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Abstract
Graph Neural Networks (GNNs) have demon-
strated remarkable effectiveness across various
tasks but are often hindered by their high compu-
tational overhead. GNN-to-MLP distillation pro-
vides a promising remedy by transferring knowl-
edge from complex GNNs to lightweight MLPs.
However, existing methods largely overlook the
differences in aggregation mechanisms and het-
erogeneous architectures. Simplifying such intri-
cate information into MLP potentially causes in-
formation loss or distortion, ultimately resulting
in suboptimal performance. This paper proposes
an aggregation mechanism enhanced GNN distilla-
tion framework (AMEND). AMEND introduces multi-
scope aggregation context preservation to repli-
cate the teacher’s broad aggregation scopes and
an aggregation-enhanced centered kernel alignment
method to match the teacher’s aggregation patterns.
To ensure efficient and robust knowledge transfer,
we integrate a manifold mixup strategy, enabling
the student to capture the teacher’s insights into
mixed data distributions. Experimental results on
8 standard and 4 large-scale datasets demonstrate
that AMEND consistently outperforms state-of-the-
art distillation methods.

1 Introduction
Graph is a universal language for modeling complex systems
and is widely used to represent entities and their relations in a
variety of domains [Dwivedi et al., 2023; Hong et al., 2024a],
such as social networks [Xia et al., 2022; Sharma et al.,
2024], protein-protein interaction networks [Liu et al., 2020;
Jha et al., 2022], citation networks [Kipf and Welling, 2016;
Yang et al., 2021], etc. The success of GNNs lies in their
aggregation mechanisms, which facilitate information prop-
agation and capture complex relationships. Effective aggre-
gation depends on the scope (how far the model looks) and
the pattern(how information is combined). Early GNNs[Kipf
and Welling, 2016; Jha et al., 2022] used fixed, layer-wise
schemes to aggregate local neighbor information. This was

∗Corresponding authors.

enhanced by Graph Attention Networks (GATs)[Velickovic et
al., 2017], which applied attention to assign dynamic weights
to neighbors. More recently, Graph Transformers (GTs)[Yun
et al., 2019; Chen et al., 2023] have introduced multi-head
self-attention to capture global dependencies and richer in-
teractions, overcoming limitations like over-smoothing and
limited receptive fields. These developments greatly extend
GNNs’ capacity for complex graph mining tasks.

The complex aggregation mechanism and computational
heft of GNNs can complicate their integration into latency-
sensitive, large-scale applications. To address this, leverag-
ing a Multi-layer Perceptron (MLP) for swift, streamlined
deployment becomes appealing. A promising approach is to
transfer insights from the GNN to an MLP, thus balancing po-
tency with efficiency. GNN-to-MLP methods in graphs have
recently received widespread attention and investigation. The
GLNN [Zhang et al., 2022] is a pioneering work advocating
the distillation of a proficiently trained GNN into an efficient
MLP, adhering to the traditional logit distillation approach
and prediction mimicking. NOSMOG [Tian et al., 2023] en-
hances the student MLP’s capacity to grasp graph topology by
appending structural encodings to the initial node attributes in
its input layer. It also innovates by incorporating noise adver-
sarial training as an additional module to bolster the MLP’s
robustness. VQGraph [Yang et al., 2024] introduces the VQ-
VAE technique in graph processing, condensing the teacher
GNN’s node embeddings into a compact codebook, and lever-
aging the ordering of query nodes relative to this codebook as
a distillation signal. Currently, Graph Transformers are in-
creasingly taking the place of GNNs in graph mining due to
their superior global attention and scalability. Distilling the
one-to-all attention aggregation pattern of the GT model into
an efficient MLP has not been studied yet.

However, existing GNN-to-MLP distillation methods,
mostly derived from classical knowledge distillation, fail to
consider the unique role of aggregation mechanisms in graph
learning. A toy experiment (Fig. 1) demonstrates this gap by
comparing last-layer node embedding correlations between
original GCN, GAT, GT models and their distilled MLP coun-
terparts. The results show that differences in aggregation
scope (e.g., GAT vs. GT) and pattern (e.g., GCN vs. GAT)
significantly affect distillation outcomes. As aggregation be-
comes broader and more complex, the correlation between
teacher and student embeddings declines, revealing a grow-
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Figure 1: Pubmed dataset’s hidden node embedding correlations for
GCN, GAT, GT, and MLP models are shown, with warm colors indi-
cating high correlation. MLP has a high correlation with GCN due to
GCN’s fixed weight and local aggregation, resembling MLP’s sim-
plicity. Correlation drops for GAT due to its attention-based local
aggregation and is lowest for GT, which uses global attention aggre-
gation, differing significantly from MLP.

ing representational gap that existing methods fail to bridge.
These findings highlight the critical influence of aggregation
mechanisms on representational alignment. Without explic-
itly addressing these differences, current approaches struggle
to transfer structural knowledge essential for accurate student
approximation. This leads to three key challenges: (1) Ag-
gregation scope mismatch: GNNs operate over varying re-
ceptive fields, while MLPs lack such structural context, mak-
ing knowledge transfer difficult. (2) Pattern misalignment:
Diverse aggregation strategies yield different structural rep-
resentations, complicating the learning of consistent node se-
mantics. (3) Rigid alignment strategies: Many methods rely
on direct feature or logit matching, ignoring model hetero-
geneity and limiting student model effectiveness.

As shown in Fig. 2, the persistent challenges highlight
the necessity of our holistic framework AMEND (Aggregation
Mechanism Enhanced GNN Distillation), aiming to elimi-
nate the impact of aggregation mechanism during GNN dis-
tillation through three key components. First, we propose
Multi-scope Aggregation Context Preservation for preserving
local and global dependencies, ensuring the student model
captures both neighborhood information and broader struc-
tural contexts. Second, we design Aggregation-enhanced
Centered Kernel Alignment, which aligns the aggregation pat-
terns between the teacher and student models using kernel-
ized similarities, incorporating graph structural information
to transfer the teacher’s aggregation behavior. Third, Man-
ifold Mixup Soft Matching, which generates mixed embed-
dings through shuffling and interpolation, ensuring the stu-
dent model mimics the teacher’s structural knowledge while
standardizing logits for efficient knowledge transfer. To-
gether, these components form a unified approach that over-
comes the challenges posed by varying aggregation mecha-
nisms, guaranteeing effective distillation. To fully evaluate
the proposed method, we conduct extensive experiments on
8 regular graph datasets and 4 large-scale graph datasets to
compare with state-of-the-art methods. The experimental re-
sults demonstrate the effectiveness and superiority of AMEND.
Our contributions can be summarized as:

• We are the first to systematically investigate the aggrega-
tion mechanisms in GNN distillation, introducing a new
perspective on structure-aware knowledge transfer.

• We propose AMEND, a novel framework designed to
enhance GNN-to-MLP distillation incorporating multi-
scope aggregation context preservation, aggregation-
enhanced kernel alignment, and manifold mixup soft
matching, providing a comprehensive solution to bridge
the gap between GNNs and MLPs.

• We perform extensive experiments on 8 regular and 4
large-scale graph datasets, and AMEND achieves superior
performance compared to state-of-the-art methods.

2 Related Work
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) have become crucial in
graph representation learning due to their message passing
paradigm. Vanilla GNNs aggregate node information from
the local neighborhood [Kipf and Welling, 2016; Chen et
al., 2018; Hong et al., 2021; Lin et al., 2025], which lim-
its the receptive field of node aggregation and the discrimi-
nation of information flows. To improve the discriminative
of first-order neighbors, attention-based GNNs [Velickovic et
al., 2017; He et al., 2023; Fountoulakis et al., 2023] achieve
the heterogeneous information filtering by adaptively adjust-
ing the weights of node aggregation. Additionally, Graph
Transformers (GTs) have emerged as a powerful GNN in
graph representation learning, addressing limitations of tradi-
tional message-passing GNNs such as over-smoothing, over-
squashing, and difficulty in modeling long-range dependen-
cies and heterogeneous node types. GTs leverage the atten-
tion mechanism to capture global context and complex re-
lational patterns for high-order node aggregation. The core
innovation of GTs lies in their ability to apply attention
across nodes in a graph, effectively modeling interactions
without being constrained by locality. Graphormer [Ying
et al., 2021] extended the Transformer architecture to graph
data by incorporating spatial encoding and structural en-
codings. GTN [Dwivedi and Bresson, 2020] expanded the
node raw attributes with Laplacian eigenvectors and sent
them to a vanilla transformer encoder for graph structure
capturing. Integrating GCNs and GT to exploit neighbor-
hood messages in global modeling has also received consid-
erable attention recently. They can be categorized as com-
bining GTs with GCNs to enhance the structure-awareness of
GTs using incomplete message propagation [Wu et al., 2021;
Chen et al., 2022; Rampášek et al., 2022] and integrating
the structural bias [Hussain et al., 2022; Zhao et al., 2021;
Deng et al., 2024] into the self-attention matrix to improve
their expressiveness. Despite their strengths, GNNs are com-
putationally intensive and require significant resources for
both training and inference [Zhang et al., 2022; Lin et al.,
2024], limiting their deployment in resource-constrained en-
vironments. This motivates us to distill the aggregation mech-
anism into more lightweight models such as MLP, which of-
fers faster inference and lower resource consumption while
aiming to retain the performance benefits of GNNs.

2.2 Knowledge Distillation on Graphs
Knowledge Distillation (KD) [Hao et al., 2024; Hong et al.,
2024b; Wang et al., 2025; Yang et al., 2023] aims to transfer
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the knowledge embedded in a cumbersome teacher to a sim-
pler student. Traditional graph-to-graph KD focuses on trans-
ferring insights from larger, deeper GNNs to more compact
student GNNs. Notable methods include LSP [Yang et al.,
2020] and TinyGNN [Yan et al., 2020], which emphasize the
preservation of localized structural patterns, and RDD [Zhang
et al., 2020] enhanced the reliability of node and edge rep-
resentations to ensure the student GNN accurately mirrors
the teacher GNN’s essential characteristics. Distilling GNN
knowledge into MLPs seeks faster reasoning, lightweight de-
ployment, and scalability free from graph size constraints.
GLNN [Zhang et al., 2022] first introduced GNN-to-MLP
following vanilla predictive mimicking with the soft label
from a teacher GNN.. KRD [Wu et al., 2023] employed a
reliable sampling strategy to train MLPs with highly con-
fident knowledge, ensuring robust performance despite the
simplified architecture. NOSMOG [Tian et al., 2023] inte-
grated structural and attribute features into the MLP inputs,
creating a structure-aware model enhanced by adversarial fea-
ture augmentation for noise robustness. Additionally, VQ-
Graph [Yang et al., 2024] introduced a code-based distillation
method and performed sort alignment by leveraging quanti-
zation techniques. Despite the success of GNN-to-MLP, due
to their similar parameter spaces and feature transformations,
challenges persist when extending to different node aggrega-
tion GNNs (e.g., GT). The more complex structure of GTs,
characterized by global attention mechanisms, complicates
the direct application of conventional feature and predictive
alignment strategies. Such methods are inadequate for ef-
fectively transferring the rich knowledge embedded in GNNs
to MLPs, necessitating more sophisticated distillation tech-
niques to bridge the heterogeneous models and ensure the
student model benefits from the teacher’s capabilities.

3 Methodology
3.1 Problem Definition
A graph can be represented by G = {V, E}, where V and E
are the node set and edge set, respectively. The graph size
can be dented as N , and the nodes attribute is formed with
a feature matrix X ∈ RN×d, where d is the feature dimen-
sions. The adjacency matrix A ∈ RN×N indicates the graph
topology, where Ai,j = 1 denotes node vi is connected with
node vj , otherwise Ai,j = 0. D is a diagonal matrix repre-
senting the degrees of the nodes, Dii =

∑
j Aij . For node

classification, the most important graph mining task, the pre-
diction targets are Y ∈ RN×c, where c is the number of node
classes. Given the labels YL, the goal is to predict the la-
bels YU for unlabeled nodes. The GNN-to-MLP task aims to
distill the aggregated node embedding from large GNNs to a
lightweight MLP.

3.2 Aggregation Mechanism Enhanced Distillation
The overview framework of our proposed AMEND is shown
in Figure 2. First, AMEND preserves both local and global
dependencies by constructing a multi-scope context for node
representations. This ensures that the student MLP can em-
ulate the diverse aggregation ranges of the teacher model.
To further enhance the transfer of aggregation patterns,

AMEND explicitly aligns the aggregation patterns between the
teacher and student models using a kernel-based similarity
metric ACKA, ensuring that the MLP can replicate the nu-
anced aggregation patterns of the GNN, even without a native
graph-aware mechanism. Lastly, AMEND facilitates knowl-
edge transfer by manifold mixed embeddings, allowing the
teacher’s expressive capacity to be distilled into the student.
This step smooths the differences in representational capabil-
ities by combining soft matching strategies and embedding
mixup to propagate knowledge effectively.
Multi-scope Aggregation Context Preservation. To tackle
the challenge of aggregation scope in knowledge distillation,
we propose strategies to preserve multi-scope neighborhood
aggregation contexts in the GNN teacher model. This en-
sures effective knowledge transfer regardless of variations in
the teacher model’s aggregation scope. Thus, we extend the
teacher model’s outputs with additional embeddings that ex-
plicitly encode aggregation scope information, complement-
ing the general embeddings generated by the teacher model.

Specifically, to effectively capture neighborhood informa-
tion across multiple aggregation levels, we first construct
a node propagation sequence through multi-scope message
propagation. This sequence encodes aggregation information
at different hops and is defined as:

H(0) = [Â0X, Â1X, · · · , ÂkX], (1)

where Â = D̃−1/2ÃD̃−1/2 is the Laplace normalized ad-
jacency matrix, and k is the number of hops. The resulting
node embeddings are then processed by a global aggregation
module to capture higher-level dependencies:

H(l+1) = H(l) + Gloabl(H(l); Θ), (2)

where Global(; Θ) denotes the global aggregation function
effectively capturing both local and global structural patterns.
It is parametrized with Θ and can be implemented by a self-
attention approach.

In this way, the general GNN teacher model’s output for
distillation can be combined with the scope information by
a self-weighted readout function, allowing adaptive aggrega-
tion by assigning different importance to various scopes:

ZT = GNN(Â0,X) +
k∑

i=0

αiZi, (3)

where αi are learnable weights and Zi=H
(L)
ik:(i+1)k represents

the embeddings corresponding to each scope in final H(L).
Furthermore, inspired by graph transformers [Chen et al.,

2023; Chen et al., 2022; Zhou et al., 2024a], we also incorpo-
rate position encoding (X← X+Xpe) to capture the relative
positions. Enhanced by random walk-based position encod-
ing, this allows the model to consider a broader scope when
performing aggregation. In the practical distillation process,
position encoding is shared across teacher and student mod-
els, ensuring consistent knowledge transfer.
Aggregation-enhanced Centered Kernel Alignment. To
effectively enable the student MLP to mimic the teacher GNN
model’s patterns to perform node aggregation, we propose
Aggregation-enhanced Centered Kernel Alignment (ACKA)
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Figure 2: The overview framework of AMEND . (a) Multi-scope Aggregation Context Preservation; (b) Aggregation-enhanced Centered Kernel
Alignment; and (c) Manifold Mixup Soft Matching Distillation.

as an intermediate supervision method. ACKA enhances the
structure capture ability of student MLP by explicitly aligning
aggregation patterns between the teacher and student models.

ACKA performs as a metric for representation similarity,
which aligns aggregated representations by leveraging ker-
nelized similarities between node embeddings. Its formula-
tion is:

ACKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (4)

where the Hilbert-Schmidt Independence Criterion (HSIC) is
empirically estimated by:

HSIC(K,L) =
1

(b− 1)2
tr(KCLC), (5)

and C is the centering matrix C = I − 1
b11

⊤, K,L ∈ Rb×b

are kernel matrices derived from the teacher and student em-
beddings, representing their aggregated node dependencies.

To further enhance the alignment of aggregation patterns,
ACKA chooses to integrate graph structural information into
the kernel function through the Structure-Refined Gaussian
Kernel (SRBF). SRBF activites the paired-wise node aggre-
gation and informs the structure-aware similarity function
determining how much influence neighboring nodes should
have for knowledge distillation. SRBF kernel is defined as:

K(Zi,Zj) = exp

(
− 1

2σ2
∥ Âij(Zi − Zj) ∥22

)
, (6)

where Zi is the embedding of node i. The SRBF kernel en-
sures that node similarity computations are structure-aware,
allowing the student to capture the adjacency-activated ag-
gregation dynamics modeled by the teacher. To transfer
the aggregation behavior of the teacher model to the stu-
dent model, we introduce the ACKA loss function, which
aligns the structure-enhanced kernelized representations be-
tween the teacher and student. The loss is formulated as:

LACKA = 1− ACKA(SRBF(ZT ), SRBF(ZS)), (7)

where ZT ∈ Rb×d1 and ZS ∈ Rb×d2 denote the node embed-
dings from GNN and MLP models, respectively, and SRBF(·)
is the kernel function defined in Eq. 6.

From a theoretical perspective, ACKA can be interpreted
as the upper bound of Maximum Mean Discrepancy (MMD)
with an additional constant term [Zhou et al., 2024b]. This
implies that maximizing ACKA is equivalent to minimizing
the upper bound of MMD between the teacher’s aggregated
embeddings and the student’s transformed features. By trans-
ferring aggregation behavior rather than raw feature represen-
tations, ACKA provides an intuitive and effective distillation
mechanism. Additionally, another advantage of ACKA is its
dimension-independent design, which accommodates the dif-
ferent representation spaces of the teacher and student mod-
els. This is particularly important when the teacher (e.g., a
Graph Transformer) and the student (e.g., an MLP) have sig-
nificant architectural differences. By aligning kernelized ag-
gregation patterns, ACKA ensures that the student model cap-
tures the teacher’s structural aggregation patterns, even when
their embeddings operate in different dimensions or scales.
Manifold Mixup Soft Matching Distillation. Consider-
ing the representative capacity differences between GNNs
and MLP, we propose a novel manifold mixup soft match-
ing distillation method in order to propagate the teacher
GNN’s insights of the augmented mixing node distributions
into the MLP during the distillation process, improving the
efficiency of knowledge transfer. The key components of
this method include the generation of mixed representations
through shared random shuffling and linear interpolation, and
a temperature-shared KL divergence loss.

Suppose, the node embedding generated by the teacher
GNN model is denoted as ZT ∈ Rb×d1 , where b and d1 are
the batch size and embedding dimensions of GNN, respec-
tively, and MLP’s node embedding is ZS ∈ Rb×d2 . To create
mixed representations, we apply a random shuffle to the node
embedding. Let Z′

T represent the shuffled version of ZT ob-
tained by randomly permuting the node indices. The mixed
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embedding for the GT model is then computed as:
Zmix

T = λZT + (1− λ)Z′
T , (8)

where λ ∈ [0, 1] is a mixing coefficient drawn from a Beta
distribution, λ ∼ Beta(α, α). The same shuffle indices are
used to generate Z′

S from ZS , and the mixed embedding for
the MLP model is:

Zmix
S = λZs + (1− λ)Z′

S . (9)
The mixed embeddings are fed into the classification heads

of both models, yielding predicted logits Ŷmix
T and Ŷmix

S for
the GNN and MLP models, respectively:

Ŷmix
T = gT (Z

mix
T ), Ŷmix

S = gS(Z
mix
S ) (10)

In the prediction mimicking stage, we use theZ-score logit
standard distillation technique [Sun et al., 2024] to allevi-
ate the challenges of a lightweight student in predicting log-
its with a comparable range and variance as a cumbersome
teacher, given the capacity gap between them. The objective
function of our prediction soft alignment can presented by:
Lmix = DKL(ϕ(Z(Ŷmix

T )/τ), ϕ(Z(Ŷmix
S )/τ))

Lpred = DKL(ϕ(Z(ŶT )/τ), ϕ(Z(ŶS)/τ))
Llogit = Lmix + Lpred,

(11)

where Z(X) = X−µ
σ is the Z-score standardization, ϕ de-

notes the SoftMax function, τ is the shared-temperature (0.5
for all experiments), and ŶT = gT (ZT ), ŶS = gS(ZS) are
the clean predict logits based their node embeddings, respec-
tively. The mixup performs as graph rewiring augmentation
which can improve the robustness of distillation. Further-
more, teaching the GNN’s predictions of mixed data distri-
butions to the MLP can somewhat mitigate logit collapses
due to differences in model ability to make rigid predictive
alignments (a problem that has been identified in the previ-
ous literature [Hao et al., 2024; Lao et al., 2023]).

The overall loss function for student MLP training is a
weighted combination of classification task loss, ACKA loss,
and logit distillation loss:

LS = Ltask + βLACKA + γLlogit, (12)
where Ltask is the commonly used classification cross-
entropy loss, β and γ are the tread-off hyper-parameters.

3.3 Algorithm Analysis
The pseudo-code of our proposed AMEND framework is illus-
trated in Algo. 1. The time complexity mainly depends on the
self-attention module and for one layer is O(b(K + 1)2d),
where b,K, d denote the batch size, pre-aggregation hops,
and hidden dimensions, respectively. In student training, the
computational complexity primarily derives from ACKA and
MLP, which can be formulated as: O(b2d + dL), where
L is the student model depth. Manifold mixup is imple-
mented through an efficient parameterization that requires
only one additional forward process for the classification
head, which has a negligible impact on the overall com-
plexity. In addition, the teacher model and position encod-
ing can be pre-trained and pre-computed offline, which im-
proves the efficiency of our model training. In model infer-
ence, AMEND shares the same complexity with vanilla MLPs
(O(dL)), and its space complexity is O(d2L), enabling fast
reasoning and lightweight deployment.

Algorithm 1 AMEND Algorithm
Input: graph G = {V, E}, node feature matrix X, and pre-
computed position encoding Xpe

Output: optimized parameters of the student MLP S , predict
node labels Ŷ .

1: Model initialization and Dataset Partitioning.
2: Pretrain the teacher model T with cross-entropy loss.
3: #Student MLP Training
4: for Epochs do
5: #Aggragation Context Preservation
6: ZT = T (X, E ,Xpe),
7: ZS = S(X,Xpe);
8: #Aggregation-enhanced CKA
9: LACKA ← ACKA(ZT ,ZS) in Eq. 7;

10: #Shared Manifold mixup
11: Zmix

T = λZT + (1− λ)Z′
T ;

12: Zmix
S = λZS + (1− λ)Z′

S ;
13: ŶT , ŶS ← gT (ZT ), gS(ZS);
14: Ŷmix

T , Ŷmix
S ← gT (Z

mix
T ), gS(Z

mix
S );

15: #Logit distillation
16: Llogit = Lmix + Lpred in Eq. 11;
17: #Overall loss compute
18: LS = Ltask + βLACKA + γLlogit in Eq. 12;
19: Gradient backward and model optimization.
20: end for
21: return S, Ŷ

4 Experiments
4.1 Experiments Setting
Datasets. To fully evaluate our proposed method, we use
8 public regular graph benchmarks [Yang et al., 2021],
i.e. Cora, Citeseer, Pubmed, Computer, Photo, Cora-
full, Coauthor-CS, Coauthor-Physics, and 4 large-scale
graphs [Hu et al., 2020], i.e., Ogbn-Arxiv, Aminer, Reddit,
and Ogbn-Products. The details of these 12 datasets are in
Appendix A. For each dataset, we follow the dataset protocol
in [Chen et al., 2023], where 6/2/2 of the nodes are used as
training/validation/test sets, respectively.

We select GT as the teacher model for distillation because
it presents a more challenging and representative case. GT
leverages a global aggregation scope and an attention-based
aggregation pattern, which demand that the student MLP
replicate both its extensive receptive field and intricate aggre-
gation mechanisms. These characteristics make GT an ideal
testbed for evaluating the effectiveness of GNN distillation
methods. In our experiments, we report the mean and stan-
dard deviation of ten separate runs. We employ accuracy to
measure model performance, use validation data to select the
optimal model, and report results for test data.
Baselines. Consistent with the comparative experimental
setup of traditional knowledge distillation frameworks, we
compare a variety of train-from-scratch baseline models,
i.e., MLP, GNN-teacher (GCN [Kipf and Welling, 2016],
GAT [Velickovic et al., 2017], SAGE [Hamilton et al., 2017],
NAGphormer [Chen et al., 2023]), and 3 state-of-the-art
GNN-to-MLP methods, i.e., GLNN [Zhang et al., 2022], NO-
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Dataset Cora Citeseer Pubmed Computer Photo Corafull CS Physics
MLP 77.96±1.73 65.30±1.67 71.82±1.85 75.74±1.25 78.46±1.06 55.72±0.88 73.68±1.02 77.29±0.87
GCN 90.19±1.67 77.86±2.79 86.56±2.21 89.93±1.63 94.05±2.52 61.76±1.46 92.92±0.96 96.18±1.23
GAT 90.56±2.48 78.46±1.76 87.01±3.07 90.82±2.65 94.64±1.78 64.47±1.25 93.61±0.84 96.17±1.28
SAGE 90.78±2.46 78.61±3.02 88.31±2.17 90.04±1.28 94.77±2.10 67.24±1.73 93.87±0.97 96.58±1.49
NAGPhormer 91.01±2.30 78.31±2.18 89.83±0.96 91.35±1.62 95.68±2.47 70.51±1.59 95.75±0.94 96.68±1.25

GLNN 90.37±1.77 76.37±2.03 86.74±1.87 90.22±1.22 93.79±0.85 68.75±1.68 95.55±1.05 96.61±0.83
NOSMOG 90.49±1.57 76.58±2.34 88.23±0.96 90.40±3.02 94.97±1.25 69.28±1.06 95.56±0.94 96.45±1.21
VQGraph 90.19±0.97 76.30±1.15 88.13±0.57 91.17±0.88 93.07±1.21 69.33±1.06 95.66±0.96 96.88±0.78
Ours 91.30±1.0391.30±1.0391.30±1.03 78.92±0.9678.92±0.9678.92±0.96 90.54±1.1090.54±1.1090.54±1.10 92.44±0.3592.44±0.3592.44±0.35 96.01±1.0696.01±1.0696.01±1.06 71.02±0.9271.02±0.9271.02±0.92 96.31±0.7096.31±0.7096.31±0.70 97.22±0.4897.22±0.4897.22±0.48

∆MLP ↑13.34% ↑13.62% ↑18.72% ↑16.70% ↑17.55% ↑15.30% ↑22.63% ↑19.93%
∆GNN ↑0.52% ↑0.31% ↑2.23% ↑2.40% ↑1.24% ↑2.78% ↑2.44% ↑0.64%
∆GT ↑0.29% ↑0.61% ↑0.71% ↑1.20% ↑0.33% ↑0.51% ↑0.57% ↑0.54%
∆GLNN ↑0.93% ↑2.55% ↑3.80% ↑2.22% ↑2.22% ↑2.27% ↑0.76% ↑0.61%
∆NOSMOG ↑0.81% ↑2.34% ↑2.31% ↑2.04% ↑1.04% ↑1.74% ↑0.75% ↑0.77%
∆V QGraph ↑1.11% ↑2.62% ↑2.41% ↑1.27% ↑2.94% ↑1.69% ↑0.65% ↑0.34%

Table 1: Performance on eight regular graphs. The top 5 rows report the performance of the teacher model with vanilla MLP, GNNs (i.e.,
GCN, GAT, SAGE), and GT. in the middle is the state-of-the-art distill-to-MLP methods and our AMEND results. ∆X denotes the difference
between the AMEND and others (SAGE for GNN), respectively. Results show accuracy(higher is better), best are highlighted in bold.
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Figure 3: Results on four large-scale graphs with different training label rates. With increasing labeling rates, model performance improved
in all cases. Among them, GT framework (NAGphormer) outperforms GNNs, and our AMEND (the red line) outperforms all teacher models
and state-of-the-art distill-to-MLP methods overall.

SOMG [Tian et al., 2023], and VQGraph [Yang et al., 2024].
The details of baseline methods are in Appendix B.

4.2 Performance on Eight Regular Graphs
We compare the proposed AMEND to vanilla supervised MLP,
GNN, GT, and state-of-the-art distill-to-MLP methods in the
same experimental setting across eight datasets, with the re-
sults reported in Table 1. The results show that the vanilla
MLP consistently exhibits the lowest performance, empha-
sizing the need for effective knowledge distillation from more
complex models. GNN-based models (i.e., GCN, GAT, and
SAGE) outperform the MLP thanks to the message passing
for graph structure learning. The NAGphormer, representing
the GT teacher, demonstrates superior performance compared
to all GNNs, affirming the effectiveness of its global attention
mechanisms and more sophisticated model architecture. Our
proposed method consistently outperforms all other distill-to-
MLP methods (GLNN, NOSMOG, VQGraph) across eight
datasets. The ∆ values indicate the performance gains of our
method over the baseline models and other distill-to-MLP
approaches, with significant improvements observed in sev-
eral datasets: 1.79% higher than NOSMOG on the Cite-
seer, 2.41% higher than VQGraph on Pubmed, and 2.34%
higher than NOSMOG on CS, etc. These results confirm
the effectiveness of our proposed AMEND method for GNN-

to-MLP, which leverages the strengths of the graph trans-
former teacher and addresses the aggregation mechanism dif-
ferences, resulting in substantial performance improvements
and underscoring the potential for lightweight deployment
and fast inference in graph data mining tasks.

4.3 Performance on Four Large-Scale Graphs
Figure 3 shows the performance comparison of our
AMEND against SAGE, NAGphormer, GLNN, and NOSMOG
across four large-scale graphs (i.e., Ogbn-Arxiv, Aminer,
Reddit, Ogbn-Products.) in a few-shot setting with vary-
ing training label rates (For the first two datasets, we ran-
domly selected two non-overlapping 10% nodes as the val-
idation and test sets, respectively, and doubled 1% for the
last two datasets.). The results indicate that the model perfor-
mance steadily improves as the supervision increases, and our
method almost surpasses all other distill-to-MLP approaches.
For example, on Ogbn-Arxiv, our method achieves the high-
est accuracy at all label rates, with a notable improvement
of approximately 5% over NOSMOG at the 0.1% label rate.
On Reddit and Ogbn-Products, our method maintains supe-
rior performance, especially at higher label rates (e.g., ∼2%
higher than NOSMOG at 6‰ label rate on Ogbn-Products).
These findings highlight the robustness and effectiveness of
our approach, particularly in utilizing limited labeled data,
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Figure 4: Ablation of ACKA and manifold mixup.
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Figure 5: Hyper parameters sensitiveness.

underscoring its potential for scalable and efficient deploy-
ment in large-scale graph scenarios.

4.4 Ablation Study

In the ablation experiments, we investigate the impact of
ACKA and manifold mixup modules within AMEND , and the
results are reported in Figure 4, where ACKA→RAD repre-
sents we replace ACKA with the Representational Similarity
Distillation (RAD) in NOSMOG [Tian et al., 2023]. The re-
sults clearly demonstrate that removing either ACKA or man-
ifold mixup significantly drops accuracy across all datasets.
For example, on the Cora dataset, removing ACKA decreases
accuracy from over 91% to approximately 89%. The impact
of manifold mixup is also notable, as its removal causes a
drop in performance across all datasets, such as from 96%
to 93% on the Photo dataset. These results confirm that
both ACKA and manifold mixup are critical components of
our method, significantly contributing to its superior perfor-
mance. Results underscored the importance of these modules
in effectively transferring knowledge and enhancing model
performance in graph data mining tasks.

4.5 Parameter Sensitive Analysis

In Figure 5, we explore the sensitivity of hyper parameters β
and γ in overall objective function Eq. 12 on three citation
graphs. β and γ represent the contributions of the ACKA and
manifold mixup logit distillation, respectively. The results in-
dicate that the optimal performance is achieved with β = 10
and γ = 0.1. According to the definition of LACKA, its
value range is [0, 1]. We monitored the values of each compo-
nent of the loss function during training and found that, with
β = 10, γ = 0.1, the scales of LACKA and Llogit were com-
parable to the task loss component Ltask, leading to optimal
model convergence.

(a) Raw Data (b) NOSMOG (c) Ours

Figure 6: Node embedding visualization on Pubmed.

(a) GCN→GLNN (b) SAGE→NOSMOG (c) GT→AMEND

Figure 7: The correlation heat map of node embedding between the
teacher and student models.

4.6 Visualization
To visually compare the node embeddings learned by differ-
ent methods, we used the TSNE algorithm [Van der Maaten
and Hinton, 2008] to create scatterplots of the test node rep-
resentations from the Pubmed dataset, as shown in Figure 6.
The figure demonstrates that the node embeddings extracted
from our student model exhibit better class separability and
intra-class compactness compared to those from the current
state-of-the-art GNN-to-MLP approach. This indicates that
AMEND effectively transfers the complex graph modeling
knowledge from the GT teacher into an efficient MLP. Ad-
ditionally, we visualize the node correlations between the lo-
cal aggregation (GCN→GLNN and SAGE→NOSMOG) and
global aggregation (GT→AMEND) in Fig. 7. Results demon-
strate that our approach has a more regular and structured cor-
relation with the teacher model than NOSMOG.

5 Conclusion
In this paper, we proposed the AMEND framework for effec-
tive and efficient knowledge transfer from GNNs to MLPs.
The framework introduces a multi-scope aggregation context
preservation strategy to enable the student MLP to preserve
the teacher’s broad and varying aggregation scopes effec-
tively. Additionally, a pattern-guided alignment mechanism
addresses aggregation pattern discrepancies so that the stu-
dent MLP can accurately replicate the structural aggregation
behaviors of the teacher GNN. We further incorporate a mani-
fold mixup distillation approach to improve the efficiency and
robustness of the student model by capturing the teacher’s in-
sights into mixed data distributions. Extensive experiments
on 8 regular and 4 large-scale graph datasets, combined with
ablation studies and visualization analyses, validate the supe-
riority of the proposed method over existing baselines.
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