 91.85 (0.55) 91.51 (0.20)
40% 90.02 (0.34) 81.47 (0.76) 88.40 (0.01) 91.15 (0.08) 79.88 (2.13) 92.00 (0.22) 92.24 (0.29) 92.14 (0.39) 92.73 (0.15)

Micro-F1 20% 90.44 (0.20) 81.21 (0.72) 87.50 (0.01) 90.47 (1.23) 62.82 (3.90) 92.87 (0.23) 92.80 (0.37) 91.85 (0.44) 92.06 (0.20)
40% 90.46 (0.28) 83.77 (0.51) 88.41 (0.01) 91.71 (0.12) 80.64 (2.11) 92.74 (0.25) 92.70 (0.26) 92.14 (0.36) 93.12 (0.14)

YELP

Macro-F1 20% 55.39 (4.52) 52.72 (2.27) 71.40 (0.01) 54.35 (0.39) 55.86 (2.99) 60.85 (1.02) 70.77 (2.32) 91.89 (0.23) 93.94 (0.24)
40% 55.59 (4.80) 55.54 (3.24) 73.33 (0.01) 54.74 (0.91) 69.54 (2.04) 60.07 (1.01) 70.97 (1.81) 92.06 (0.36) 94.06 (0.14)

Micro-F1 20% 68.00 (5.03) 69.52 (0.68) 75.01 (0.01) 73.70 (0.46) 68.87 (5.54) 73.28 (0.24) 77.43 (0.36) 91.89 (0.24) 93.42 (0.26)
40% 69.69 (6.25) 72.60 (0.25) 75.91 (0.01) 73.53 (0.50) 75.77 (2.10) 73.01 (0.49) 78.81 (0.19) 92.06 (0.38) 93.46 (0.16)

Table 1: Macro-F1 and Micro-F1 (mean and std%) of nine models with various percentages of training samples on multi-relational graphs,
in which the optimal results are highlighted in bold.

Datasets Metrics HLR-H2VS Co-GCN ERL-MVSC DSRL IMvGCN PDMF GEGCN ECMGD Ours

Animals ACC 72.74 (0.53) 79.51 (1.48) 69.89 (0.42) 80.03 (0.51) 82.53 (0.12) 72.82 (2.18) 79.43 (0.28) 80.52 (0.52) 85.26 (0.08)
Macro-F1 68.12 (0.93) 73.02 (2.11) 65.72 (0.31) 74.26 (1.03) 76.14 (0.27) 67.81 (1.85) 69.79 (0.38) 73.94 (0.65) 79.35 (0.09)

HW ACC 85.33 (0.00) 91.58 (2.65) 85.45 (2.06) 77.92 (0.86) 90.66 (4.13) 89.69 (1.78) 96.01 (0.23) 96.81 (0.48) 97.24 (0.17)
Macro-F1 86.87 (0.00) 91.48 (2.78) 85.26 (1.30) 78.68 (0.73) 90.47 (4.63) 89.73 (1.81) 96.03 (0.22) 96.82 (0.47) 97.19 (0.18)

MNIST ACC 84.94 (0.31) 92.02 (0.53) 91.73 (0.12) 89.17 (0.02) 84.46 (1.37) 85.40 (1.06) 93.21 (0.11) 89.91 (0.29) 93.81 (0.03)
Macro-F1 83.20 (0.29) 91.86 (0.45) 91.63 (0.10) 89.48 (0.03) 83.96 (1.64) 84.72 (1.25) 93.07 (0.16) 89.71 (0.30) 93.70 (0.04)

BDGP ACC 94.31 (1.18) 94.56 (1.73) 93.48 (0.81) 98.03 (1.73) 93.34 (0.45) 90.72 (1.83) 95.62 (0.71) 96.97 (0.05) 98.98 (0.10)
Macro-F1 94.41 (1.07) 94.54 (1.74) 93.52 (0.82) 98.02 (1.76) 93.28 (0.46) 90.73 (1.80) 95.63 (0.75) 96.98 (0.05) 99.00 (0.10)

Flickr ACC 56.11 (0.64) 61.24 (2.59) 59.24 (0.52) 67.47 (8.34) 59.12 (0.82) 63.97 (1.21) 67.21 (0.21) 70.52 (0.01) 72.66 (0.25)
Macro-F1 55.54 (0.67) 61.08 (2.43) 59.01 (0.51) 67.16 (8.45) 58.88 (0.88) 63.05 (1.45) 67.13 (0.21) 70.48 (0.07) 72.47 (0.22)

esp-game ACC 66.97 (0.67) 75.94 (3.51) 68.56 (0.42) 83.75 (6.41) 71.31 (0.74) 67.44 (1.47) 75.49 (0.19) 85.03 (0.08) 87.97 (0.09)
Macro-F1 67.12 (0.53) 75.59 (3.52) 68.47 (0.42) 83.38 (6.49) 70.96 (0.76) 66.69 (1.78) 75.43 (0.17) 84.79 (0.08) 87.83 (0.08)

Table 2: ACC and Macro-F1 (mean and std%) of nine models with 10% labeled samples as supervision on multi-attribute and multi-modal
data, in which the optimal results are highlighted in bold

set to 20. Table 2 shows the comparison results, highlighting
several key observations: 1) GNN-based models, such as Co-
GCN, IMvGCN, ECMGD, and TGNN, tend to achieve com-
petitive precision. 2) Among these, TGNN stands out since
we capture the essential semantics related to labels from a
class-level perspective.

(a) (b)

Figure 3: T-SNE visualization of (a) Determinative representation
and (b) Incidental representation on HW.

Moreover, to validate that TGNN successfully achieves the
classification difference, we visualize the classification re-
sults of determinative and incidental representations. We sum
the incidental representations of all views to compare them
with the unified determinative representation, as shown in
Figure 3. This visualization shows that TGNN, optimized by

the proposed CDO loss, disentangles each view and separates
the determinative and incidental features. Visualizations of
other competitors are provided in Appendix C.3.

4.3 Parameter Sensitivity
To validate the significance of the trade-off parameter α and
the separability parameter θ on model, we construct a sen-
sitivity analysis. Due to page limitations, we display results
on 2 multi-relational and 2 multi-attribute datasets, 1 multi-
modal dataset, as shown in Figure 4. Results for the remain-
ing datasets are provided in Appendix C.3. Figure 4 (a)-(e)
plot the performance changes of TGNN w.r.t. α. We observe
that the performance fluctuates as α changes, with optimal
results achieved when α is relatively large on most datasets,
which supports the impact of the proposed losses on model.
Moreover, performance declines when α approaches 0.1, in-
dicating that the cross-entropy loss should dominate during
model optimization. Figure 4 (f)-(j) presents the influence of
θ on the performance, which controls the distance between
determinative and incidental features within each view. It is
clear that performance peaks when the discrepancy between
these two factors is a large value, which validates the impor-
tance of sematic separability.

4.4 Robustness Analysis
Since the model focuses on capturing task-relevant represen-
tations, it exhibits robustness when exposed to adversarial at-
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Figure 4: Parameter sensitivity on five multi-view datasets, where (a)-(e) show the performance of TGNN w.r.t. α and (f)-(j) display the
performance of TGNN w.r.t. θ.
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Figure 5: Performance of various GNN-based methods after the at-
tack on ACM and YELP.

tacks on the graph. To verify the robustness, we utilize the
state-of-the-art adversarial attack method, Mettack [Zugner
and Gunnemann, 2019], which perturbs the graph with a 25%
perturbation rate to mislead the classification. Following the
approach of [Zhang et al., 2022], we selectively attack one
type of edge and evaluate the performance of various methods
after the attack, as shown in Figure 5. Obviously, all methods
experience a performance drop after the attack, with TGNN
being the least affected. A detailed introduction of Mettack
and the results on DBLP are provided in Appendix C.3.

4.5 Ablation Study
The proposed model emphasizes the design of diverse losses
to achieve superior performance on the test set. Retaining
the foundational cross-entropy loss Lce, we conduct an ab-
lation study to assess the effectiveness of each loss term, in-
cluding the view-shared loss Lsha, the prediction separation
loss Lsep, and the KL divergence LKL. Moreover, we de-
fine TGNN-P as TGNN without considering the penalty term
∥c − h∥2 > θ. As illustrated in Figure 6, we observe the
following: 1) BaseGNN performs the worst, and the fusion
loss Lsha and the prediction separation loss Lsep have a sig-
nificant impact on performance, validating the importance of
learning determinative representations. 2) The generalization

Figure 6: Results of TGNN and its variants on diverse datasets.

loss LKL is essential, as it clearly improves the model’s per-
formance on the test data. 3) TGNN outperforms all variants,
highlighting the importance of each designed loss term in en-
hancing the model’s effectiveness.

5 Conclusion
In this paper, we propose Target-oriented Graph Neural Net-
work, which incorporates a class-level alignment mechanism
across views to capture targeted-oriented representations. We
begins with disentangling the features of each view into de-
terminative and incidental factors based on their relationships
with the labels. To achieve this, we design a CDO loss that
distinguishes these two types of features, enabling the model
to focus on determinative semantics while mitigating the in-
fluence of incidental information. Furthermore, we derive a
generalization bound between the losses on the training and
test data, which assists the model in fitting unknown data ef-
fectively. Extensive experiments are performed on three types
of datasets, demonstrating the effectiveness of our model.
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