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Abstract

Feature generation involves creating new features
from raw data to capture complex relationships
among the original features, improving model ro-
bustness and machine learning performance. Cur-
rent methods using reinforcement learning for fea-
ture generation have made feature exploration more
flexible and efficient. However, several challenges
remain: first, during feature expansion, a large
number of redundant features are generated. When
removing them, current methods only retain the
best features each round, neglecting those that per-
form poorly initially but could improve later. Sec-
ond, the state representation used by current meth-
ods fails to fully capture complex feature relation-
ships. Third, there are significant differences be-
tween discrete and continuous features in tabular
data, requiring different operations for each type.
To address these challenges, we propose a novel
dual-agent reinforcement learning method for fea-
ture generation. Two agents are designed: the first
generates new features, and the second determines
whether they should be preserved. A self-attention
mechanism enhances state representation, and di-
verse operations distinguish interactions between
discrete and continuous features. The experimen-
tal results on multiple datasets demonstrate that the
proposed method is effective.

1 Introduction
Feature generation in machine learning is the process of com-
bining original data features to create new ones. These new
features can capture complex relationships between original
features, enhance model robustness, improve data represen-
tation, and ultimately improve the performance of machine
learning tasks. As Figure 1 shows, there are several fea-
tures: gender, weight and height, and our goal is to predict
whether a person is healthy based on these features. Fea-
ture generation methods can help create a new feature weight

height2 ,
known as the Body Mass Index (BMI) [Obese, 1998], which

∗Corresponding author

Original Dataset

Gender Weight Height Label

Male 96 1.74 Obesity

Male 87 1.86 Normal

... ... ... ...
Female 104 1.95 Overweight

New Dataset

Gender Weight/Height2 Label

1 31.70 0

1 25.15 1

... ... ...
0 27.35 2Feature Generation Algorithm

F1-score

Original Dataset New Dataset
0.8320 0.9460(+13.7%)

Machine Learning Task 
    (Random Forest)

Feature Preprocessing
Feature Encoding

Handling Missing Values

Figure 1: After data preprocessing, the dataset is transformed using
a feature generation algorithm, resulting in a new dataset that sig-
nificantly improved the F1-score in downstream machine learning
tasks compared to the original dataset.

can lead to better predictive performance. However, man-
ual feature generation by domain experts is labor-intensive
and does not accurately capture the relationships among a
large number of features. Therefore, automated methods
for feature generation are naturally needed. Some tradi-
tional feature generation methods, such as FCTree [Fan et
al., 2010] and FICUS [Markovitch and Rosenstein, 2002],
are still influenced by domain knowledge, lacking flexibility
and adaptability. Current methods using reinforcement learn-
ing (RL) for feature generation have made the exploration of
features more flexible and efficient [Khurana et al., 2018;
Wang et al., 2022]. Despite these methods utilizing rein-
forcement learning for feature generation showing potential
improvement, several challenges still exist. First, in the fea-
ture expansion phase of reinforcement learning, a large num-
ber of redundant features are generated that need to be re-
moved. Current RL-based feature generation methods typ-
ically involve feature selection based on mutual information
after generating features, selecting the top K features with the
most information for subsequent feature generation. How-
ever, this method only considers the best features in each
round, neglecting features that initially perform poorly but
contribute better performance in later rounds. Second, RL
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agents must take states as input and current state representa-
tion methods primarily focus on autoencoders and graph con-
volutional networks [Xiao et al., 2022], but these methods
fail to sufficiently capture the complex relationships between
features. Third, there are significant differences between dis-
crete and continuous features, and it requires different oper-
ations for different types of features. For example, mathe-
matical operations like logarithmic or exponential operations
are only suitable for continuous features while cross-product
is only suitable for discrete features. Most existing methods
ignore interactions between discrete and continuous features.

To deal with these challenges, in this paper, we propose a
Dual-Agent Reinforcement Learning (DARL) method for au-
tomated feature generation. To deal with the first challenge,
the concept of hierarchical reinforcement learning [Morimoto
and Doya, 2001; Kulkarni et al., 2016; Zhang et al., 2023]
is used to decompose complex tasks into smaller, simpler
sub-tasks. Specifically, we designed two agents for the re-
inforcement learning framework: the first agent is responsi-
ble for feature generation, and the second agent is responsible
for feature discrimination. Feature discrimination is used to
determine whether the generated features are worth retain-
ing. By integrating the feature discrimination process into
the reinforcement learning framework, an optimal subset of
features is obtained that performs well in the current deci-
sion step and offers better long-term rewards, as reinforce-
ment learning aims to maximize cumulative rewards. The
method effectively explores the feature space to generate a
superior set of features. Compared to traditional mutual in-
formation methods, this method achieves better results. To
deal with the second challenge, the representation of states
in RL is enhanced using the Transformer model [Vaswani et
al., 2017]. Through self-attention mechanisms, the state rep-
resentation in RL can reveal correlations between each fea-
ture and provide rich information for RL algorithms to better
understand complex feature relationships. As for the third
challenge, we use different arithmetic operations to capture
three types of relationships, i.e., the relationship between dis-
crete and discrete features, the relationship between contin-
uous and continuous features, as well as the relationship be-
tween discrete and continuous features.

In summary, this paper presents a novel dual-agent rein-
forcement learning feature generation method. Through the
dual-agent reinforcement learning process, features are gen-
erated with better performance and higher interpretability.
Our main contributions include:

• The method Dual-Agent Reinforcement Learning
(DARL) is used for feature generation, where the first
agent is responsible for generating features, and the sec-
ond agent is responsible for preserving useful features
and removing redundant ones.

• We propose to use the self-attention mechanism for a re-
inforcement learning state, which can lead to better em-
bedding representations.

• We propose to distinguish between discrete and contin-
uous feature interactions, which enables the generation
of more interpretable features.

2 Related Work
The goal of automated feature generation is to identify the
optimal feature set to enhance the performance of machine
learning models [Chen et al., 2021]. Feature generation meth-
ods include expansion-reduction methods and search-based
methods. Expansion-reduction methods first expand the fea-
ture space and then perform feature selection to reduce redun-
dancy. Search-based methods are a class of techniques used
in automated feature generation that explore potential feature
transformations and combinations using search methods to
find the optimal feature set.

Expansion-reduction methods such as ExploreKit [Katz et
al., 2016] include three stages in its workflow: candidate fea-
ture generation, candidate feature ranking, and candidate fea-
ture evaluation and selection. It executes all transformation
functions on the complete dataset and selects the subset to be
added based on the empirical performance of models trained
with the candidate features. FEADIS [Dor and Reich, 2012]:
it randomly selects original features and mathematical func-
tions to generate new features. Autofeat [Horn et al., 2020]: it
first generates a large number of nonlinear features and then
selects a small subset of meaningful features from them to
create a new dataset. It is evident that expansion-reduction
methods struggle with the problem of feature space explo-
sion. Currently, a more effective method is to use search
methods to explore potential feature transformations in order
to identify the most valuable features for predictive models.

In the field of search methods, GRFG [Wang et al., 2022]
is based on group-wise feature transformations. Through
reinforcement learning, the system selects an operator for
each group and then performs operations between the groups.
TransGraph [Khurana et al., 2018] generates high-order fea-
tures using transformation graphs and Q-learning algorithms.
The Neural Feature Search (NFS) framework [Chen et al.,
2019] assigns a recursive neural network controller [Lipton et
al., 2015] to each feature. Each feature generates a new fea-
ture independently. However, this method requires N RNN
controllers for N features. Bigfeat [Eldeeb et al., 2022] pro-
posed a dynamic feature generation technique based on com-
puting tree logic. These methods show promising results in
automating feature generation and improving machine learn-
ing performance, but they generate excessive redundant fea-
tures. While there are methods to improve relevance and re-
duce redundancy [Zhang et al., 2021; Zhang and Gao, 2021;
Li et al., 2024], they have not been integrated into exist-
ing approaches. Additionally, the embedded states do not
adequately represent the relationships between features. At
the same time, they do not distinguish between discrete and
continuous features. Our proposed method aims to address
these limitations by integrating feature discrimination into the
search process and enhancing the representation of feature re-
lationships.

3 The Proposed Method
3.1 Problem Settings
Given a dataset D = {F , y}, where F represents the origi-
nal feature set and y represents the target label set, the fea-
ture set F = {D1, . . . , DN , C1, . . . , CM}, consists of N
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Action1

Feature Generation Agent

 Feature Discrimination Agent

 Final Output

Store
Sample

Feedback

 Downstream Task

Iterate

Multi-Head Attention

    Add&Norm

    Add&Norm

Feed Forward

Embedding State   

  Linear Layer

 Feature
Encoding

       Data Set   

  Policy Network

  Policy Network

Embedding State   
Memory

Embedding
 of Action1

     Data Set   

    New Data Set   

Memory

Feature Embedding Dual-agent Reinforcement Learning Data Processing

Action2

Action1 Action2

Store
Sample

Embedding       
State

Figure 2: Overview of DARL. The dataset is transformed into feature embedding representations through a self-attention mechanism. Subse-
quently, a feature generation agent produces a sequence of operators, and a feature discrimination agent generates a discriminator sequence.
These two sequences are combined with the original feature set to generate a new feature set. The updated feature set is then input into
downstream tasks for evaluation, and the results are fed back to the two agents. This process iterates until the best feature set is discovered or
the maximum number of iterations is reached.

discrete features {D1, . . . , DN} and M continuous features
{C1, . . . , CM}. We aim to find the optimal feature set F∗

that maximizes:

F∗ = argmaxF (VA(F , y)), (1)

where A represents downstream machine learning tasks such
as random forest, SVM, etc., and V denotes evaluation met-
rics like F1-score. Therefore, our objective is to identify a
feature set that maximizes the performance metric of down-
stream tasks.

3.2 Overall Framework
In this section, we describe the overall framework idea of our
feature generation algorithm. The framework adopts a hier-
archical reinforcement learning strategy, which interacts with
the environment through two Markov decision processes to
achieve better overall effectiveness, as illustrated in Figure 2.
Specifically, for a dataset D, after feature embedding, it is in-
put into the feature generation agent. The feature generation
agent generates a new feature for each feature in the origi-
nal feature set using predefined operations. The goal of this
stage is to expand the feature set by creatively transforming
existing features to increase the information content. Obvi-
ously, continuously generating a new feature for each feature
would lead to a feature explosion, resulting in an excessive
number of irrelevant features. Therefore, another agent is
designed to eliminate these irrelevant features. Hence, we
propose to design a feature discrimination agent. The fea-
ture discrimination agent aims to streamline the feature set
by selecting the most useful features. Due to the hierarchi-
cal nature of the framework, the output of the feature gen-
eration agent serves as the input for the feature discrimina-
tion agent. The feature generation agent generates an op-
erator (e.g., “+”, “-”) for each feature in the feature set F ,
resulting in an operator sequence T1 = {p1, . . . , pM+N},
while the feature discrimination agent generates a discrimi-
nator for each operator, resulting in a discriminator sequence

T2 = {q1, . . . , qM+N}. Combining the two action sequences
together, T = {p1q1, . . . , pM+NqM+N}, generates a new ac-
tion sequence. This new action sequence is then applied to the
original feature set F , resulting in a new, optimized feature
set F̂ . The new feature set F̂ is input into downstream tasks
(e.g., random forest, SVM) for feature set evaluation and re-
ward calculation. The evaluation results of downstream tasks
are used as feedback rewards for the feature generation agent
and the feature discrimination agent to guide them in obtain-
ing better policy networks. To obtain higher-order feature
representations, the original feature set F is updated to the
newly generated feature set F̂ , and the process is repeated for
K rounds until reaching the maximum number of iterations.
Unlike traditional feature generation methods, our framework
primarily aims to maximize cumulative rewards by treating
feature discrimination as a Markov Decision Process (MDP).
The framework automates the feature generation process and
reduces the reliance on domain expert knowledge. It also con-
siders computational efficiency and manages computational
resources by limiting the number of iterations and optimizing
algorithms.

3.3 Feature Embedding
Reinforcement learning, as a framework for solving the MDP,
requires the description of the MDP state. The feature gen-
eration agent must take a state as the input, and this state
is supposed to be constructed from the original feature set.
Thus, the state representation from the original feature set to
an embedding vector is mandatory. This section focuses on
introducing the state of the feature generation agent. Previous
methods primarily utilized autoencoders, graph convolutional
autoencoders, etc., as the embedding representations of states
[Xiao et al., 2022]. These methods, with their shorter context
lengths and limited ability to capture intricate dependencies,
have not effectively learned the underlying relationships be-
tween features. Therefore, in this paper, we adopt the idea
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from the Transformer model [Vaswani et al., 2017] which
has demonstrated excellent performance in embedding tab-
ular data [Zhang et al., 2024; Huang et al., 2020]. It utilizes a
multi-head self-attention mechanism to learn more effective
embedding representations. Additionally, when processing
tabular data, it is important to distinguish between discrete
and continuous features. The embedding representation of
the state is shown in the feature embedding section of Figure
2. Similar to the architecture of a Transformer, the dataset is
initially passed through a linear layer to transform the tabular
data into a fixed dimension. Next, feature encoding is per-
formed on the tabular data. Since tabular data does not convey
positional information, feature encoding in this context only
focuses on the distinctions between discrete and continuous
features. The equation for feature encoding is shown as:

Fenc = γ sin

(
pf

10

(
i

dmodel−1

)
)
, (2)

where pf = −1 for discrete features, pf = 1 for continuous
features, and pf = 0 for labels. Considering that sin(ωt) is
an odd function and has origin symmetry, it is chosen for fea-
ture encoding. γ is a coefficient used to amplify or diminish
the influence of feature encoding. Adding positional encod-
ing to feature embedding enables the distinction of different
types of features.

After applying the multi-head self-attention mechanism as
shown in Formula (3), followed by a residual connection with
layer normalization, the output is fed into a feed-forward neu-
ral network. After that, another residual connection with
layer normalization is applied to obtain the final embedding
representation.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V. (3)

By utilizing the self-attention mechanism, the original tab-
ular data can learn the distinct relationships between features.
This type of state representation can lead to better results in
reinforcement learning tasks.

3.4 Dual-agent Reinforcement Learning
We illustrate the proposed dual-agent reinforcement learning
process in Figure 2 in this section. The goal of the reinforce-
ment learning agent is to find the optimal action by utilizing a
policy network to maximize cumulative rewards. In a single
training iteration, the agent receives the current state and gen-
erates actions through the policy network. The environment
evaluates the actions to obtain rewards based on the machine
learning algorithm A and evaluation metric V, and updates the
policy network. Next, we introduce the states, actions, and
rewards for the two agents.

Feature generation agent
Feature generation agent learning system includes i) state The
state of the feature generation agent is defined as the embed-
ded representation from the original tabular data through the
self-attention mechanism, s1 = emb(D). ii) action The ac-
tion space of the feature generation agent consists of opera-
tions on the original features. To distinguish discrete and con-

tinuous features, we utilize different action spaces. For con-
tinuous features, the action space includes operations such as
“absolute value”, “none”, “square”, “inverse”, “logarithm”,
“square root”, “cube”, “addition”, “subtraction”, “multiplica-
tion” and “division”. For discrete features, the action space
includes “cross” [Luo et al., 2019] and “add”. Feature cross
means that if two original features are f1 = {A,B} and
f2 = {C,D}, then a new feature with four categorical val-
ues will be generated: fnew = {AC,AD,BC,BD}. By
performing feature cross, the model can learn the combined
effects of discrete features. To address the issue of cross-
operation between discrete and continuous features, we con-
vert continuous features into discrete features by binning with
a decision tree [Ying et al., 2023]. The binning process con-
verts continuous features into discrete features so that they
can interact with originally discrete features. This method al-
lows for learning richer feature representations. iii) reward
The reward is calculated as the difference between the score
achieved by the newly generated feature set Scorenew and the
score of the original feature set Scoreori in the downstream
learning task. It can be calculated by:

r1 = Scorenew − Scoreori. (4)

Feature discrimination agent
Feature discrimination agent learning system includes i) state
Considering the hierarchical relationship between the feature
generation agent and the feature discrimination agent, in or-
der to provide a better state representation for the feature dis-
crimination agent, the action sequence generated by the fea-
ture generation agent is transformed into word embedding
vectors, which are then concatenated with the state of the
feature generation agent to form the state of the feature dis-
crimination agent. This hierarchical representation enables
the feature discrimination agent to consider the historical be-
havior of the feature generation agent, which helps capture
the collaboration and dependency between agents. This hi-
erarchical information enhances the contextual awareness of
the feature discrimination agent’s decision-making process,
s2 = emb(D) ⊕ emb(T1). ii) action The action space of the
feature discrimination agent consists of “delete”, “replace”,
and “add”. “Delete” means that the newly generated feature
should be removed. “Replace” means that the newly gen-
erated feature is superior to the original feature and should
substitute the original one. “Add” means that the newly gen-
erated feature should be added to the original feature set.
Through continuous evaluation and optimization, the feature
discrimination agent will develop a long-term strategy to de-
termine which features should be deleted, replaced, or added
at each step, thereby creating the most valuable feature set.
The feature discrimination agent can finely manage the fea-
ture set and offer a more refined state representation for the
entire system through its decision-making process. The fea-
ture discrimination agent enhances the prediction accuracy
and efficiency of the entire system. iii) reward We design
three reward functions rdel, rrep, and radd corresponding to
the three actions:

As Equation (5) shows, to determine whether the newly
generated feature fnew should be deleted, the reward is for-
mally represented as the difference between the mutual infor-
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mation of the original feature and the label I(fori, y), and the
mutual information of the newly generated feature and the la-
bel I(fnew, y). A larger difference indicates that the original
feature contains more information about the label y, there-
fore, the newly generated feature is meaningless and should
be deleted.

rdel = I(fori, y)− I(fnew, y). (5)
To determine whether the newly generated feature fnew

should replace the original feature fori, we design a reward
function rrep using mutual information difference as Equa-
tion (6) shows. Opposite to rdel, a larger difference indicates
that the new feature contains more information about the la-
bel y, therefore, the newly generated feature is meaningful
and should replace the original feature.

rrep = I(fnew, y)− I(fori, y). (6)
To determine whether the newly generated feature should

be added, it is necessary to measure the redundancy between
the original feature and the new one. We use mutual in-
formation between the original feature and the new feature
I(fori, fnew) to quantify their redundancy. A smaller mutual
information value indicates a weaker correlation between the
two features, suggesting lower redundancy. Therefore, the
new feature should be added.

radd = I(fori, fnew). (7)
The utility reward is defined as the difference between the

score of the downstream learning task achieved using the
newly generated feature set and the score achieved using the
original feature set, as shown in Equation (8).

rimp = Scorenew − Scoreori. (8)
Combining the above equations, we obtain the reward for

the feature discrimination agent as follows:

r2 = α ∗ rdel + β ∗ rrep + γ ∗ rimp − δ ∗ radd, (9)

where α, β, γ and δ are positive weights.
Mutual information is utilized as part of the reinforcement

learning framework and works in conjunction with down-
stream task performance. This enables our method to more
effectively balance short-term feature relevance and long-
term task utility, overcoming the limitations of using mutual
information alone for feature selection.

Model Training
We employ Deep Q-Networks (DQN) [Mnih et al., 2013] as
the reinforcement learning model. DQN marries deep learn-
ing with Q-learning, using a neural network to approximate
the Q-function, predicting the expected return of an action in
a given state. It balances exploration and exploitation using
the ϵ-greedy strategy, where the agent randomly selects ac-
tions with a probability of ϵ to explore the environment and
with a probability of 1-ϵ, selects the optimal action according
to the current policy. Additionally, this method also employs
the technique of experience replay, which involves maintain-
ing a replay buffer to store tuples of data (state, action, reward
and next state) sampled from the environment. During the

training of the Q network, a random sample of data is drawn
from the replay buffer for training purposes. Both agents need
to minimize the Bellman formula of the action-value function
and reduce the temporal difference error:

L = Q(st, at)− (R(st, at) + γmaxat+1Q(st+1, at+1)).
(10)

Here, γ represents the discount factor, and Q is the esti-
mated Q function by the deep neural network. As training
progresses, the agent’s policy gradually converges to the op-
timal policy π∗. This means that for a given state, the agent
can choose the action that maximizes the expected cumulative
return. It can be expressed as:

π∗ = argmaxaQ(st, a). (11)
Through this training method, both agents learn optimal

actions in their state spaces to maximize cumulative rewards.
Information is exchanged between the two agents, and their
decisions are guided by reward signals generated by the en-
vironment. These signals can be fed back to both agents to
help them adjust their strategies. Through effective informa-
tion exchange, the two agents form a more powerful and flex-
ible system to better cope with complex and dynamic envi-
ronments, thereby significantly improving the effectiveness
of reinforcement learning.

4 Experiments
4.1 Experimental Setup
The experimental objectives include validating the improve-
ment of our method compared to other feature generation
methods, verifying the effectiveness of each part of the
method through ablation experiments, demonstrating the sta-
bility of the algorithm on different downstream learning tasks,
and comparing the runtime to validate algorithm time supe-
riority. We conduct experiments on 21 datasets from UCI
[Public, 2024b], Kaggle [Howard, 2024], and OpenML [Pub-
lic, 2024a], LibSVM [Lin, 2024], comprising 12 classifica-
tion tasks and 9 regression tasks. The evaluation metrics are
as follows: for classification tasks, we used the F1-score to
evaluate recall and precision. For regression tasks, we use the
1-relative absolute error (1-RAE) to evaluate accuracy. The
code is available at https://github.com/extess0/DARL.

4.2 Environmental Settings
All experiments are conducted on the Ubuntu operating sys-
tem, Intel(R) Core(TM) i9-10900X CPU@ 3.70GHz, and
V100, with the framework of Python 3.10.12 and PyTorch
1.13.1.

4.3 Evaluation Metrics
The equation for 1-RAE is as follows:

1−RAE = 1−
∑n

i=1|yi − y∗i |∑n
i=1|yi − ym|

, (12)

y∗i is the actual target value of the i-th observation, yi is the
predicted target value of the i-th observation, and ym is the
mean of all actual target values.
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Datasets Source C/R Samples/Features Base Random PCA DFS Autofeat Bigfeat NFS GRFG DARL
PimaIndian UCIrvine C 768/8 0.7566 0.7670 0.6444 0.7579 0.7566 0.7461 0.7806 0.7857 0.7904

German Credit UCIrvine C 1001/24 0.7390 0.7620 0.5910 0.7610 0.7540 0.7370 0.7720 0.7740 0.7770
SPECTF UCIrvine C 267/44 0.7751 0.8462 0.8051 0.7515 0.7856 0.8238 0.8500 0.8568 0.8688

Ionosphere UCIrvine C 351/34 0.9233 0.9260 0.6893 0.9401 0.9381 0.9203 0.9516 0.9554 0.9601
Wine Quality Red UCIrvine C 999/12 0.5395 0.5485 0.5135 0.5085 0.5275 0.5425 0.5736 0.5774 0.5856

Wine Quality White UCIrvine C 4900/12 0.4976 0.5086 0.4710 0.4798 0.5021 0.4955 0.5117 0.5142 0.5202
Ilpd OpenML C 583/10 0.6878 0.7342 0.6123 0.6929 0.6843 0.6980 0.7428 0.7387 0.7512

Svmguide3 LibSVM C 1243/21 0.7989 0.8303 0.6678 0.8206 0.8230 0.8166 0.8339 0.8359 0.8391
Messidor Features UCIrvine C 1150/19 0.6594 0.7411 0.5543 0.7524 0.7324 0.6498 0.7462 0.7482 0.7433

Lymphography UCIrvine C 148/18 0.8170 0.8655 0.8577 0.8673 0.8444 0.8037 0.8717 0.8746 0.8715
Airfoil UCIrvine R 1503/5 0.5118 0.6106 0.4586 0.6074 0.5927 0.4980 0.6134 0.6197 0.6273

Housing Boston UCIrvine R 506/13 0.4378 0.4597 0.2020 0.4760 0.4295 0.4203 0.4937 0.5012 0.5123
Openml 586 OpenML R 1000/25 0.6635 0.6321 0.3994 0.7187 0.7109 0.6635 0.7210 0.7310 0.7430
Openml 607 OpenML R 1000/50 0.6498 0.6367 0.2484 0.6814 0.6624 0.6363 0.6573 0.7005 0.7168
Openml 618 OpenML R 1000/50 0.6448 0.6194 0.2744 0.6848 0.6797 0.6351 0.6563 0.7071 0.7144
Openml 592 OpenML R 1000/25 0.6633 0.6578 0.2831 0.6939 0.6960 0.6633 0.6782 0.6926 0.7290
Openml 584 OpenML R 500/25 0.5826 0.5827 0.2153 0.5977 0.6356 0.5826 0.6020 0.6873 0.6929
Openml 599 OpenML R 1000/5 0.7199 0.7011 0.6344 0.7802 0.7233 0.7199 0.7819 0.7642 0.7937

Bikeshare DC Kaggle R 10886/11 0.9880 0.9920 0.9862 0.9993 0.9909 0.9995 0.9991 0.9994 0.9996
Ap-omentum-ovary OpenML C 275/10936 0.7818 0.4550 0.5927 0.3787 0.4570 0.8072 0.8509 0.8691 0.8764

Adult Income UCIrvine C 48842/14 0.8498 0.8494 0.5916 0.8483 0.8463 8.8295 0.8501 0.8505 0.8514

Table 1: Overall performance comparison.

F1-score is the harmonic mean of Precision and Recall.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
. (13)

Precision measures the proportion of positive predictions that
are correctly labeled, defined as Precision = TP/(TP +
FP ). TP stands for true positives, while FP stands for false
positives. Recall measures the proportion of actual positive
samples that are correctly identified by the model, given by:
Recall = TP/(TP + FN). FN represents false negatives.

4.4 Hyperparameter Settings
The number of epochs is limited to 200. By using 6 ex-
ploration steps per epoch, we further control the number of
features generated. We adopt random forest as the down-
stream machine learning model and performed 5-fold strat-
ified cross-validation in all experiments, instead of a simple
70%-30% split. We used the Adam [Kingma and Ba, 2015]
optimizer with a learning rate of 0.0001 to optimize DQN,
and set the memory limit of experience replay to 24, and the
DQN batch size to 8. The model incorporated 8 attention
heads, with a word embedding vector dimension of 8 and a
model hidden layer dimension of 128. The discrimination
agent’s reward weights α, β, γ, and δ are set to 0.1, 0.1, 1,
and 0.01.

4.5 Baseline Methods
We compare our method with 8 widely used feature gen-
eration methods, as well as random generation and feature
dimension reduction methods: (1) Base: using the original
dataset without feature generation. (2) Random: randomly
generating features for each feature. (3) DFS [Kanter and
Veeramachaneni, 2015]: an expansion-reduction method that
first expands and then selects feature, automatically gener-
ated features for the dataset. (4) PCA [Candès et al., 2011]: a

feature reduction method that compresses the original feature
set. (5) Autofeat [Horn et al., 2020] is an expansion-reduction
algorithm that generates nonlinear features and selects a sub-
set of relevant features to form a new dataset. (6) Bigfeat
[Eldeeb et al., 2022]: proposes a dynamic feature genera-
tion technique based on computational tree logic. (7) NFS
[Chen et al., 2019]: uses the RNN as a controller for each
original feature, which outputs actions to generate new fea-
tures. (8) GRFG [Wang et al., 2022]: iteratively generates
new features and reconstructs an interpretable feature space
through group-group interactions. We conduct experiments
on the open-source code provided by these methods.

4.6 Overall Comparison
Table 1 shows the comparison of our method with eight base-
line models on the 21 datasets in terms of F1-score or 1-
RAE. Our method outperformed the others on most datasets.
Additionally, to validate the performance of the proposed
method on large datasets where both the feature and sam-
ple sizes exceed 10,000, we conducted experiments on three
large datasets. The results confirmed the effectiveness of our
proposed method. It can be observed that our dual-agent
feature generation method outperforms other feature genera-
tion methods by maximizing cumulative rewards through re-
inforcement learning.

4.7 Ablation Study
This experiment aims to verify whether each component of
our method indeed has a positive impact on the final results.
Therefore, we have developed three variants: (1) The feature
discrimination agent was replaced with mutual information
feature selection. This change was made to verify whether
constraining feature quantity through the feature discrimina-
tion agent is more effective than using mutual information.
This variant is referred to as “DARL-k”. (2) The state of
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Feature Types and Proportions Openml 584 Openml 599 Housing Boston Airfoil Ilpd Ionosphere German Credit PimaIndian
Low-order features 33 11 9 11 11 0 1 2
High-order features 147 26 47 175 10 13 38 4

Proportion of high-order features 81.7% 70.3% 83.9% 94.1% 47.6% 100.0% 97.4% 66.7%

Table 2: Proportion of high-order features generated by different datasets.

the feature generation agent does not utilize self-attention en-
coding. This is to verify if self-attention encoding is more
effective. This variant is referred to as “DARL-t”. (3) For
discrete features, no cross-operation and feature encoding are
performed to examine the necessity of distinguishing discrete
features from continuous features. This variant is referred to
as “DARL-c”. We validate these variants on four datasets.
Tabel 3 shows that the best performance is achieved when
all components are present. This validates the effectiveness
of our method: dual-agent reinforcement learning is more
effective than traditional feature selection methods, as rein-
forcement learning can maximize cumulative rewards. Self-
attention encoding is more effective than not using it, as it
considers deep connections between features. Distinguishing
between feature types is more effective than not distinguish-
ing them, as there are inherent differences between discrete
and continuous features. It is noteworthy that not distinguish-
ing between discrete and continuous features yields similar
results on regression datasets. This is because regression task
datasets often lack discrete features, only containing continu-
ous features, making the differentiation between discrete and
continuous features irrelevant.

Datasets DARL DARL-k DARL-t DARL-c
Airfoil 0.6273 0.5244 0.6241 0.6273

German Credit 0.7770 0.7750 0.7650 0.7680
Housing Boston 0.5123 0.4811 0.4982 0.5123

PimaIndian 0.7904 0.7891 0.7892 0.7800

Table 3: Comparison of different DARL variants in terms of F1-
score or 1-RAE.

4.8 Robustness Analysis

Datasets XGB SVM Logistic
Base DARL Base DARL Base DARL

Airfoil 0.4692 0.6301 0.0340 0.0430 0.2792 0.3406
SPECTF 0.8015 0.8313 0.7901 0.8050 0.8014 0.8238

Ilpd 0.6827 0.7067 0.7086 0.7153 0.7187 0.7221
PimaIndian 0.7513 0.7566 0.7693 0.7826 0.7696 0.7800

Table 4: Comparison of different machine learning models in terms
of F1-score or 1-RAE.

This experiment aims to compare the performance im-
provement achieved by using various machine learning algo-
rithms to process the new dataset against the original dataset.
This will help verify the robustness of the method. We em-
ployed XGBoost (XGB), Support Vector Machine (SVM),
and Logistic Regression (Log) on the new dataset to vali-
date if the newly generated feature set still enhances perfor-
mance compared to the original dataset. As Table 4 shows,

we conducted experiments on 4 datasets and observed that
the scores of the new datasets were consistently higher than
those of the original datasets, indicating the high robustness
of our method.

4.9 Efficiency Improvement
This experiment aims to verify the optimality of our method
in terms of efficiency. By comparing the running time of
our method with NFS and GRFG on two datasets, Figure 3
shows that our method consumes the least amount of time
and achieves the best scores.
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Figure 3: Time comparison of different algorithms.

4.10 Feature Order Analysis
High-order features can capture more complex patterns and
relationships in the data. The experiments in Table 2 aim to
determine whether the newly generated dataset contains high-
order features. We define features with an order greater than
or equal to 2 as high-order features. Experiments conducted
on 8 datasets show that on most of them, more than 70% of
the features are high-order features.

5 Conclusion
In this paper, we propose a novel dual-agent reinforcement
learning (DARL) method for feature generation. This method
aims to capture complex relationships between features to en-
hance the performance of machine learning tasks. In DARL,
two agents are designed for the reinforcement learning frame-
work, where the first agent generates new features, and the
second agent determines whether the generated features are
worth preserving. We propose to use a self-attention mech-
anism to enhance state representation, effectively capturing
the complex relationships between features. We propose to
distinguish between discrete and continuous feature interac-
tions to generate more interpretable features. Extensive ex-
periments have demonstrated that DARL exhibits significant
effectiveness in feature generation when compared to other
baseline methods. Pseudocode of the DARL, experimental
settings, comparison of different downstream task and con-
vergence analysis are presented in Appendix.
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