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Abstract
Causal structure learning (CSL) plays a pivotal role
in causality and is often formulated as an opti-
mization problem within score-and-search meth-
ods. Under the assumption of an infinite dataset and
a predefined distribution, several well-established
and consistent score functions have been shown to
be both optimal and reliable for identifying ground-
truth causal graphs. However, in practice, these ide-
alized assumptions are often infeasible, which can
result in CSL algorithms learning suboptimal struc-
tures. In this paper, we introduce L-SFE, a frame-
work designed to automatically discover effective
score functions by exploring the ”score function
space”. L-SFE addresses this task from a bi-level
optimization perspective. First, it leverages a Large
Language Model (LLM) to interpret the charac-
teristics of score functions and generate the corre-
sponding code implementations. Next, L-SFE em-
ploys evolutionary algorithms along with carefully
designed operators, to search for solutions with
higher fitness. Additionally, we take the BIC as ex-
ample and prove the consistency of the generated
score functions. Experimental evaluations, con-
ducted on discrete, continuous, and real datasets,
demonstrate the high stability, generality and effec-
tiveness of L-SFE.

1 Introduction
Causal structure learning (CSL) is a fundamental approach
for understanding causality [Pearl, 2009; Spirtes et al., 2001].
It uncovers causal relationships from observational or inter-
ventional data and represents them using graphical models
such as Directed Acyclic Graphs (DAGs) et al. [Glymour et
al., 2019; Vowels et al., 2022]. Learning an exact DAG from
data is NP-hard [Chickering, 1996], and the mainstream algo-
rithms can be broadly categorized into two types: constraint-
based methods and score-based methods. Constraint-based
methods reconstruct the causal graph from a statistical per-
spective. They first identify the skeleton by performing in-
dependence tests and then infer edge directions while adher-
ing the acyclicity and other rules [Koller, 2009]. However,
the significance of independence tests cannot be accurately

Figure 1: BIC score for subgraphs Plcg → PIP3 and Plcg ⊥ PIP3,
where the direct causal relationship indicating that PLcg catalyzes
the conversion of PIP2 to PIP3. However, the BIC fails to identify
this causal link under the limited data (less than 103).

assessed, as it is influenced by variable dimensionality and
the number of conditioning variables, among others. In con-
trast, score-based methods have gained popularity in recent
research [Huang et al., 2018]. They treat DAG learning as
a constrained optimization problem, and define a score func-
tion to evaluate the fitness between candidate graphs and the
observed data. Optimization techniques, either combinatorial
or continuous, are then applied to identify the optimal DAG
in the space of possible causal structures.

Although much of the current research focuses on improv-
ing the effectiveness and efficiency of search methods in more
complex spaces or under weaker causal assumptions [Cheng
et al., 2024], these studies generally adopt consistent score
functions, and when the sample size approaches infinity, CSL
can reveal the true causal structure, represented by the mini-
mal I-map that accurately captures the data distribution.

However, is the score function can be applied across vari-
ous scenarios? To explore this, we still take BIC [Schwarz,
1978] as example and consider the limited sample size case,
which frequently arises in medical field. As illustrated in Fig-
ure 1 [Sachs et al., 2005], BIC exhibits varying preferences
in model selection depending on the sample size. In fact, this
gap is universal across score functions used for model selec-
tion. For instance, abnormal noise can negatively impact the
BIC-Gaussian score, and the choice of priors can influence
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the BDeu score. Although some improvements have been
proposed under various conditions [Silander et al., 2008;
Huang et al., 2018; Andrews et al., 2018]. it is impractical
to manually design new scoring functions for every emerg-
ing scenario. Given these challenges, our aim is to improve
the score functions in a automatic and systematic manner. In
fact, this task can be also framed as an optimization problem,
requiring to explore the landscape of possible scoring func-
tions.

Previously, such optimization tasks have been hindered by
the lack of a comprehensive understanding of the score func-
tion space. Fortunately, recent advancements in large lan-
guage model (LLM) [Achiam et al., 2023; Zhao et al., 2023]
offer promising tools. LLM encodes algorithms through code
implementation and contextual description, enabling more
effective search methods for algorithm design [Liu et al.,
2024b; Romera-Paredes et al., 2024]. Inspired by it, we pro-
pose the L-SFE (LLM-enhanced Score Function Evolution)
framework to discovery optimal score functions. Note that
L-SFE still achieves the MEC-level identifiability under the
causal faithfulness and causal suffiency assumptions [Pearl,
2009]. The contribution of this paper includes:

1. We frame L-SFE as a supervised learning process and
formulate it using a bi-level optimization approach. At the
lower level, a greedy local search (GLS) is employed to iden-
tify the optimal DAGs based on the specific score function.
At the upper level, Evolutionary algorithm (EA) is utilized to
optimize the scoring function with maximal fitness, which is
quantified by the structural difference between the aforemen-
tioned DAGs and the ground-truth graphs.

2. For LLM, we take the BIC as standard and design
the prompt integrating both conceptual and code-level in-
formation to initialize and evolve the scoring function. Ad-
ditionally, we refine several operators, including mutation,
crossover, and injection, to effectively balance convergence
and diversity of EA.

3. We evaluate the generated scoring functions from both
theoretical and experimental analysis. The former focuses on
equivalence and consistency, while latter is performed across
synthetic (including discrete and continuous) and real-world
data. The results demonstrate the effectiveness, stability, and
generality of L-SFE.

2 Related Works
Causal Structure Learning. The score-based CSL al-
gorithms can be categorized into combination-based and
continuous-based types. The former execute approximate or
exact search in: (1) DAG space G (e.g., HC [Heckerman et
al., 1995] and MAHC [Constantinou et al., 2022]), which
explore plausible DAGs by heuristically manipulating sin-
gle or multiple directed edges; (2) EC (Equivalent space)
space E (e.g., GES [Chickering, 2002] and fGES [Ramsey et
al., 2017]), which greedy search the completely partially di-
rected acyclic graph (CPDAG) via forward equivalent search
and backward equivalent search. (3) Permutation space O
(e.g., OBS [Teyssier and Koller, 2012], GRaSP [Lam et al.,
2022], and BOSS [Andrews et al., 2023]), which identify the
best causal structure by discovering the topological ordering

that maximizes ancestral information. Continuous-based al-
gorithms make assumptions about the data distribution and
learn causal graphs from a structural equation model (SEM),
such as LiNGAM [Shimizu et al., 2011], NOTEARS [Zheng
et al., 2018], DAG-RL [Zhu et al., 2019] and DAGMA [Bello
et al., 2022] et al.

LLM for CSL. Given the exceptional text comprehension
capabilities, numerous studies have leveraged LLM to re-
search the causality [Kıcıman et al., 2023; Takayama et al.,
2024]. These approaches regard LLM as sole determin-
ers of pairwise causal relationships [Zhiheng et al., 2022;
Wan et al., 2024] or domain experts. The latter harness meta-
information embedded in the LLM’s training data to enhance
the causal discovery, including initialization [Ban et al., 2023;
Li et al., 2024], post-door adjustments [Khatibi et al., 2024],
or structural constraints fusion [Ban et al., 2023; Zhou et al.,
2024; Jiralerspong et al., 2024; Zhang et al., 2024].

LLM for Algorithm Design. Finally, we provide a brief
overview of using LLM for auto algorithm design. Most ex-
isting frameworks employ evolutionary approaches and lever-
age operators defined within the algorithmic space for algo-
rithm generation, such as FunSearch [Romera-Paredes et al.,
2024], EoH [Liu et al., 2024b], and ReEov [Ye et al., 2024].
Additionally, these frameworks have been applied to a variety
of scenarios, including the capacitated vehicle routing prob-
lem [Liu et al., 2024a], critical node discovery [Mao et al.,
2024], and tensor network search [Zeng et al., 2024].

3 Background
DAG can be described as a tuple G = (V ,E), where V =
{X1, X2, · · · , Xn} represents the collection of variables, and
E = {Xi → Xj |Xi, Xj ∈ V } denotes the directed edges
between the variables. CSL can be typically formulated as
the optimization problem

G∗ = argmin
G∈G

Ψ(G|D)

s.t. G is acyclic.
(1)

Ψ(.) is a score function that evaluates the fitness of DAG G
on i.i.d dataset D = {D1, · · · ,Dm}, and it is usually decom-
posable and equivalence [Koller, 2009].

Definition 1. (Decomposable) If the score functionΨ(G|D)
can be written as Ψ(G|D) =

∑
Xi∈V Ψ(Xi, PaGi |D), then

Ψ is decomposable.

Definition 2. (Equivalence) ∀G1,G2 ∈ G, if G1,G2 is I-
equivalent, and Ψ(G1|D) = Ψ(G2|D) holds, then Ψ is equiv-
alence.

where PaGi represent the parents of Xi in G. For dis-
crete datasets, the most commonly used information theoretic
score functions include BIC and AIC [Kitson et al., 2023],
which evaluate model based on the multi-information content
and entropy of the variables. Other Bayesian scores, such as
BDeu, BDs, K2, and BDe[Kitson et al., 2023], place priors on
the parameters of the tabular conditional probability distribu-
tion. For continuous datasets, BIC remains applicable when
using conditional covariance matrix. Thus, we take BIC as
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Score Function Space CSL Space

…
Algorithm population

≺ ≺ ≺ ≺

DAG EC 

Permutation 

Fitness  ℒ for

Evolution
+

LLM generated score (Without fitness)

sampling

Training Dataset

LLM generated score (With fitness)

Score function

Greedy  local search

Structural     difference

True Graph

Initialization
Ψ(𝒢𝒢|𝒟𝒟)

Mutation

Crossover

Injection …

Figure 2: The workflow of the L-SFE. In score function space, EA is employed to guide the search, while well-designed prompts simulate
mutation, crossover, and injection operators to push LLM generate new score functions. In CSL space, every generate score function should
be combined with various GLS strategies to find the optimal DAGs, which used to compute the fitness.

benchmark for evolution [Andrews et al., 2023]

Ψ(G|D) =
∑

Xi∈V

ℓPaG
i →Xi

(θ̂mle|D)− λ

2
|θ̂mle| log(m), (2)

where ℓ(.) is a log-likelihood function, and θ̂mle represents
the maximum likelihood estimation (MLE) for the parame-
ters of subgraph Gi : PaGi → Xi. Furthermore, BIC is also
consistent if the underlying distribution P behind D belongs
to a curved exponential family [Haughton, 1988].

Definition 3. (Consistent) Suppose G∗ is a P-map under the
distribution P∗. A score function Ψ is said to be consistent if
as the sample size m → ∞, the following conditions hold:

• The structure G∗ maximum the Ψ(G∗|D).

• ∀G ∈ G, if G is not I-equivalent to G∗, then Ψ(G|D) <
Ψ(G∗|D).

4 Framework
The search in score function space can be formulated as a
bi-level optimization problem

Ψ∗ = argmin
Ψ∈Ψ

EG∗,DG∗ (Dis(G†
Ψ,DG∗ ,G∗))

G†
Ψ,DG∗ = argmax

G∈G
Ψ(G|DG∗

)

s.t. G is acyclic,

(3)

where G∗ denotes the arbitrary DAG within G, and DG∗
rep-

resents the dataset sampled from G∗ under the gaussian or
multinational distribution. Dis(Ga,Gb) is a structural distance
measure for Ga,Gb. Note that in equation 3, the upper level
optimization identify the optimal Ψ by minimizing the ex-
pectation of structural loss over all possible G∗ assigned with

DG∗
. This objective can be achieved through lower level opti-

mization, which finds the best G†
Ψ,DG∗ for a given score func-

tion Ψ. Furthermore, since the score function space is ab-
stract, L-SFE employes EA to solve equation 3, as it does not
require a clear characterization for the mathematical proper-
ties of the solution. As shown in figure 2, the workflow of the
L-SFE can be divided into two stages. Firstly, EA searches
the score function space to identify an improved Ψ; then, Ψ
is combined with the GLS to solve the lower level optimiza-
tion problem, ultimately leading to a best DAG for evaluating
the fitness of Ψ.

4.1 Score Function Generation
In this subsection, we provide a detailed explanation of how
the score function is discovered using LLM.

Prompts Design. Inspired by EoH [Liu et al., 2024b], all
prompts pt are designed using a three-level hierarchical struc-
ture as shown in figure 3. Task Description informs the LLM
of its intended role and the objective of CSL. Code Snippets
presents few-shot examples to heuristic the LLM designing
analogous score functions, and it contains two key compo-
nents: Idea, which provides a textual explanation of the core
thought behind the score function; Code, which presents the
detailed Python implementation. In addition, there is an op-
tional item that demonstrates the fitness of the score function.
Task Assignment applies the chain-of-thought (CoT) reason-
ing [Wei et al., 2022] to derive better scoring functions from
the given examples, and it includes four steps:

1. First, the LLM carefully reads and interprets the core
idea provided in the code comments;

2. Second, if the input score function is labeled with a fit-
ness, the LLM analyzes the reasons behind its effective-
ness or shortcomings;
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Task Description: Please help design a new score function to 
measure how well the subgraph 𝑃𝑃𝑃𝑃𝑖𝑖 → 𝑖𝑖 fits the discrete / continuous 
observation dataset. Below is an example.

def subscoreLLM(child, parents, Data):
'''
Idea: This function uses of the BIC score to measure the goodness of

fit of a subgraph to a discrete / continuous dataset.
Input and Output:
child: an index;
parents: a list of index, it is [] when child is a root node;

ccccData:a m*n numpy, where m is number of instances, and n is the number
    of variables.

   score: the fitness of subgrapg parents -> child.
'''
# The code implementation.
return score

Task Assignment: A lower loss means better performance of the 
algorithm. Follow these steps to complete the task:

(Optional) The Loss of this score function is xx.

1. Read the code comments to understand the core idea of demo function;
2. (Optional) Rethink the good or bad performance of demo function;
3. Provide a new idea that differ from the demo function;
4. Implement it in code and restrict the forms of the new function.

Code Snippets: 

Figure 3: The prompt paradigm in L-SFE. Including a basic task
description, few-shot examples, and detailed reasoning instructions.

3. Third, based on the selected operators, different prompts
are generated to inspire new ideas that diverge from the
given examples;

4. Finally, the LLM implements the new idea in code, en-
suring that the function name, input, and output match
those in the example code.

Fitness Evaluation in CSL Space. Based on equation 3, L-
SFE employs the Monte Carlo method [Metropolis and Ulam,
1949] to randomly sample np ground-truth graphs G∗ and
corresponding training datasets DG∗

for training. For con-
venience, the weight matrix W k ∈ {0, 1}n×n is used to rep-
resent the k-th G∗, where W k

ij = 1 implies the directed edge
Xi → Xj , and the sampled dataset is denoted as Dk. Then,
the Normalized Hamming Distance [Kıcıman et al., 2023] is
used to quantify the Dis(Ga,Gb). Thus, the fitness function
can be formulated as

L(Ψ) =
1

np

np∑
k=1

∥W †
Ψ,Dk −W k∥

1

dWk
2 , (4)

where dWk denotes the number of variables in W k. W †
Ψ,Dk

represents the best DAG learned by the pre-selected GLS un-
der Ψ and Dk. Obviously, a lower L(Ψ) indicates a higher
fitness. Note that GLS can source from different CSL spaces,
such as HC in DAG space, GES in EC space and BOSS in
permutation space.

EA in Score Function Space. The initial algorithm popu-
lation Ψ = {Ψ1, · · · ,Ψna

} is generated with standard BIC,
and mutation, crossover, and injection are employed for evo-
lution. More detailed prompt design can be referred in Sup-
plementary material 1.1 1.

1https://github.com/wzd2502/L-SFE

The crossover operator facilitates the random combination
of two score functions, generating a new one that exhibits
different structural and conceptual features. Specifically, Ψ1

and Ψ2 are randomly selected from the Ψ. Based on their
code implementations and the associated fitness L(Ψ1) and
L(Ψ2), LLM analyses and assimilates the ideas of parents to
creates a new score function Ψ′.

The mutation operator modifies an existing score function
to generate a variant with potentially altered characteristics.
Specifically, Ψ1 is randomly selected from the Ψ with its cor-
responding fitness L(Ψ1). Based on the extent of the modifi-
cations, mutation can be classified into two types: (1) struc-
tural mutation, which involves significant alterations to the
score function’s underlying structure, and (2) parameter mu-
tation, which only modifies the parameters of the score func-
tion without altering its fundamental structure.

The injection operator is designed to maintain diversity
within the algorithm population, preventing EA convergence
to a local optima. Specifically, a new score function Ψ′ is gen-
erated, which is entirely distinct from all previous Ψ ∈ Ψ.
L(Ψ′) is not evaluated at this stage, meaning Ψ′ is directly
incorporated into the mutation and crossover operations. Ψ′

will only be discarded at the end of the iteration if it does not
contribute positively to the evolutionary.

In each iteration, all of the aforementioned operators are
applied repeatedly, and the generated score functions are
tested for legality, ensuring that they do not introduce cyclic
graphs and can produce results within a specified time limit.
After completing an iteration, the population Ψ would be up-
dated. Only the top na algorithms are retained for the next
iteration. The evolution continues until a predefined stopping
condition is met. To provide a clear understanding of L-SFE,
we outline the pseudo-code in Alg. 1 in Supplementary ma-
terial 1.2.

4.2 Score Function Analysis
L-SFE is repeated nl times on different training datasets. To
avoid ambiguity, we introduce the notation L-SFEa

bk
, a ∈

{D,C}, b ∈ {1, · · · , nl}, k ∈ {1, · · · , na}. This repre-
sents the k-th score function learned by L-SFE over the last
iteration in b-th repetitions under the a-type dataset (D for
Discrete and C for Continuous). Here we take the L-SFED

1
as example and analyze its evolution in figure 4, and more
detailed results can be found in Supplementary material 1.3.

At the first iteration, L-SFE enhances the CSL by incorpo-
rating extra penalty terms that account for the length of the
parent sets

Ψ(G|D) =
n∑

i=1

ℓPaG
i →Xi

(θ̂mle|D)

−λ

2
(|θ̂mle|+

n∑
i=1

|PaGi |) log(m).

(5)

Equation 5 modifies only the structure of the penalty, so it re-
mains a consistent and equivalent score. At the end of the
evolution, L-SFE identifies an optimal Ψ by incorporating
priors into the BIC score, which can effectively mitigate over-
fitting under limited data. Furthermore, a quadratic penalty is
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0.0332

0.0296 0.0296
0.0292 0.0292 0.0292

ℒ(
Ψ

)

ITERATIONS

Standard BIC

Incorporate a penalty 
about the number of 

parents for model 
complexity

Combine Bayesian priors for 
smoothing with a dual 

complexity penalty that 
accounts for both the linear and 

non-linear effects of model 
complexity

Figure 4: The variation of fitness with respect to the iterations, along
with the corresponding evolution of the algorithmic ideas.

introduced to enhance the model’s preference for simplicity,
and the penalty term related to the number of data is modified
from log(m) to 1/m. This formulation is expressed as

Ψ(G|D) =
n∑

i=1

ℓPaG
i →Xi

(θ̂MAP |D)

− 1

2m
(β|θ̂MAP |+ γ|θ̂MAP |

2
),

(6)

where θ̂MAP represents the maximum a posterior (MAP) es-
timate, which is based on Dirichlet prior. Notably, the score
function in Equation 6 is decomposable and possesses several
advantageous properties
Theorem 1. Score function Equation 6 is still consistent but
not equivalence.

The proof can be found in supplementary material 1.3. Ac-
tually, all LLM learned scores provide similar insights: they
leverage the prior to enhance robustness under limited data
and use 1/m rather than log(m) to penalize the graph’s com-
plexity in a less restrictive manner.

5 Experiment
5.1 Settings
Datasets. GPT-4o mini is utilized for score function dis-
covery in L-SFE, and synthetic datasets generated from pyte-
trad are employed for training and testing2. For the dis-
crete dataset, L-SFE is trained on ten RandomGraphs with
n = 30, where the variables follow a multinomial distri-
bution, and tested on ErdosRenyi (ER) and ScaleFree (SF)
graphs. For the continuous datasets, L-SFE is trained on ten
RandomGraphs under the linear Gaussian SEM assumption
with n = 30, and evaluation is performed on the linear ex-
ponential SEM and the linear gumbel SEM. The GLS used
for training is HC with a tabu search. Each test is repeated
10 times with m = 5000. Additional details of experimental
setup are provided in Supplementary material 2.1.

2Code is avaliable on https://github.com/wzd2502/L-SFE

Figure 5: F1arr(↑) and F1adj(↑) comparison of L-SFE against
human-designed scores on ER graphs. L-SFED

ij represent the j-th
score function in last iteration of i-th repeat.

Metrics. We evaluate the structural accuracy of L-SFE
learned graph against the ground-truth graphs using the
Structural Hamming Distance (SHD), the F1 score for adja-
cency accuracy (F1adj), and the F1 score for arrow accuracy
(F1arr).
Baselines. The score function generated by L-SFE is com-
pared with commonly used scores, including BIC, BDeu, and
BDs for discrete data [Kitson et al., 2023], and BIC-Gaussian
for continuous data [Kitson et al., 2023]. Additionally, these
methods are integrated with GLS across various search spaces
and compared to baseline algorithms, including:

• Discrete. HC [Heckerman et al., 1995], PC [Colombo et
al., 2014], BOSS [Andrews et al., 2023], fGES [Ramsey
et al., 2017], GRaSP [Lam et al., 2022].

• Continuous. LinGAM [Shimizu et al., 2011], DAGMA
[Bello et al., 2022], BOSS, fGES, HC.

5.2 Overall Analysis
In this subsection, we want to answer the following questions:
Stability: Are the all score functions identified by L-SFE
consistently superior to human-designed scores? In this
topic, we conduct nl = 3 repetitions of L-SFE and record
the all na algorithms identified in the last iteration of each
repetition. HC is employed as the search method. Figure 5
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ER-10 ER-20 ER-30 ER-40 ER-50 SF-10 SF-20 SF-30 SF-40 SF-50

PC 1.1 14.4 / 112.3 200.8 8.6 34.2 50.0 136.4 163.6
HC 1.3 13.0 39.3 99.4 158.0 11.6 33.6 42.0 126.6 152.1
BOSS 1.2 6.9 31.9 87.6 149.3 10.3 35.9 44.1 130.8 156.8
GRaSP 0.8 11.1 33.2 86.7 151.8 7.8 32.8 42.0 128.3 155.4
fGES 0.5 8.6 32.2 86.7 159.2 10.5 34.7 43.2 130.4 155.2

L-SFED
∗ (G) 4.7 10.8 21.4 69.1 117.5 8.0 25.9 33.8 123.3 144.8

L-SFED
∗∗(E) 2.8 7.3 14.9 45.8 85.3 5.8 25.9 41.0 115.5 142.0

L-SFED
∗ (O) 3.4 14.1 42.9 102.7 / 5.2 21.0 48.4 130.9 156.1

Table 1: The SHD (↓) comparison with baseline methods on discrete datasets. L-SFED
∗ refers to the best-of-nl score function among the

L-SFED
i∗ (i = 1, 2, 3). G, E and O correspond to the GLS used. / indicates that the algorithm cannot find acyclic graphs within 2 hours.

Exp-10 Exp-20 Exp-30 Exp-40 Exp-50 Gum-10 Gum-20 Gum-30 Gum-40 Gum-50

PC 14.5 23.1 35.8 39.9 37.5 12.6 18.3 27.9 37.3 50.4
fGES 12.9 28.5 38.7 33.2 17.1 13.3 17.6 21.7 27.9 28.2
BOSS 7.1 14.6 16.1 15.8 7.8 6.2 4.5 9.3 12.1 9.2
DAGMA 17.4 40.8 56.2 61.7 76.3 22.6 39.1 54.3 65.4 79.3
LiNGAM 3.2 6.9 9.2 13.8 17.1 4.7 11.0 21.3 24.0 32.9

L-SFEC
∗ (G) 14.0 22.7 59.5 31.0 23.2 14.5 19.0 32.6 46.3 38.4

L-SFEC
∗ (E) 12.3 29.9 37.9 34.6 20.7 12.3 15.2 19.6 21.3 27.1

L-SFEC
∗ (O) 9.1 3.7 7.0 8.0 8.7 0.8 2.7 5.8 8.3 /

Table 2: The SHD (↓) comparison with baseline methods on continuous datasets.

presents the comparison with three human-designed scores
on ER graphs under the discrete dataset, and detailed test re-
sults on other settings can be found in Supplementary mate-
rial 2.2. From figure 5, most of LLM learned score functions
are either comparable to or outperform the human-designed
scores in each repetition. For instance, L-SFED

15 performs
best in Repetition 1, while L-SFED

21 and L-SFED
25 show supe-

rior performance in Repetition 2, and L-SFED
31 and L-SFED

32
lead in Repetition 3. A similar trend is also observed in the SF
graphs. In the case of continuous datasets, all score functions
learned by the LLM outperform the human-designed BIC-
gaussian score, highlighting the stability of the L-SFE.

Therefore, we select the best score function from i-th rep-
etition, denoted as L-SFED

i∗
and evaluate their generality.

Generality: Can the score functions discovered by L-SFE
be applied across different search methods? In this topic,
we explore whether the score function, trained using HC in
the DAG (G) space, remains effective in the EC (E) and per-
mutation (O) spaces. To investigate this, we employ the
GES and BOSS, along with L-SFED

i∗
for testing. The results

on ER graphs are displayed in figure 6, with additional re-
sults for other settings provided in Supplementary material
2.2. LLM learned score functions still demonstrate strong
performance in the EC space as well compared with BIC
and BDeu. However, in the permutation space, this superi-
ority narrows significantly. This is likely due to the smaller
scope of the permutation space (O(n2n−1)) compared to the
graphical space (O(n!2C

2
n)), where GLS are more likely to

find the optimal solution, with less sensitive to the choice of

score function. Notably, the computation cost of the Grow-
Shrink Tree (GST) for BDeu is prohibitively high, preventing
BOSS from identifying a DAG in test datasets when n ≥ 40.
For the continuous dataset, L-SFE maintains excellent gener-
ality in the EC space. However, in the permutation space,
due to higher capability of BOSS, L-SFED

1∗ and L-SFED
2∗

slightly under-perform compared to BIC-gaussian, with only
L-SFED

3∗ achieving a marginal advantage.

Effectiveness: Does L-SFE improve the performance of
CSL compared to state-of-the-art algorithms? Finally, we
investigate whether the LLM generated score function, when
combined with GLS in different search spaces, can outper-
form SOTA causal learning methods in tables 1 and 2. Over-
all, L-SFE achieves the lowest SHD in 8/10 settings on dis-
crete datasets and in 7/10 settings on continuous datasets.
Counterexamples are observed in some small-scale networks,
such as ER-10, ER-20, and Exp-10. These occurrences are
mainly because 5000 instances provide a sufficiently sam-
ple size for the BIC to yield optimal results. However, as
the problem scale increases, the advantages of L-SFE be-
come more pronounced. For discrete datasets, L-SFE in E
space identifies the most optimal DAGs among the eight algo-
rithms, and achieves similar results on continuous datasets in
O space. This observation aligns with our understanding that
graphical-based GLS are more suited for discrete datasets,
whereas permutation-based GLS can explore causal struc-
tures in larger steps, making them more effective for SEM
causal models. For further results, including F1arr and F1adj

scores, please refer to Supplementary material 2.2.
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Figure 6: HC trained L-SFE for E and O spaces on ER graphs.
BDeu + BOSS cannot output a DAG within 1 hour when n ≥ 40.

5.3 Other Experiments
Case Study. We present a case study using data from the
real world COVID-19 pandemic in the UK3. The data set
comprises 866 samples that encompass eight categories, in-
cluding viral tests, infections, hospitalizations, and related
factors. The expert-designed benchmark network includes 17
variables, 37 directed edges, and a maximum node degree of
10. The dataset is discretized using k-means and quartiles
discretization, as introduced by [Constantinou et al., 2023].
A graphical accuracy analysis is provided in Table 3. Due to
the absence of a predefined distribution, the expert-designed
benchmark network is not a P-map for dataset. As a result,
most existing algorithms fail to produce high F1 score graphs.
Even then, the L-SFE-guided GLS approach can consistently
identify more correct edges and accurately orient more arrows
across different settings.

Ablation Study. We investigate how different types of stan-
dard score function hints impact the performance of L-SFE
under three configurations: 1) Seed + Prompt: The BIC is
included in both the population seeds and the code snippets
within the prompts; 2) Seed: The initialization code snippets
provided only the basic inputs and outputs information, with
the BIC placed in the seed; 3) Random Walk: BIC is ab-
sent from both the seed and the prompts. Table 3 evaluates
their test performance on ER-20 and SF-20. As expected,
L-SFE(Prompt + Seed) yields the best F1arr and F1adj , in-
dicating that evolution helps refine the BIC to generate even
better score functions, and adding the seed within the popu-
lation also achieves this goal. However, allowing the LLM to
randomly search the score function space leads to suboptimal
results. Interestingly, when we extended the number of iter-
ations for L-SFE(Random Walk) to 10, L-SFE still learn the

3https://bayesian-ai.eecs.qmul.ac.uk/bayesys/

Figure 7: The accuracy of L-SFE trained under three modes.

k-means quartiles

F1arr F1adj F1arr F1adj

PC 0.235 0.441 / /
HC 0.419 0.581 0.194 0.451
BOSS 0.172 0.483 0.201 0.448
GRaSP 0.142 0.500 0.250 0.463
fGES 0.264 0.415 ∗0.302 0.453

L-SFED
∗ (G) 0.253 0.507 0.347 0.533

L-SFED
∗ (E) 0.257 ∗0.571 0.225 ∗0.507

L-SFED
∗ (O) ∗0.338 0.479 0.250 0.417

Table 3: The F1arr and F1adj comparison with baseline methods
on COVID-19 dataset. Bold for best and ∗ for second-best perfor-
mance.

similar thought of BIC. This observation further supports that
BIC represents an optimal solution within the score function
space. Furthermore, we also analyze the performance of L-
SFE across varying sample sizes in Supplementary material
2.2.

6 Conclusion
In this paper, we introduce the L-SFE, which leverages LLM
and EA to explore the score function space through a bi-level
optimization framework. Three key insights from this work
are concluded as follows:

• LLM can effectively learn valuable components, such
as Dirichlet priors and relaxed penalties. These com-
ponents are theoretically well-founded and align with
human-like reasoning.

• EA are crucial for finding optimal solutions. Even in the
absence of explicit guidance, LLM can discover similar
principles through iterative refinement.

• The score function space is highly abstract and poten-
tially multimodal, making best-of-n search a valuable
approach for yielding improved results.

Although L-SFE focuses primarily on exploring the struc-
ture of score functions, additional work is required to opti-
mize their parameters using LLM. Furthermore, future re-
search could focus on guiding LLM in exploring more effi-
cient causal search strategies or expanding the search space
beyond conventional frameworks.
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