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Abstract

In large aperture imaging, the shallow depth of
field (DoF) phenomenon requires capturing mul-
tiple images at different focal levels, allowing us
to infer depth information using depth from focus
(DFF) techniques. However, most previous works
design convolutional neural networks from a time
domain perspective, often leading to blurred fine
details in depth estimation. In this work, we pro-
pose a frequency-aware deep DFF network (FAD)
that couples multi-scale spatial domain local fea-
tures with frequency domain global structural fea-
tures. Our main innovations include two key points:
First, we introduce a frequency domain feature ex-
traction module that uses the Fourier transform to
transfer latent focus features into the frequency do-
main. This module adaptively captures essential
frequency information for focus changes through
element-wise multiplication, enhancing fine details
in depth results while preserving global structural
integrity. Second, the time-frequency joint module
of FAD improves the consistency of depth informa-
tion in sparse texture regions and the continuity in
transition areas from both local and global comple-
mentary perspectives. Comprehensive experiments
demonstrate that our model achieves compelling
generalization and state-of-the-art depth prediction
across various datasets. Additionally, it can be
quickly adapted to real-world applications as a pre-
trained model.

1 Introduction

Obtaining three-dimensional (3D) shape information of a
scene using visual cues is an important problem in the field
of computer vision. Current methods for 3D shape recon-
struction are primarily based on optical imaging and can
be broadly categorized into active optical reconstruction and
passive optical reconstruction. Active optical methods re-
quire additional equipment to assist in obtaining the 3D struc-
ture of the scene. Typical methods include laser confocal
microscopy and structured light 3D measurement. However,
the former suffers from low scanning efficiency and a lim-
ited measurement range, making it unsuitable for scenes with

large depth variations and high real-time constraints. On
the other hand, the latter is easily affected by high reflectiv-
ity and lighting conditions during the reconstruction process,
which can lead to decreased reconstruction accuracy [Yan et
al., 2020b]. Passive optical reconstruction primarily recov-
ers the 3D structure of a scene from 2D images. Due to the
low cost and convenience of acquiring scene images, many
different types of methods have emerged, such as multiview
stereo vision [Wei er al., 2023] and monocular depth estima-
tion [Yang et al., 2024] methods. However, multiview stereo
vision heavily relies on the accuracy of left-right view match-
ing, monocular depth estimation requires all-in-focus images
as a prerequisite for accurate depth estimation. For scenes re-
quiring high-resolution imaging, a large aperture means shal-
low depth of field (DoF), making it difficult to obtain all-in-
focus images in a single shot.

To address the aforementioned challenges, Depth from Fo-
cus (DFF) technology [Nayar and Nakagawa, 1994] holds
promise for efficiently and cost-effectively obtaining high-
precision 3D shape information of a scene. DFF works by
adjusting the distance between the camera and the scene at
regular intervals, capturing a sequence of images that cover
the entire depth range of the scene. Depth information is then
obtained by analyzing the focus changes within the multi-
focus image sequence. This is particularly important for
scenes requiring high-resolution reconstruction. For instance,
DFF technology is used to achieve high-precision 3D shape
reconstruction of industrial microscopic scenes [Yan et al.,
2020a]. Additionally, some Nikon commercial cameras also
feature focal length variation shooting capabilities [Mandl
et al., 2024], which can subsequently be utilized to achieve
high quality DoF synthesis using DFF technology. Partic-
ularly with the emergence of deep neural network models,
their powerful ability to represent focus features has shown
strong performance in addressing DFF problems [Hazirbas et
al., 2019]. Nevertheless, due to the spatial domain operation
limitations of convolutional neural networks, existing deep
learning-based DFF methods still have room for improvement
in terms of preserving fine-grained details and robustness of
the scene.

In this work, aiming for finer depth details, we introduce
the FAD model from the perspective of frequency domain
feature extraction. Unlike existing state-of-the-art DFF meth-
ods, our model demonstrates well generalization ability and
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Figure 1: Our proposed FAD model provides state-of-the-art DFF results in various types of synthesis and real scenarios. Detailed data can

be found in the experimental section of this paper.

achieves high-precision scene reconstruction directly from
multi-focus image sequences. Our contribution is three-fold:

* A frequency domain feature extraction module is intro-
duced, which effectively preserves the global structural
information of the scene, thereby enabling the recon-
struction results to achieve more accurate fine-grained
details.

The time-frequency joint module in our FAD model not
only enhances the robustness of datasets with varying
resolutions but also effectively ensures the consistency
of depth information in homogeneous regions and the
continuity of depth information in heterogeneous re-
gions within the reconstruction results.

Compared to state-of-the-art DFF methods, the FAD
model exhibits outstanding performance across eight
different types of existing datasets. Notably, it can serve
as a pre-trained model for rapid adaptation and appli-
cation in real microscopic scenarios. An experimental
evidence is provided in Figure 1.

2 Related Work
2.1 Depth from Focus (DFF)

DFF originated in the field of microscopic imaging and is
now widely used in the macro imaging process of commer-
cial cameras [Suwajanakorn et al., 2015]. The commonal-
ity between these two applications is the need to shorten the
distance between the camera and the scene being measured,
which results in a shallower DoF. Additionally, shortening the
distance means less light enters the camera, necessitating a
larger aperture to allow more light in, which further exacer-
bates the shallowness of the DoF. These settings lead to only
part of the scene being in focus in a single image, with the rest
becoming blurred. Therefore, DFF first captures a sequence
of images covering the entire DoF by varying the distance be-
tween the camera and the scene. It then aggregates the indices
of the sharpest pixels from this sequence to derive the depth
information of the scene.

2.2 State-of-the-art DFF Methods

Early DFF methods focused on model design, particularly
the development of image focus measure operators and depth
map refinement. Focus measure operators aim to enhance
the signal-to-noise ratio between sharp and defocused pix-
els, improving the accuracy of focus determination. Repre-
sentative operators include Laplacian-based measures [Yan
et al., 2020al, ring difference filters [Jeon et al., 2020] and
transformation-based measures [Yan er al., 2020b]. Depth
map refinement uses prior knowledge to correct focus mea-
surement errors, with notable methods such as cost aggre-
gation [Jeon et al., 2020] and regularization [Ali and Mah-
mood, 2021]. However, these methods often struggle in sce-
narios with sparse textures and noise interference. In addi-
tion, these methods cannot accurately infer complex samples
that satisfy similar distributions. To overcome the above is-
sues, deep learning-based DFF methods have emerged [Yang
et al., 2022; Maximov et al., 2020; Wang et al., 2021;
Fujimura et al., 2024]. These methods design end-to-end
convolutional neural networks to directly learn depth infor-
mation from multi-focus image sequences. However, a com-
mon characteristic of these networks is that they fit the focus
measure features of different datasets through convolutional
neural networks. Essentially, this approach belongs to the
fitting and learning of temporal focus measure operators in
model design-based DFF methods. As a result, these meth-
ods tend to overlook the global structural information of the
scene, leading to blurred depth details in the reconstruction
results.

2.3 Applications of Frequency-domain in Vision

Recently, an increasing number of studies have begun incor-
porating frequency domain methods into the field of deep
learning to optimize the performance of deep neural networks
[Yang and Soatto, 2020; Xu et al., 2019]. Some studies trans-
form images into the frequency domain to leverage frequency
information and enhance the performance of specific tasks
[Lee et al., 2018; Rao et al., 2021], others use the convolution
theorem to accelerate the computation of convolutional neu-
ral networks (CNNs) via fast Fourier transform (FFT) [Li et
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Figure 2: The whole framework of FAD. The time-frequency joint module achieves high-quality depth prediction in different scenarios by
complementing multi-scale local features with global structural features.

al., 2020; Ding et al., 2017; Huang et al., 2023]. Inspired by
the above works, we believe that introducing a frequency do-
main processing module in DFF will help enhance the global
feature representation of the network, thereby capturing more
subtle focal changes.

3 Methodology

Our approach combines spatial and frequency domain infor-
mation, employing a U-Net architecture to enhance depth es-
timation accuracy by integrating features from both domains.
First, we provide an overview of the proposed FAD method,
detailing the overall network process. Next, we describe the
extraction of spatial and frequency domain features, including
how to effectively integrate these features into the U-Net ar-
chitecture. Finally, we discuss the implementation details of
the network, covering parameter settings, optimization strate-
gies and loss function selection for training to ensure model
stability and efficiency.

3.1 Overview

Figure 2 presents an overview of the proposed FAD method,
which is based on an encoder-decoder architecture utilizing
3D convolutions instead of 2D convolutions. Unlike 2D con-
volutions, which can only capture features from a single im-
age frame, 3D convolutions are capable of capturing focus
change trends across different frames in a multi-focus im-
age sequence. Feature fusion within the network is achieved
through skip connections, which effectively transmit feature
information across various levels, thereby enhancing the net-

work’s representational capacity. This approach also facil-
itates gradient propagation and accelerates model conver-
gence.

In the encoder phase, the input multi-focus image sequence
undergoes initial feature extraction through a series of 3D
convolutional layers. Each layer includes convolution oper-
ations, batch normalization and ReLLU activation functions to
ensure that the extracted features are highly representative
and capable of nonlinear expression. Following this, these
features are meticulously processed by the clarity area identi-
fication (CAI) module, yielding a feature volume that serves
as the input for the time-frequency joint module. As the
network deepens, the encoder compresses image information
into higher-level feature representations while preserving the
spatiotemporal relationships within the multi-focus image se-
quences. Max pooling is employed for downsampling, and to
mitigate the loss of depth information, a 3 X 3 convolution
is applied to the output of the downsampling process. In the
middle phase of the encoder-decoder, separate spatial and fre-
quency domain feature extraction modules are employed to
maintain precise focus information in both dimensions. This
approach enables the network to better adapt to varying scales
and resolutions, thoroughly learning both global structures
and local details, thereby improving the accuracy of depth
estimation.

In the decoder phase, features from the encoder are de-
coded layer by layer using a series of transposed convolutions
to gradually restore the spatial resolution of the feature maps.
These transposed convolutions, combined with symmetrical
3D convolutional layers from the encoder, progressively re-
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turn the feature maps to the dimensions of the input images.
Each layer in the decoder incorporates skip connections from
the encoder to enhance information fusion during decoding.
This method not only leverages the layer-by-layer recovery
capability of the decoder but also effectively integrates the
multi-level features extracted during the encoder phase, en-
suring the final output image has a higher quality depth esti-
mation.

3.2 Clarity Area Identification

Our initial feature extraction phase consists of 3D convo-
lution and the CIA module. The 3D convolution, with its
unique capability, allows for feature exchange with adjacent
focal slices, enabling it to detect and identify subtle defocus
variations that are often hidden in weak areas with little dis-
cernible texture. This ensures high precision and sensitivity
in detection. In particular, previous methods utilized global
average pooling to simplify the multi-dimensional informa-
tion of focal slices into a single value, which inevitably led to
a significant loss of deep representation information. To over-
come this obstacle, we innovatively adopted the CIA module,
which uses 3D convolution and ReLLU to compute a focal at-
tention score, allowing for the capture of more refined deep
representation information.

3.3 Spatial Domain Feature Extraction

The multi-scale feature extraction method can effectively
capture details and structural information of different scales
in an image. This characteristic is particularly important for
reconstructing sparse textures and low-contrast areas in DFF
tasks. Therefore, our FAD method utilizes multi-scale fea-
ture extraction to enable the model to extract spatial domain
features from the scene.

Specifically, given a feature map X, it is first subjected to
multi-scale average pooling operations to obtain feature rep-
resentations X; at different scales. Let the pooling scales be
S1, S2, 3. The multi-scale pooling process can then be repre-
sented as:

X; = AvgPool, (X),i € {1,2,3}. (1)

Next, convolution operations are applied to the pooled feature
maps X; to further extract spatial domain features at multiple
scales. Let the convolution kernel sizes at different scales be
ki, k2, ks. The convolution process can then be represented
as:

F; = Convy, (X;),i € {1,2,3}. 2

The convolution results at different scales are concatenated
and fused to obtain the final multi-scale feature representation
F.

This multi-scale feature extraction method first utilizes av-
erage pooling operations to reduce computational load and
redundant information while preserving important spatial in-
formation. Subsequent convolution operations can further ex-
tract and refine features, enhancing the model’s ability to per-
ceive spatial structures at different scales. Finally, by fusing
feature representations from multiple scales, the performance
of the model in handling complex DFF scenes and tasks at
different resolutions is improved.

3.4 Frequency Domain Feature Extraction

Although the spatial domain feature extraction module can
capture some global information, the local nature of convolu-
tion operations limits its ability to effectively represent global
structural information. In contrast, the Fourier transform can
process global information in the frequency domain by per-
forming a weighted sum of all image pixels. Therefore, we in-
troduce a frequency domain feature extraction module in the
FAD model to more accurately capture subtle focus changes
that are difficult to detect in the spatial domain, thereby effec-
tively enhancing the model’s sensitivity and accuracy in the
depth information extraction process.

Given a feature X as the output of the encoder, we first
transform the feature map X into the frequency domain by
performing a Fast Fourier Transform (FFT), obtaining its fre-
quency representation X ¢. Next, to adaptively select the re-
quired frequency information, we learn adaptive weights for
Xy to weight the spectrum, obtaining the weighted represen-
tation X,. This process can be expressed as:

X, =MOFFT(X), 3)

where M is a learnable adaptive weight matrix, and ® de-
notes element-wise matrix multiplication. To implement M,
we use a 1 x 1 convolution followed by a ReLLU activation
function and another linear layer. With respect to the output
of the linear layer, the result of this soft thresholding is mul-
tiplied with the output of the Fourier transform, yielding the
final data representation X. This step is designed to simul-
taneously enhance the sparsity of the output and improve the
interpretability of the data, thereby enhancing the accuracy
and robustness of deep information extraction.

X, = SoftShink(X,,) ® FFT(X). (4)

Finally, we use the inverse Fast Fourier Transform (iFFT)
to convert the processed features from the frequency domain
back to the spatial domain, obtaining the spatial representa-
tion X¢-1:

Xj-1 = iFFT(X,). (5)

To prevent information loss, we combine the features be-
fore and after the Fourier transform, X and X F-1, resulting
in a comprehensive feature I, that ensures the integrity of in-
formation during the transformation from the spatial domain
to the frequency domain.

Fy=X+ X, (6)

By employing a parallel extraction method for both spatial
domain features F; and frequency domain features F, the
final feature map F' is obtained.

F=FR+F, )

The FAD model utilizes frequency domain information to
compensate for multi-scale spatial domain features, effec-
tively enhancing the model’s performance in fine depth struc-
ture estimation.
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3.5 Prediction

The feature map F', extracted by the time-frequency joint
module, undergoes refinement through 3D CNN to gener-
ate four feature maps F; at different scales. Subsequently,
these feature maps undergo an upsampling process sequen-
tially, and a Softplus function is applied for nonlinear nor-
malization, resulting in refined depth attention maps. Imme-
diately following this, the depth attention maps are element-
wise multiplied with equally spaced focal positions P, pre-
cisely integrating information from each focal position to ob-
tain the final scene depth map D,.

D; = (log(1 + exp(F;))) © Pyi € {1,2,3,4}. (8)

3.6 Implementation Details

We build our network model using the PyTorch framework
and train and test it on a single NVIDIA GeForce RTX
4090. During training, we employ the Adam optimizer (5, =
0.9, = 0.99) with an initial learning rate of 102 and
a batch size of 4. Additionally, we apply data augmenta-
tion techniques such as image flipping, cropping, rotation,
and gamma correction. Images are randomly cropped into
256 x 256 patches and fed into the network.

For our depth estimation method, we optimize the entire
model by comparing predicted pixel depths to ground truth
depths with a multi-scale weighted loss function. The specific
loss function is defined as follows:

4
Ldepth :ZwiHDi_DgtHQv 9)

i=1

where || ||, denotes the L2 loss, and Dy represents the
ground truth depth map. ¢ € {1,2, 3,4} indicates the pre-
dicted depth maps at different pyramid-like scales. In this
model, w; is set to 0.3, 0.5, 0.7 and 1, respectively.

4 Experiments

In this section, we detail the evaluation metrics and datasets
used in our experiments and compare the proposed FAD
method with state-of-the-art DFF methods. Furthermore, we
conduct ablation experiments to assess the effectiveness of
each component of the proposed network. Finally, we evalu-
ate the model’s generalization ability across various synthetic
and real microscopic datasets.

4.1 Metrics

For quantitative evaluation, we use the following metrics to
evaluate the quantitative results: mean-squared error (MSE),
root-mean-squared error (RMSE), log root-mean-squared er-
ror (log RMSE), relative-absolute error (AbsRel), relative-
squared error (SqRel), accuracy with §; = 1.25%,i = 1,2,3
and inference time (Secs.).

4.2 Comparison of Algorithms and Datasets

The comparison includes seven deep learning-based DFF
methods (DDFS [Fujimura et al., 2024], DfFW [Won and
Jeon, 20221, FV [Yang et al., 20221, DFV [Yang et al., 2022],
AiF [Wang et al., 2021], DefocusNet [Maximov ef al., 20201,

DDFF [Hazirbas er al., 2019]) and two model design-based
DFF methods (RDF [Jeon et al., 2020] and RR [Ali and Mah-
mood, 2021]). The datasets consist of five synthetic datasets
(SLFD [Shi et al., 2019], Pov-Ray [Heber and Pock, 2016],
DefocusNet[Maximov et al., 20201, 4D Light Field [Honauer
et al., 2017], FlyingThings3D [Mayer et al., 2016]) and four
real datasets (NYU Depth V2 [Carvalho er al., 2018], DDFF
12-Scene [Hazirbas er al., 2019], Middlebury [Scharstein
et al., 2014], Microscopic), among which the microscopic
dataset is unlabeled.

4.3 Main Results

The best results among all experimental results are high-
lighted in bold, and the second-best results are indicated with
underline.

Results on DefocusNet Dataset. Table 1 presents the quan-
titative comparison results for DefocusNet dataset. It can be
seen that, except for the AbsRel metric, which is slightly infe-
rior to the DFFW method, our FAD method outperforms other
methods in all other metrics. As shown in Figure 3, our FAD
method significantly outperforms the DDFS and DfFW meth-
ods in inferring the elliptical cavities and spiral details of the
objects.

Table 1: Quantitative evaluation on DefocusNet dataset.

Method(Pub.) AbsRel ] MSE| RMSE |
DefocusNet(CVPR2020) | 0.1386  0.0127 0.1043
AIF(ICCV2021) 0.1115 0.1542 0.3642
FV(CVPR2022) 0.1356  0.0133  0.1076
DFV(CVPR2022) 0.1255 0.0140 0.1086
DfFW(ECCV2022) 0.0809 0.0087 0.0859
DDFS1JCV2024) 0.1963  0.0369 0.1749
FAD(ours) 0.0929  0.0084 0.0847

NN,
b b b b

All-in-focus  Ground Truth DDEFS FAD(ours)

Figure 3: Visual comparison on DefocusNet dataset.

Results on SLFD Dataset. Table 2 presents the quantitative
comparison results on the SLFD dataset. Our method has
significant improvements in all metrics, although it is slightly
slower than DfFW. As shown in Figure 4, our method excels
at maintaining the integrity of object edges and fine structures
within the scene, including details such as the spokes of a
bicycle and the switch of a lamp.

Results on 4D Light Field Dataset. As shown in Table
3, our FAD method significantly outperforms advanced deep
learning-based DFF methods across three evaluation metrics.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[EE R EEE

AiF DFV

All-in-focus  Ground Truth DDFF DfFW FAD(ours)
Figure 4: Visual comparison on SLFD dataset.
Table 2: Quantitative evaluation on SLFD dataset.
Method(Pub.) MSE | logRMSE| RMSE | AbsRel] SqRel] 0=1.2571 0=1.25%21 6=1.25%1 Secs.(S)
DDFF(ACCV2018) | 14.0337 0.4349 3.6381 0.7372  4.0416 58.15 70.18 77.28 4.0683
AiFICCV2021) 6.1070 0.3466 1.9236 0.3365 2.3541 77.15 86.55 92.36 0.1354
FV(CVPR2022) 4.5492 0.3752 2.0222 0.3703 1.3285 69.98 82.46 88.81 0.1336
DFV(CVPR2022) 2.5957 0.2259 1.5696 0.1559 0.5152 82.51 94.90 97.76 0.1344
DfFW(ECCV2022) | 0.8939 0.1548 0.8846 0.0773 0.2085 92.72 97.38 99.14 0.1116
FAD(ours) 0.3460 0.1059 0.5547 0.0471 0.0775 95.79 98.63 99.58 0.1259

Due to the introduction of frequency domain features, it can
be seen from Figure 5 that our FAD significantly outperforms
other methods in terms of the continuity of the light string and
the details of the holes in the boxes.

Table 3: Quantitative evaluation on 4D Light Field dataset.

Method(Pub.) AbsRel | MSE | RMSE |
DefocusNet(CVPR2020) - 0.0593  0.2355
DDFF(ACCV2018) 03296  0.1146 0.3310
AiF(ICCV2021) 0.1685 0.0472 0.2014
FV(CVPR2022) 0.1900  0.0301 0.1537
DFV(CVPR2022) 0.1915  0.0317 0.1549
DfFW(ECCV2022) 0.1670  0.0230 0.1288
FAD(ours) 0.1527 0.0218 0.1248

All-in-focus

Ground Truth AiF FAD(ours)

Figure 5: Visual comparison on 4D Light Field dataset.

Results on DDFF 12-Scene Dataset. Table 4 presents the
quantitative comparison results for DDFF 12-Scene. Com-
pared to other methods, our FAD method achieves the best
results across all metrics. As shown in Figure 6, our FAD
method significantly outperforms the DFV and DfFW meth-
ods in preserving edge details for statues and chairs.

Table 4: Quantitative evaluation on DDFF 12-Scene.

Method(Pub.) AbsRel | MSE| RMSE |
DDFF(ACCV2018) | 0.2362  4.53¢~*  0.2362
FV(CVPR2022) 0.0971  1.85¢e~*  0.0119
DFV(CVPR2022) 0.1001  2.05¢~* 0.0124
DfFW(ECCV2022) | 0.1549 2.23¢e=*  0.0135
FAD(ours) 0.0505  0.50e=*  0.0062

" All-in-focus  Ground Truth DFV

DfFW FAD(ours)

Figure 6: Visual comparison on the DDFF 12-Scene.

4.4 Ablation Study

To further validate the rationale behind our FAD method and
the effectiveness of its components, we conduct ablation ex-
periments on the 4D Light Field dataset and analyze the re-
sults based on model performance. In Ablation Experiment
1 (U), we train the model using only the U-shaped backbone
network structure. In Ablation Experiment 2 (U + S), we in-
corporate the spatial domain module to extract finer features.
In Ablation Experiment 3 (U + F), we utilize the frequency
domain module to capture frequency information and extract
global features. In Ablation Experiment 4 (U + S + F), we
combine both the spatial and frequency domain modules. As
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shown in Figure 7, the experimental results indicate that si-
multaneously utilizing spatial and frequency domain infor-
mation can complement each other and greatly enhance the
model’s performance.

0.2 1
B U
A U+s
E=u+F
8 ESJU+S+F
50.1
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MSE| RMSE|

AbsRel|

Figure 7: Ablation study of FAD on the 4D Light Field dataset.

4.5 Generalization

Generalization among Different Datasets. To validate
the generality of the proposed FAD method, we train it on
the FlyingThings3D dataset and test it on three additional
datasets: Middlebury, SLFD and Pov-Ray. Comparisons with
three state-of-the-art DFF methods reveal that both the quan-
titative and visual results, presented in Table 5 and Figure 8,
demonstrate that our FAD method achieves impressive per-
formance across all tested datasets. Especially in terms of
the edges of pipes in the Middlebury sample, the contours
of green plants in the SLFD sample and the shapes of small
leaves in the Pov-Ray sample, our FAD method shows signif-
icant advantages.

i3

All-in-focus  Ground Truth FAD(ours)

Figure 8: The generalization results of the FAD and the state-of-the-
art DFF method across different datasets.

Generalization to Real Microscopic Scenes. To validate the
FAD method’s real-world applicability, we first trained the
FAD on the synthetic Pov-Ray dataset. Subsequently, we ap-
plied 3D TFT [Yan. et al., 2023] pseudo-labeling to 100 un-
labeled microscopic samples. A pre-trained bias correction
model [Zaken et al., 2022] was then employed to optimize
the network’s bias parameters using this pseudo-labeled data,
and then directly perform inference on the microscopic data.
As shown in Figure 9, due to the data gap between synthetic

Table 5: Generalization on FlyingThings3D.

Method Train Test MSE | RMSE | SqRel |
DefocusNet 157.440 9.079 4.245
AiF Elying Middlebury 58.570 5.936 3.039
DfFW Things3D 9.178 2930 0.376
FAD(ours) 8.970 2.930 0.345
DefocusNet - - -
AiF Flying SLED 15311 3.548 1.114
DfFW Things3D 9.830 2.845 0.825
FAD(ours) 8.975 2.723 0.706
DefocusNet - - -
AiF Flying Pov-Ray 79.825 8.725 28.015
DfFW Things3D 47.704 6.898 11.667
FAD(ours) 38.087 6.128 11.879

and real data, the inference results are not ideal. However,
after incorporating a small amount of pseudo-labels, the fine-
tuned FAD is able to infer more refined depth details. Espe-
cially in Sample 1, the given label cannot capture the subtle
scratches, while the FAD method perfectly restores the depth
information of those scratches.

S NN AN

Fused Inference by Pseudo  Depth
Image Pov-Ray label prediction

Self-developed
microscopic device

3D shape
results

Figure 9: Using our self-developed microscopic data acquisition
device, the application of pseudo-label fine-tuning effectively im-
proves the depth prediction results of FAD model on microscopic
data.

5 Conclusion

In this work, we develop a novel frequency-aware deep
DFF architecture, referred to as FAD. This network intro-
duces a new frequency domain feature extraction module and
achieves a more robust DFF task through a time-frequency
feature joint architecture. Experimental results indicate that
the proposed FAD network not only achieves optimal perfor-
mance on public DFF datasets but also generalizes quickly to
real-world scenarios through fine-tuning, particularly demon-
strating significant advantages in preserving fine details in
depth prediction results. In the future, an interesting direc-
tion for research is how to achieve mixed training on differ-
ent types of DFF datasets through multi-task learning, thereby
improving the model’s generalization capabilities.
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