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Abstract
Generalized Category Discovery (GCD) aims at
classifying unlabeled training data coming from old
and novel classes by leveraging the information of
partially labeled old classes. In this paper, we re-
veal that existing methods often suffer from compe-
tition between new and old classes, where the focus
on learning new classes often results in a notable
performance degradation on the old classes. More-
over, we delve into the reason behind this prob-
lem: the GCD classifier can be overconfident and
biased towards the new class. With this insight, we
propose Debiased GCD (DeGCD), a simple but ef-
fective approach that mitigates the bias caused by
the overconfidence from new categories by a debi-
ased head. Specifically, we first propose semantic
calibration loss that aids the GCD classifier in de-
biasing by enforcing neighborhood prediction con-
sistency with the latent representation of the debi-
ased head. Furthermore, a debiased contrastive ob-
jective is proposed to refine the similarity matrix
from the GCD classifier and the debiased classi-
fier, suppressing the overconfidence in new classes
in unlabeled data. In addition, an alignment con-
straint loss is designed to prevent damaging the dis-
tribution of the old categories caused by overconfi-
dence in the new categories. Experiments on var-
ious datasets shows DeGCD achieves state-of-the-
art performance and maintains a good balance be-
tween new and old classes. In addition, this method
can be seamlessly adapted to other GCD methods,
not only to achieve further performance gains but
also to effectively balance the performance of the
new class with that of the old class.

1 Introduction
Deep learning has achieved remarkable success in the field
of image recognition [He et al., 2016; Krizhevsky et al.,
2017], typically leveraging enormous labeled training sam-
ples. However, these deep learning algorithms rely on enor-
mous labeled training samples to achieve state-of-the-art per-

*Corresponding author: Yonghong Song.

formance, which is expensive and hinders the widespread ap-
plication of existing deep learning. Semi-supervised learn-
ing (SSL) methods [Berthelot et al., 2019; Guo et al., 2024]
provide an effective paradigm to alleviate the burden of la-
beling by leveraging a large corpus of unlabeled samples.
However, one underlying assumption in SSL algorithms is
that the labeled data and unlabeled data share the same la-
bel space, which is impractical in many real-world scenar-
ios where the unlabeled data contains novel classes and old
classes [Han et al., 2019; Han et al., 2020; Han et al., 2021;
Fini et al., 2021]. Initially, it was studied as Novel Cate-
gory Discovery (NCD) [Han et al., 2019], which depends
on an disjoint assumption between labeled and unlabeled
categories. By contrast, Generalized Category Discovery
(GCD) [Vaze et al., 2022] relaxes the disjoint assumption be-
tween labeled and unlabeled categories, where the unlabelled
data can also contain old and new categories from the labelled
data. The goal of GCD [Vaze et al., 2022] is to recognize
both old and novel categories from a series of unlabeled data
by taking advantage of a small amount of labeled data from
old categories.

Existing GCD studies mainly includes two major
paradigms: clustering-based methods and representation
learning methods. Clustering-based methods [Han et al.,
2021; Zhang et al., 2023a; Vaze et al., 2022] employ a semi-
supervised k-means [MacQueen, 1967] to recognize both old
and new categories. But these works are prone to over-
fitting to old categories [Vaze et al., 2022]. Representa-
tion learning methods [Vaze et al., 2022; Wen et al., 2023;
Chiaroni et al., 2023] exploit pre-trained self-supervised
models (e.g., DINO [Caron et al., 2021]) and partially fine-
tune their parameters on the GCD task to recognize both
old and new categories.Although effective in leveraging the
strong generalization properties of these representations, they
may result in overfitting to new classes. In summary, the two
paradigms either overly focus on old classes or excessively
prioritize new classes.

In this study, we reveal a intractable challenge in GCD:
competition between old and new classes (shown in Fig. 1) .
Specifically, in Fig. 1, we can easily find that the performance
on the old categories peaks early in training, then declines as
the new category’s performance improves. To diagnose this
issue, we analysis confidence distribution, as shown in Fig. 2.
We can observe this phenomenon, the confidence distribution
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Figure 1: Accuracy competition of old and new classes in
SimGCD on two datasets, where the performance on the old cat-
egories peaks early in training, then declines as the new category’s
performance improves.
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Figure 2: Confidence distribution between new and old categories
on SimGCD.

of new classes is higher than that of old classes. This obser-
vation leads us to conclude the reason behind the competition
is that GCD classifiers are overconfident and biased towards
new categories. This over-confidence in new classes, impair-
ing distribution of old classes and resulting in biased predic-
tions. Notably, different from catastrophic forgetting across
tasks [Tadros et al., 2022], the competition in GCD occurs
within the same task. This finding raises a pivotal question:
Can GCD models achieve unbiased feature learning to alle-
viate intra-task competitions between new and old classes?

In this work, to address these issues, we introduce a Debi-
ased Generalized Category Discovery (DeGCD) with a debi-
ased classifier, alleviating competition between old and new
categories. To elaborate, we first design a semantic calibra-
tion loss to guide the GCD classifier in debiasing by enforc-
ing neighborhood prediction consistency with the latent rep-
resentation of the debiased head. Second, we propose a debi-
ased contrastive objective to refine the similarity matrix from
the GCD classifier and the debiased classifier, suppressing the
overconfidence in new classes in unlabeled data. Finally, we
introduce an alignment constraint loss to prevent impairing
the distribution of the old categories caused by overconfi-
dence in the new categories.

Our contributions are summarized as follows:

• To the best of our knowledge, this is the first work to
reveal competition issue in generalised category discov-
ery. We propose a novel DeGCD approach with a debi-
ased classifier to mitigate competition between old and
new categories.

• We propose a semantic calibration objective to facilitate
debiasing in the GCD classifier by promoting neighbor-

hood prediction consistency with the latent representa-
tion of the debiased head.

• We devise a debiased contrastive objective to refine the
similarity matrix from the GCD classifier and debiased
head, mitigating overconfidence in new classes within
unlabeled data.

• We introduce an alignment constraint loss to prevent
damaging the distribution of the old categories caused
by overconfidence in the new categories.

2 Related Works
Open-Set Semi-Supervised Learning addresses scenarios
where unlabeled data may include outliers that do not belong
to any of the labeled categories in the training set. The ob-
jective is to train a classifier that accurately recognizes the
labeled categories despite the presence of noisy, unlabeled
data [Han et al., 2021; Han et al., 2019; Chen et al., 2020b;
Guo et al., 2020]. Since the primary focus is on the classi-
fication performance of the labeled categories, outliers from
novel categories are merely identified and rejected, without
requiring further classification.
Novel Category Discovery (NCD) [Troisemaine et al., 2023]
was initially formalized as deep transfer clustering[Han et al.,
2019], aiming to identify unlabeled new classes using knowl-
edge from labeled ones. Han et al.[Han et al., 2019] em-
ployed self-supervision for representation learning and uti-
lized ranking statistics for knowledge transfer. Zhong et
al.[Zhong et al., 2021] introduced OpenMix, which applies
MixUp [Zhang et al., 2018] to blend old and new classes, mit-
igating overfitting. UNO [Fini et al., 2021] provides a unified
objective that jointly optimizes old and new class predictions
via swapped prediction [Caron et al., 2020]. NCD relies on
assumption that all unlabeled data belong to novel classes.
Generalized Category Discovery (GCD) [Vaze et al., 2022;
Cao et al., 2022] is designed to generalize NCD for open-
world scenarios where unlabeled instances belong to old and
new categories. GCD aims to simultaneously cluster both old
and new classes in unlabeled data. Early studies[Vaze et al.,
2022; Zhang et al., 2023a] integrate supervised [Khosla et
al., 2020] and unsupervised contrastive learning [Chen et al.,
2020a], leveraging semi-supervised K-means [MacQueen,
1967] for clustering. Subsequent works [Pu et al., 2023;
Zhang et al., 2023b; Zhao et al., 2023a] enhance feature rep-
resentations by capturing underlying relationships. Recently,
some efforts to improve the performance in new categories
[Wen et al., 2023; Hao et al., 2024]. Among them, SimGCD
[Wen et al., 2023] rethinks the failure of GCD classifiers and
proposes a simple method to achieve promising results in new
classes. CiPR [Hao et al., 2024] effectively improves the
performance of novel classes with new categories by lever-
aging cross-instance relations and selective clustering. Al-
though GCD has made great advancements [Vaze et al., 2023;
Gu et al., 2023], it inherently suffers from competition be-
tween old and new classes, which is intractable due to the
over-reliance on new class feature on unlabeled data. In this
paper, we propose DeGCD to address this challenge.
Entropy Calibration is a crucial advancement in uncertainty
quantification, addressing overconfidence issues and improv-
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ing model interpretability. Recent studies [Zhang et al., 2022;
Braverman et al., 2020; Liu et al., 2024] have demonstrated
its effectiveness across various applications, from supervised
classification to large-scale language modeling. As ma-
chine learning models become more integral to high-stakes
decision-making, refining entropy calibration techniques will
be essential for ensuring reliability and robustness. How-
ever, existing methods assume identical label spaces across
domains and are unsuitable for GCD, where competition be-
tween old and novel categories exists.

3 Preliminaries and Analysis
Here, we briefly introduce the setting and methods of Gener-
alized Category Discovery (GCD) (Sec. 3.1) and give empir-
ical results to reveal inherent issues (Sec. 3.2), which moti-
vates us to propose our DeGCD in Sec. 4.

3.1 Setup and Training Methods of GCD
Problem definition of GCD. Given a labeled data setDl =
{(xli, yli)}ni=1 consisting of n samples with labels belonging
to Cl classes, Cl is the set of old classes. An unlabeled data
set Du = {xui }

m
i=1 consisting m unlabeled samples, each of

which belongs to one of the classes in Cu. Cu is the set of
classes in unlabeled training set. Generally, m ≫ n. Here,
Cl ⊂ Cu, then the set of new classes is Cn = Cu/Cl. The
classes included in the testing set are denoted as Cu. Feature
extractor F(·) is used to extract the ℓ2-normalized feature by
hi = F(xi). Then, a parameter classifier Φ is utilized to
obtain class prediction by zi = Φ(hi). The debiased head
is composed of two key components: a multi-layer percep-
tron (MLP) that transforms the feature representation hi into
a new projection space ri, an auxiliary classifier Ψ that pro-
duces predictions based on the projection representation ri.

Related Training Methods. Generalized category Discov-
ery (GCD) [Vaze et al., 2022] introduces to integrate both
supervised [Khosla et al., 2020] and self-supervised [Chen et
al., 2020a] contrastive learning paradigms, applying them to
the labeled subset Bl and the mini-batch B respectively.

Lsup
con =

1

|Bl|
∑
i∈Bl

1

|N (i)|∑
q∈N (i)

log
exp(h⊤

i h
′
q/τs)∑

n̸=i exp(h
⊤
i h

′
n/τs)

, (1)

Lu
con =

1

|B|
∑
i∈B

− log
exp(z⊤i z

′
i/τu)∑

n̸=i exp(z
⊤
i z

′
n/τu)

. (2)

where N (i) denotes the set of same-class samples in the
batch, τu and τs are temperature hyperparameters. The over-
all contrastive loss Lcon = (1− λ)Lu

con + λLl
con.

SimGCD [Wen et al., 2023] proposes a parametric
prototype-based classification framework, denoted as C =
{c1, · · · , cK}, where K = Kold +Knew represents the total
number of old and novel classes. The posterior probability
distribution is formulated as:

p
(k)
i =

exp(h⊤
i ck)/τp∑

k′ exp(h⊤
i c

′
k)/τp

. (3)

In SimGCD, self-distillation is applied to two views (ran-
dom augmentations), alongside entropy regularization H(·)
for each sample:

Lu
cls =

1

|B|
ℓ(q′

i,pi)− λeH(p), (4)

Here, q′
i is a sharpened probability of another view, and p =

1
2|B|

∑
i∈B(pi + p′

i), ℓ(·) represents cross-entropy loss. The
supervised loss is also employed on Dl with labels yi:

Ll
cls =

1

|Bl|
∑
i∈Bl

ℓ(yi,pi). (5)

3.2 Intractable Problems in GCD
We adopt the state-of-the-art SimGCD [Wen et al., 2023] for
confidence [Guo et al., 2017] and accuracy analysis, training
under practical low-label conditions to investigate real-world
GCD challenges.
GCD suffers from severe competition between old and
new classes. As shown in Fig. 1, the accuracy of new cate-
gories increases while that of old categories decreases, mainly
due to the overconfidence in new classes (Fig. 2), which is
a key issue for parameterized GCD classifiers and motivates
our proposed strategies.

4 Method Overview
We provide the framework of DeGCD in Fig. 3, which has
three main components: 1) A semantic calibration loss aids
the GCD classifier’s debiasing, aligning the neighborhood
prediction of the GCD unbiased classifier with the latent rep-
resentation of the GCD classifier. 2) A debiased contrastive
objective is designed to optimize the similarity matrix be-
tween the GCD classifier and the debiased classifier, sup-
pressing the influence of noise for new and old classes within
unlabeled data. 3) Alignment constraint loss, which is intro-
duced to prevent damaging the distribution of the old cate-
gories caused by overconfidence in the new categories.

4.1 Semantic Calibration Objective
In the GCD task, unlabeled data usually contains a large num-
ber of noisy samples [Li et al., 2020], which can easily lead
to conflicts between the old and new categories in the shared
feature space, and thus cause the GCD classifier to generate
erroneous pseudo-labels. To mitigate the effects of bias in the
parameters classifier on GCD, we introduce a semantic cal-
ibration objective that fosters neighborhood-level predictive
coherence by aligning with the underlying representations of
the GCD debiased head.

Firstly, we use shared feature extractor F(·) to derive the
ℓ2-normalized feature by hi = F(xi) as initial representation
memory bank M, xi ∈ Dl ∪ Du. Meanwhile, a projection
head Φ is utilized to obtain class predicted probability mem-
ory bank P by pi = exp(Φ(hi))∑m+n

j=1 exp(Φ(hj))
. The memory bank

M and P are updated in batches, using a momentum update
mechanism defined as:.

M← µM+ (1− µ)hb, P ← ϵP + (1− ϵ)pb. (6)
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Figure 3: The framework of DeGCD. Models are trained on Dl ∪ Du with SimGCD, and select samples in Du. D is distance matrix.

where ϵ, µ ∈ [0, 1) are the momentum coefficient controlling
the update rate. The hb and pb denote the newly obtained
feature representations and predicted probability of the cur-
rent batch, respectively. Then, to avoid conflicts between the
old and new categories in the existing GCD classifier, we de-
sign a semantic calibration objective between GCD classifier
and debiased classifier. Specially, we first compute similarity
distance db between representations rb from the current batch
in debiased head and representation memory bank.

db =
rbM⊤

τ
, (7)

where τ is the temperature scaling factor, db ∈ RB×N , where
B is the batch size and N is the size of the memory bank.
Subsequently, for each feature ri ∈ rb. We retrieve its k-
nearest neighbors in the representation memory bankM and
express Ti as the index set of the gathered neighbors:

Ti = argtopk
j
{di,j |j = 1, ..., N}, (8)

Following the clustering assumption [Jiang et al., 2022],
samples that exhibit locally consistent predictions tend to stay
away from decision boundaries, thus they are more likely
falling into correct clusters. We employ T j

i as the index set
to select neighborhood-level class predicted probability:

Si =
1

k

k∑
j=1

pT j
i
, (9)

Here, T j
i represents the index of the j-th neighbor of xi. The

semantic calibration objective is designed to minimize the
difference between the current predicted probability pi and
its nearest neighbors Si.

Lsa =
1

m+ n

m+n∑
i=1

KL (pi ∥Si) . (10)

By minimizing KL divergence, the semantic calibration
objective Lsa enforces prediction consistency among near-
est neighbors, promoting coherent predictions and improving
bias mitigation in parameterized classifiers. DeGCD further
maintains consistency by continuously updating the represen-
tation and probability memory banks during training.

4.2 Debiased Contrastive Objective
Current representation learning methods employing tradi-
tional contrastive learning (Eq. 2) aggregate samples solely
based on similarity, which misguides unlabeled noise sam-
ples into incorrect clusters, thereby amplifying noise-induced
uncertainty. To address this issue, we devise a debiased con-
trastive objective to refine the similarity matrix from the GCD
head and debiased head, effectively suppressing the influence
of noise for new and old classes within unlabeled data. To
be more specific, to adaptability refine reliability and com-
prehensiveness of the predicted logits, we combine GCD
predicted ligits P g

i = Φ(hi) and debiased predicted logits
P d
i = Ψ(ri) using Gaussian distributions[Stacy, 1962] to mix

the controlled formulas.

P gd
i = αP g

i + (1− α)P d
i α ∼ Gamma(β, β). (11)

where the mixing factor α is sampled from a Gamma dis-
tribution parameterized by the β hyper-parameter. P gd

i is
blended predicted logits. Sampling the mixing factor α from
a Gamma distribution provides flexibility, robust control over
variability and sparsity, and improved regularization, enhanc-
ing stability and generalization in probabilistic. Then, we
propose the debiased contrastive objective using blended pre-
diction logits to suppress noise effects on old and new classes
in unlabeled data. Specifically, we first calculate the softmax-
normalized similarity as.

p̂pdi =
exp((P gd

i · P
gd
i

⊤
)/η)∑m+n

i=1 exp((P gd
i · P

gd
i

⊤
)/η)

, (12)
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Here, η is a temperature parameter, ygdi is the one-hot ground-
truth similarity (with logits of 0 for negative pairs and 1 for
the positive pair), and the debiased contrastive loss is defined
as the cross-entropy between p̂gdi and ydc

i .

Ldc = Exi∈Dl∪Du
H(ydc

i , p̂
gd
i ). (13)

In this way, we pull the instance representation closer to the
representation of its predicted class, and push it away from
the representations of other classes, using the predicted prob-
abilities and their corresponding pseudo-labels.

4.3 Alignment Constraint Loss for Prediction
Refining

In the context of GCD, the learning process on unlabeled
data excessively focuses on new categories, leading to in-
sufficient constraints on the distribution of old categories,
thereby degrading or conflicting with the discriminative abil-
ity of old categories. To prevent damaging the distribution
of the old categories caused by overconfidence in the new
categories, we design an alignment constraint loss for predic-
tion refining. Specifically, based on the generated predicted
logits P d

i on debiased classifier in Section 4.2, we employ
a temperature η and max to P d

i to obtain a refined pseudo-

labels P
d

i = max(
Pd

i

η ). Finally, we introduce our alignment
constraint loss, which applies confidence filtering to mitigate
the negative impact of unreliable pseudo-labels. Specifically,
only predictions with confidence scores above a threshold η
contribute to the loss. Formally, we introduce the alignment
constraint function as:

Lac = E[ℓCE(p
d
i , p

d
i ) · I(pdi ≥ η)]. (14)

In this way, we can ensure that learning new classes does not
excessively disrupt the distribution of old classes.

4.4 Joint Optimization
The framework of DeGCD is elaborated in Fig. 3. The over-
all objective of our model is defined as:

Lt = ωLsa + ψLdc + ω Lac. (15)

where ω and ψ are the weights used to balance the strengths
of the three loss functions. More details about ω and ψ in
Fig. 4. This work proposes a general debiased method that
can be adapted to existing GCD classifier models. For these
models, the overall optimization objective is formulated as
a combination of the original model’s loss function and the
loss functions Lt introduced by the proposed method. This
optimization strategy effectively balances the learning of new
and old class features to alleviate competitions between them.

5 Experiments
5.1 Experimental Setup
Datasets. We validate the effectiveness of the proposed
DeGCD on the generic benchmarks (including CIFAR-
10/100 [Krizhevsky et al., 2009] and ImageNet-100 [Deng
et al., 2009]), the recently proposed Semantic Shift Bench-
mark (SSB, including CUB [Wah et al., 2011], Stanford

Labelled Unlabelled

Dataset Balance #Image #Class #Image #Class

CIFAR-10 [Krizhevsky et al., 2009] ✓ 12.5K 5 37.5K 10
CIFAR-100 [Krizhevsky et al., 2009] ✓ 20.0K 80 30.0K 100
ImageNet-100 [Deng et al., 2009] ✓ 31.9K 50 95.3K 100
CUB [Wah et al., 2011] ✓ 1.5K 100 4.5K 200
Stanford Cars [Krause et al., 2013] ✓ 2.0K 98 6.1K 196
Herbarium 19 [Tan et al., 2019] ✗ 8.9K 341 25.4K 683

Table 1: Statistics of the datasets we evaluate on.

CUB Stanford Cars Herbarium19

Method All Old New All Old New All Old New

k-means [Arthur et al., 2007] 34.3 38.9 32.1 12.8 10.6 13.8 13.0 12.2 13.4
RankStats+ [Han et al., 2021] 33.3 51.6 24.2 28.3 61.8 12.1 27.9 55.8 12.8
DTC[Han et al., 2019] - - - 11.8 16.3 16.5 - - -
UNO+ [Fini et al., 2021] 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7
GCD [Vaze et al., 2022] 51.3 56.6 48.7 39.0 57.6 29.9 35.4 51.0 27.0
ORCA [Cao et al., 2022] 36.3 43.8 32.6 31.9 42.2 26.9 20.9 30.9 15.5
GPC[Zhao et al., 2023b] 52.0 55.5 47.5 38.2 58.9 27.4 - - -
NGCN [Yang et al., 2025] 61.3 60.8 62.1 44.3 58.2 39.1 - - -
SimGCD [Wen et al., 2023] 60.3 65.6 57.7 53.8 71.9 45.0 43.0 58.0 35.1
CiPR[Hao et al., 2024] 57.1 58.7 55.6 47.0 61.5 40.1 36.8 45.4 32.6

Ours + SimGCD 64.2 68.4 62.1 55.3 75.2 45.7 45.9 59.3 37.4
Ours + CiPR 65.3 70.9 64.1 51.4 71.3 41.8 41.3 47.5 35.4

Table 2: The results for fine-grained image recognition datasets.
Bold values indicate the highest performance, while underlined val-
ues denote the second-best results.

Cars [Krause et al., 2013] and the harder Herbarium 19 [Tan
et al., 2019]. For each dataset, following [Vaze et al., 2022],
we sample a subset of all classes as the labeled (”Old”)
classes Yl. Half of the images from these classes form Dl,
while the rest are treated as unlabeled dataDu. Table 1 shows
the statistics of the datasets we evaluate on.

Evaluation protocol. We evaluate model performance us-
ing clustering accuracy (ACC), following standard prac-
tice [Vaze et al., 2022]. Given ground truth labels y∗ and pre-
dicted labels ŷ, ACC is computed as ACC = 1

N

∑N
i=1 1(y

∗
i =

p(ŷi)) where N = |Du|, and p denotes the optimal permuta-
tion aligning predicted clusters with ground truth labels.

Implementation details. Following standard practice in
GCD [Vaze et al., 2022], we adopt ViT-B/16 [Dosovitskiy
et al., 2021] pre-trained by DINO [Caron et al., 2021] as the
backbone, and fine-tune only the last transformer block for all
experiments. The output of [CLS] token (768-dimensional)
serves as the feature representation. We train for 200 epochs
using a batch size of 256 and an initial learning rate of 0.1,
which follows a cosine decay schedule for each dataset. In
this study, the balancing factor ψ is set to 0.35, while the pa-
rameter ω is set to 0.2. Following [Wen et al., 2023], the tem-
perature values η is 0.1. η is set to 0.95 follows [Sohn et al.,
2020]. Meanwhile, according to [Wen et al., 2023], τs is fixed
at 0.1, and τt is initialized at 0.07, then gradually reduced to
0.04 using a cosine schedule over the first 30 epochs. In this
work, we set the Gamma parameter β to 0.5. Following [He
et al., 2020], ϵ, µ = 0.99.

5.2 Comparative Results
To assess the performance of DeGCD, we combine DeGCD
with three strong GCD classification methods, including
SimGCD [Wen et al., 2023], and CiPR [Hao et al., 2024].
We also compare our models with competitive baselines,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

CIFAR-10 CIFAR-100 ImageNet-100

Method All Old New All Old New All Old New

k-means [Arthur et al., 2007] 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RankStats+ [Han et al., 2021] 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
DTC[Han et al., 2019] 32.4 42.7 31.8 18.3 31.3 22.9 21.3 25.6 20.8
UNO+ [Fini et al., 2021] 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
GCD [Vaze et al., 2022] 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3
ORCA [Cao et al., 2022] 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9
GPC [Zhao et al., 2023b] 90.6 97.6 87.0 75.4 84.6 60.1 75.3 93.4 66.7
NGCN [Yang et al., 2025] 96.5 97.6 94.4 74.6 76.5 69.4 78.1 91.3 70.5
SimGCD [Wen et al., 2023] 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9
CiPR [Hao et al., 2024] 97.7 97.5 97.7 81.5 82.4 79.7 80.5 84.9 78.3

Ours + SimGCD 97.6 96.3 98.3 83.2 83.3 82.9 84.8 94.7 80.1
Ours + CiPR 98.0 97.6 98.1 83.0 83.5 80.8 83.0 86.1 80.9

Table 3: Results on generic image recognition datasets

i.e., RankStats [Han et al., 2021], UNO [Fini et al.,
2021], GCD [Vaze et al., 2022], GPC[Zhao et al., 2023b],
ORCA [Cao et al., 2022] and NGCN [Yang et al., 2025].
Comparison on Fine-Grained Datasets. Fine-grained
datasets exhibit subtle inter-class differences, making fine-
grained visual understanding particularly challenging for
GCD. We evaluate the effectiveness of DeGCD by compar-
ing it with existing methods on fine-grained image recogni-
tion datasets. As shown in Table 2, DeGCD consistently out-
performs all baselines across “All” “Old” and “New” classes.
Specifically, for “All” classes, it improves the state-of-the-
art performance by 8.3%, 2.8%, and 6.7% on CUB, Stanford
Cars, and Herbarium 19, respectively. Moreover, DeGCD
achieves notable gains in both “New” and “Old” categories,
outperforming the SOTA by 8.1%, 4.5%, and 2.2% on CUB,
Stanford Cars, and Herbarium 19 (“Old” category), respec-
tively, demonstrating its effectiveness in capturing unbiased
information and reducing competition between categories.
Comparison on Generic Datasets. Table 3 presents a
comprehensive comparison, showing that our DeGCD con-
sistently outperforms existing methods on generic image
recognition benchmarks. Compared to the prior state-of-
the-art (SOTA) approaches, SimGCD or CiPR, DeGCD
achieves performance gains of 3.9% on CIFAR-100, 2.2%
on ImageNet-100 and 0.3% on CIFAR-10 when considering
all categories. The advantage is even more pronounced for
“New” classes, with improvements of 4.0%, 3.3%, and 0.2%,
respectively. These findings show that the debiased head im-
proves prediction consistency and bias mitigation, leading to
more balanced confidence and reduced competition between
old and new classes (see Fig. 6 and Fig. 7).
Visualization of the Representation Space. Fig. 5 shows la-
tent representation space of different methods on the CIFAR-
10. Fig. 5-(a)-(b) reveals some representations of “New”
classes are closer to “Old” classes in SimGCD and CiPR. Fig.
5-(c) demonstrates that the debiased head mitigates the dis-
ruption of old class distributions, leading to better separation.

5.3 Ablation Studies
In this section, we conduct comprehensive ablation experi-
ments on CUB and CIFAR-100, as shown in Table 4.
The effect of semantic calibration objective. To explore
the benefits of semantic calibration objective, we conduct ab-
lations in Table 4. From the results in Table 4, we can observe
that semantic calibration objective has a clear contribution.
Specifically, compared with the previous works SimGCD and

(a) The analysis of ω.

(b) The analysis of ψ.
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Figure 4: The hyper-parameters analysis.

ID Lsa Ldc Lac
CIFAR-100 CUB

All Old New All Old New

(a) ✗ ✗ ✗ 80.1 81.2 77.8 60.3 65.6 57.7
(b) ✓ ✗ ✗ 81.3 81.8 80.1 62.4 66.8 60.5
(c) ✓ ✓ ✗ 82.2 82.3 82.1 63.5 67.7 61.3
(d) ✓ ✓ ✓ 83.2 82.9 83.5 64.2 68.4 62.1

Table 4: Ablations on three key factors, i.e., semantic calibration ob-
jective Lsa, debiased contrastive objective Ldc and alignment con-
straint loss Lac in DeGCD (SimGCD as baseline).

CiPR, our method obtains consistent improvements in both
“Old” and “New” classes (+1.8% and +4.9% in “Old” and
“New” on CUB), indicating the importance of semantic cali-
bration. Our approach consistently exceeds baseline on Cifar-
100. This improvement proves that it is critical to enhances
the consistency between neighborhood predictions and unbi-
ased latent representations for fine-grained classes.
The effect of debiased contrastive objective. As shown in
Table 4, we can see that debiased contrastive objective can
improve performance. Specifically, compared to baseline,
debiased contrastive objective improves accuracy by 1.8%
and 1.1% on CUB and CIFAR-100 in all classes, respec-
tively. This improvement highlights the ability of debiased
contrastive objective to mitigate the effects of overconfidence
in “New” classes within unlabeled data.
The effect of alignment constraint loss. We conduct ab-
lations on two datasets, as shown in Table 4. Specifically,
the alignment constraint loss improves accuracy by 1.2% and
1.1% on CUB and CIFAR-100 in all classes, respectively.
It can be seen that the alignment constraint loss can prevent
damaging the distribution of the “Old” categories caused by
overconfidence in the “New” categories.

5.4 Further Analysis
Different Mixed methods in Eq. 6. Our cross-batch mix-
ing mechanism is grounded in momentum-based stability
(MoCo[He et al., 2020]) and Mixup[Zhang et al., 2018], op-
erating across batches (vs. Mixup’s intra-batch mixing) to
enhance the stability of prediction results. The effectiveness
of this design is quantitatively validated in Tab. 5.
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Figure 5: Visualization on CIFAR-10. We conduct t-SNE projection on representations extracted by raw SimGCD, CiPR and our approach.
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Figure 6: Confidence distribution after DeGCD.
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Figure 7: Accuracy after DeGCD.

Analysis of Hyperparameters. We analyze the effect of
the Gamma parameter β (Eq. 11) on classification accuracy
across datasets (Table 4). On Stanford Cars, “New” accu-
racy first rises, then slightly drops but stays above SimGCD
at 45.5%. On CIFAR-100, it decreases but remains higher
than SimGCD (77.9%). To balance maximizing “Old” accu-
racy while maintaining or surpassing SimGCD on “New”, we
set β = 0.5 for both datasets.

We further examine the impact of ω and ψ (Eq. 15) on
CIFAR-100 and Stanford Cars (Fig. 4). Optimal results are
achieved at ω = 0.35 (Fig. 4-a) and ψ = 0.2 (Fig. 4-b).

Evaluation with the number of new class. We also con-
sider the real scenarios with class number |C| cannot be ac-
cessed in advance. We evaluate our DeGCD an off-the-shelf
number estimation algorithm [Vaze et al., 2022] to get an esti-
mation of C in advance, and use it to construct classifiers. As
shown in Table 7, DeGCD consistently outperforms SimGCD
on both datasets under estimated class numbers.

Method ImageNet-100 Stanford Cars

Mixup[Zhang et al., 2018] 80.9 48.2
Moco[He et al., 2020] 82.1 52.1
Ours 84.7 55.3

Table 5: Performance on different mixed methods in Eq. 6.

Stanford Cars CIFAR-100

β All Old New↑ All Old New↓
0.2 54.4 67.5 47.3 82.3 80.5 83.5
0.3 54.2 69.6 47.5 82.9 82.7 83.3
0.4 55.1 75.3 48.1 83.0 82.7 83.0
0.5 55.3 75.2 48.5 83.2 83.3 82.9
0.6 54.5 74.7 48.4 82.6 82.5 82.6

Table 6: Ablation study on Gamma parameter β. The underline
indicates the selected Gamma parameter.

CUB CIFAR-100

Method |C| All Old New All Old New

SimGCD [Wen et al., 2023] GT (200/100) 60.3 65.6 57.7 80.1 81.2 77.8
DeGCD (Ours) GT (200/100) 64.2 68.4 62.1 81.5 82.4 79.7
SimGCD [Wen et al., 2023] Est. (232/108) 61.2 65.8 58.4 80.8 80.7 76.1
DeGCD (Ours) Est. (231/109) 65.4 70.3 62.5 83.4 81.6 77.4

Table 7: Performance of DeGCD and the baseline SimGCD with an
estimated number of categories on CUB and CIFAR-100.

6 Conclusions and Limitations

This study addresses the key challenge of competition be-
tween new and old classes in GCD caused by classifier over-
confidence. This work proposes a DeGCD, which mitigates
bias by introducing a semantic calibration loss to ensure
neighborhood prediction consistency and an alignment con-
straint loss to prevent the distribution of old categories from
being affected by overconfidence in new categories. Exper-
iments confirm SOTA performance on various GCD bench-
marks, demonstrating robust handling of both new and ex-
isting classes. Additionally, it can be easily integrated with
other GCD methods to further enhance performance and
maintain balance between new and old classes. There are
two main limitations. First, while computational overhead is
manageable, further acceleration is needed. Second, general-
ization under extreme data imbalance requires further study.
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