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Abstract
Traditional unsupervised domain adaptation
(UDA) struggles to extract rich semantics due
to backbone limitations. Recent large-scale
pre-trained visual-language models (VLMs) have
shown strong zero-shot learning capabilities in
UDA tasks. However, directly using VLMs results
in a mixture of semantic and domain-specific
information, complicating knowledge transfer.
Complex scenes with subtle semantic differences
are prone to misclassification, which in turn can
result in the loss of features that are crucial for
distinguishing between classes. To address these
challenges, we propose a novel counterfactual
knowledge maintenance UDA framework. Specif-
ically, we employ counterfactual disentanglement
to separate the representation of semantic infor-
mation from domain features, thereby reducing
domain bias. Furthermore, to clarify ambiguous
visual information specific to classes, we maintain
the discriminative knowledge of both visual and
textual information. This approach synergistically
leverages multimodal information to preserve
modality-specific distinguishable features. We
conducted extensive experimental evaluations on
several public datasets to demonstrate the effective-
ness of our method. The source code is available at
https://github.com/LiYaolab/CMKUDA.

1 Introduction
Deep learning has achieved significant success with large
datasets [Huang et al., 2022], but models often require vast
amounts of labeled data and are highly dependent on data-
driven features. When applied to different domains with sim-
ilar tasks, performance can degrade due to domain discrep-
ancies. Data-driven models, assuming independent and iden-
tically distributed (i.i.d.) data, are vulnerable to distribution
shifts from training data [Zhao et al., 2025]. Unsupervised
domain adaptation (UDA) offers a solution by allowing mod-
els to be trained on labeled data from a source domain and
tested on unlabeled data from a target domain, reducing the
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Figure 1: Current prompt-based UDA methods lead to a coarse-
grained alignment that encompasses both domain-related and
semantically-related features. Our method decouples semantic in-
formation and domain features by counterfactual disentanglement,
only aligning semantic related features. This approach minimizes
the bias introduced by domain-specific knowledge.

impact of domain differences. Traditional UDA methods aim
to minimize the distribution gap using techniques like entropy
minimization [Wang and Deng, 2018], moment matching [Li
et al., 2021], and adversarial learning [Du et al., 2021]. How-
ever, aligning visual features without addressing distribution
differences can cause semantic distortions and reduce class
distinguishability [Tang et al., 2020a]. Additionally, convert-
ing text labels into numerical labels limits the model’s ability
to capture rich, nuanced class information, leading to subop-
timal performance [Ge et al., 2023].

To overcome the limitations of traditional UDA methods,
large-scale pre-trained visual language models (VLMs) have
been increasingly leveraged. VLMs, such as CLIP [Radford
et al., 2021] and ALIGN [Jia et al., 2021], are pre-trained on
extensive image and text pairs, aligning visual and textual fea-
tures within a joint embedding space. This pre-training pro-
cess encodes rich visual and textual information, enhancing
the adaptability and generalization of the model across dif-
ferent domain contexts through alignment. Therefore, VLMs
possess a robust conceptual knowledge foundation and strong
zero-shot transfer capabilities, making them highly effective
for addressing domain adaptation challenges [Bai et al., 2024;
Ge et al., 2023; Singha et al., 2023].

However, these methods primarily leverage the pre-
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training knowledge of VLMs to enhance generalization and
build statistical dependencies between data and labels, with-
out elucidating the underlying relationship. UDA requires
learning not only statistical correlations between visual fea-
tures and labels across domains but also potential causal
mechanisms [Wang et al., 2023]. By establishing causal rela-
tionships instead of correlations between visual features and
labels, models can better classify the same visual feature in
various scenarios. Existing UDA methods often lead to spu-
rious correlations between inference results and visual fea-
tures. Additionally, VLMs involve two distinct modalities:
visual and textual. For classification, visual features may be
more influential for some samples, while textual features may
be more useful for others. For example, categories with dis-
tinct visual characteristics, like chairs and sofas, are easier
to classify using visual features. In contrast, categories with
similar visual features, such as filing cabinets and shelves, are
better classified using textual features. Current UDA meth-
ods mainly rely on the extensive visual knowledge in CLIP
for classification, leading to suboptimal results when visual
semantic information is ambiguous.

To address these challenges, we propose a novel UDA
method using counterfactual disentanglement and discrimi-
nation knowledge maintenance. First, we introduce a struc-
tural causal model that identifies semantic information rel-
evant to data types and categories as causal factors, while
domain-specific information unrelated to categories is treated
as non-causal factors. Only semantic features causally affect
category labels. As shown in Figure 1, given a source do-
main sample x, the coupled feature f can be obtained by the
encoder. By intervening in the domain information D = d
and setting it as a counterfactual with target domain knowl-
edge, the sample x̃ in the target domain can be obtained. Dur-
ing this process, semantic information remains unchanged
across domains. By employing counterfactual disentangle-
ment, we decouple semantic and domain features, thereby
mitigating biases inherent in CLIP’s knowledge base. Sec-
ondly, we adaptively integrate the visual and textual embed-
dings extracted by VLMs, assessing which modality is more
conducive to inference for each sample. By maintaining dis-
crimination knowledge, we preserve the distinctive features
of each modality and clarify class-specific ambiguous visual
information. Our method not only eliminates spurious cor-
relations caused by confounding factor domain confidence,
but also synergistically combines the advantages of visual and
textual modalities to enhance task performance.

Overall, our significant contributions can be summarized
as follows:

• We propose a novel counterfactual knowledge mainte-
nance framework and construct a causal model from a
causal perspective for the UDA problem.

• To solve the confusion between semantic and domain
features, counterfactual disentanglement is proposed to
decouple and represent mixed knowledge, obtaining
domain-invariant knowledge.

• To distinguish complex scenes with slight semantic de-
tails, discrimination knowledge maintenance is used
to clarify class-specific ambiguous visual information

based on modal preferences of discriminative features.
• Extensive experiments are conducted on public datasets

to demonstrate the effectiveness of the proposed method.

2 Related Work
2.1 Causal Mechanism
Deep learning models traditionally rely on vast datasets to
generate predictions, which can lead to capturing spurious
correlations [Yue et al., 2023]. This results in models that
lack interpretability, robustness, and generalization capabili-
ties. Causal learning is used to establish robust causal rela-
tionships within complex and unstructured data. To mitigate
the impact of confounding factors in data, Zhu et al. [Zhu
et al., 2023] introduced a method that leverages causal rela-
tionships to reweight and resample online data, thereby en-
hancing model performance. Ding et al. [Ding et al., 2023]
employed causal models to solve the problem of inconsistent
data distribution in the training dataset. Furthermore, Yue et
al. [Yue et al., 2021] proposed a transport causal mechanism
to identify the representation of confusion layers and domain
invariant solution causal mechanisms. Yang et al. [Yang et
al., 2023b] introduced a learned causal representation.

2.2 Prompt Learning
Visual language models integrate rich visual and textual in-
formation from large datasets and excel in various computer
vision tasks. Recently, prompts have been integrated into
VLMs to learn universal visual representations. CLIP [Rad-
ford et al., 2021] is the most groundbreaking. Zhou et al.
[Zhou et al., 2022b; Zhou et al., 2022a] proposed the CoOp
and CoCoOp method, which model prompts using continuous
representations, automatically learning task-related prompts.
However, these methods overlooked domain transfer issues.
DAPL [Ge et al., 2023] processes distribution transitions in
UDA by learning domain-independent and domain-specific
cues. PADCLIP [Lai et al., 2023] introduces domain names
and dynamically adjusts depolarization strength and momen-
tum in prompts to bridge domain gaps. PDA [Bai et al., 2024]
proposed a prompt-based distribution alignment method that
incorporates domain knowledge into prompt learning. AD-
CLIP [Singha et al., 2023] addresses the domain adapta-
tion problem in the prompt space with a domain-independent
CLIP prompt learning strategy. DAMP [Du et al., 2024] pro-
poses domain-agnostic mutual prompts, which align visual
and textual embeddings with domain-invariant semantics.

However, previous methods directly use coupled domain
and semantic knowledge from CLIP, without considering
the varying effectiveness of different modalities for specific
tasks. To address this, we employ causal decoupling to sep-
arate semantic knowledge from domain-specific knowledge
while maintaining discrimination knowledge for ambiguous
visual semantic information.

3 Proposed Method
3.1 Overview of Our Framework
Formally, the problem definition and symbolic representa-
tion of UDA can be described as follows: given labeled
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Figure 2: The overall framework of our method. Initially, a frozen text and visual encoder are employed to extract text features t and visual
features f , respectively. Given confounding visual information, we apply counterfactual disentanglement to isolate semantic information
fS that exclusively contains domain-invariant features. Subsequently, the extracted text features and semantic features are fed into existing
mutual updating mechanisms to generate fused multimodal outputs t′ and f ′. This process ultimately enhances the classification accuracy of
ambiguous visual information samples by maintaining discriminative knowledge.

source domain image data Dsd = {xsdi , ysdi }Nsd
i=1 and unla-

beled target domain image data Dtd = {xtdi }Ntd
i=1 . Nsd and

Ntd represent the number of samples from the source and
target domains, respectively. The objective of UDA is to
train a model on the source domain data with distribution
xisd ∼ Psd(X) such that it performs well on the target domain
data with distribution xitd ∼ Ptd(X). The primary challenge
in this process is that the samples originate from two distinct
distributionsPsd(X) ̸= Ptd(X), which is often referred to as
the domain shift problem.

Therefore, based on the CLIP framework, the counterfac-
tual disentanglement is first introduced to decouple domain-
related and semantic-related features, thereby mitigating the
confounding effects of domain-specific information. Sec-
ondly, a discrimination knowledge maintenance strategy that
tailors the combination of text and visual information to the
needs of individual samples, enhancing task performance.
The framework is illustrated in Figure 2.

For clarity, superscripts in the text denote domains: sd for
the source domain and td for the target domain. Symbols
without superscripts apply to both domains. Specifically, in-
put the sample x from the source or target domain into the
frozen visual encoder V to extract the coupled visual feature
f . Construct a naive prompt {ti}Ki=1 for “a [DOM] photo of
a [CLA]”, where [DOM] represents domain names, [CLA]
represents category names, and K represents the number of
categories. Input the prompt information into frozen text en-
coder T to obtain the text feature t. Then, the coupled visual
features f are decoupled by counterfactual disentanglement.
The domain-related features fD and semantic features fS are
separated to eliminate the confounding caused by domain-
related features. Inspired by [Du et al., 2024], the semantic
feature fS and text ti are mutually prompted to fully inte-

grate visual and textual information, yielding updated visual
feature f ′ and text feature t′. By orthogonally decomposing
the updated visual feature f ′, the text-specific feature f ′t and
the visual-specific feature f ′v are extracted. The final logits
yall are obtained by modal adaptive fusion f ′t and f ′v using
weight w, where w is a learnable parameter. Finally, the ob-
tained yall is used to calculate the cross entropy loss with the
source domain label yisd and the pseudo label of the target ŷitd
domain for training.

3.2 Counterfactual Disentanglement
To explore the causal relationship between data and labels, a
Structural Causal Model (SCM) is integrated into the CLIP-
based UDA framework. The visual-language model (VLM)
P extracts both visual information V and textual information
T . In V , causal variables are those directly related to cate-
gories and labels, like the ”shape” feature in digit recognition,
and these relationships are consistent across domains. Non-
causal variables, such as ”handwriting style” in digit recog-
nition, are domain-specific. Each sample X is a combination
of causal variables C and non-causal variables U , with only
C having a direct causal impact on the category label Y , as
shown in Figure 3.

The objective of the model is to identify and extract causal
factor C from the raw data X , and establish a stable causal
relationship framework. Before that, two basic theorems [Re-
ichenbach and Morrison, 1956] are given.
Theorem 1 (Common Cause Principle). If variables X and
Y exhibit statistical correlation, it implies the presence of a
common causal factor C that influences both X and Y , ac-
counting for their observed associations. To put it succinctly,
the correlation between X and Y vanishes when the influ-
ence of C is considered, rendering X and Y conditionally
independent given C.
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Figure 3: SCM of our method. The solid arrow indicates that the
parent node causes the child node, and it is necessary to block sta-
tistical dependencies in the causal path. We take domain-invariant
semantic information as causal variables C and domain-related in-
formation as non-causal variables U .

According to Theorem 1, formalize the structural causal
model of Figure 3.

X := F(C,U, V1), C ⊥ U ⊥ V1, (1)
Y := H(C, V2) = H(G(X), V2), V1 ⊥ V2, (2)

where, V1 and V2 are independent noise variables that can-
not be explained. The functions F , H, and G are unknown
structural functions.

In addition, causal factors need to meet the requirement
of mutual independence [Peters et al., 2017], as expressed in
theorem 2.
Theorem 2 (Independent Causal Mechanism Principle).
Each variable’s distribution, conditioned on its causal fac-
tors, is independent and does not influence or inform other
causal mechanisms.

The joint distribution of causal factors can be decomposed
into the following conditions, namely causal decomposition:

P (c1, c2, . . . , cN ) =
N∏
i=1

P (ci | PVi), (3)

where, PVi is the parents of ci in causal graph.
In essence, the model must identify key causal factors

which are independent of domain-specific factors and can sig-
nificantly affect classification outcomes.

Given a sample x, we generate counterfactual samples
based on the following three steps.

• Abduction “given the fact that f = Encoder(x)”.
Given evidence X = x, we obtain the source domain
sample attribute Encoder(x).

• Action “had D been d”. d ∈ {sd, td} is the domain
label. In this step, we intervene in D by discarding the
inferred value and setting D as d.

• Prediction “X would be x̃”. Under the condition of in-
ferring f = Encoder(x) (fact) and intervention target
D = d (counterfactual), we can generate counterfactual
samples x̃ from Pθ(X|f = Encoder(x), D = d).

Counterfactual is used to decouple the causal factor C and
non-causal factor U by generating new data with perturbed
domain-related information. The generated data differs in
non-causal factors U but retains the same causal factor C,
ensuring the representation remains unchanged. Specifically,
for an image sample x, it is fed into a fixed visual encoder V

to extract the coupled visual features f . To decouple domain-
related and semantic-related features, an attention network N
is utilized, which splits the features into two distinct compo-
nents. Multiply the coupled visual features by the attention
network weights to obtain semantic-related features fS , while
the rest are domain-related features fD.

After extracting domain-related and semantic features, the
feature map’s dimensionality is reduced using global average
pooling and projection. Separate projection layers are used
for each type of feature due to their significant differences.
A counterfactual approach is applied to decouple these fea-
tures, separating domain-related and semantic features while
preserving semantic information. This process integrates se-
mantic features from one domain with domain features from
another.

fsdcou = fsdS + f tdD , (4)

f tdcou = f tdS + fsdD . (5)

To further ensure the independence of fD and fS , a domain
classifier is employed to differentiate the domain-specific in-
formation between the original and counterfactual features.
The source domain is labeled as 0, and the target domain as
1. For counterfactual features, fsdcou encapsulates the semantic
information from both the source and target domains, as does
f tdcou. Consequently, the domain discrimination loss is:

Ldis =ℓbce(pdom(fsd), 0) + ℓbce(pdom(f td), 1)

+ℓbce(pdom(f tdcou), 0) + ℓbce(pdom(fsdcou), 1).
(6)

3.3 Discrimination Knowledge Maintenance
After decoupling to extract the transferable causal feature fS ,
the mutual prompting method [Du et al., 2024] is employed
to effectively integrate visual and textual knowledge with the
causal feature fS and the textual prompt t, ultimately obtain-
ing updated visual f ′ and textual prompt t′. However, both
visual and textual cues are unique and modality-specific, and
certain samples are best classified using specific modalities.
Pre-trained CLIP may sometimes misclassify these items into
visually similar categories. For complex items with subtle se-
mantic differences, visual classifiers might make errors, while
CLIP can leverage its extensive knowledge base for accurate
zero-shot predictions. In summary, the visual branch excels
at recognizing visual features of specific categories, while the
text branch clarifies uncertainties in classification through se-
mantic information. Therefore, discrimination knowledge is
maintained to adaptively fuse visual and textual information
for each sample, enhancing classification performance.

Specifically, the updated visual feature f ′ is decomposed
into text-specific feature f ′t and visual-specific feature f ′v
through a modal partitioning network by linear projection.

During this process, orthogonal loss is used to ensure the
independence of separation.

Lort = |f
′sd
t · f

′sd
v |2F + |f

′td
t · f

′td
v

⊤
|2F . (7)

After obtaining modality-specific features, each modality
is processed to obtain the final output. For the text specific
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Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Avg
RN-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [Ganin and Lempitsky, 2015] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
GSDA [Hu et al., 2020] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
GVB-GD [Cui et al., 2020] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SPL [Wang and Breckon, 2019] 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
ToAlign [Wei et al., 2024] 57.9 76.9 80.8 66.7 75.6 77.0 67.8 57.0 82.5 75.1 60.0 84.9 72.0
SRDC [Tang et al., 2020b] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
CLIP [Radford et al., 2021] 51.6 81.9 82.6 71.9 81.9 82.6 71.9 51.6 82.6 71.9 51.6 81.9 72.0
PADCLIP [Lai et al., 2023] 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6
DAPL [Ge et al., 2023] 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
AD-CLIP [Singha et al., 2023] 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9
DAMP [Du et al., 2024] 59.7 88.5 86.8 76.6 88.9 87.0 76.3 59.6 87.1 77.0 61.0 89.9 78.2
Ours 60.2 89.1 87.5 75.8 89.0 87.6 76.2 61.7 87.5 77.3 61.0 89.0 78.5

Table 1: Using ResNet50 as the backbone, comparison of our method with state-of-the-art methods for UDA task on Office-Home dataset.
The best and second-best accuracy are indicated in bold and underlined respectively.

Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Avg
CDTrans* [Xu et al., 2022] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT [Yang et al., 2023a] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
SSRT [Sun et al., 2022] 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4
CLIP [Radford et al., 2021] 67.8 89.0 89.8 82.9 89.0 89.8 82.9 67.8 89.8 82.9 67.8 89.0 82.4
PADCLIP [Lai et al., 2023] 76.4 90.6 90.8 86.7 92.3 92.0 86.0 74.5 91.5 86.9 79.1 93.1 86.7
DAPL [Ge et al., 2023] 70.6 90.2 91.0 84.9 89.2 90.9 84.8 70.5 90.6 84.8 70.1 90.8 84.0
AD-CLIP[Singha et al., 2023] 70.9 92.5 92.1 85.4 92.4 92.5 86.7 74.3 93.0 86.9 72.6 93.8 86.1
DAMP [Du et al., 2024] 75.7 94.2 92.0 86.3 94.2 91.9 86.2 76.3 92.4 86.1 75.6 94.0 87.1
Ours 77.2 94.4 91.8 86.7 94.8 92.1 85.8 76.1 92.9 86.5 76.0 94.7 87.4

Table 2: Using ViT-B/16 as the backbone, comparison of our method with state-of-the-art methods for UDA task on Office-Home dataset.
Whereas, CDTrans* has used DeiT-base backbone only. The best and second-best accuracy are indicated in bold and underlined respectively.

modality f ′t ,

ŷt = (l̂1, l̂2, · · · l̂k), l̂i = cos(ti, f
′
t)/temp, (8)

where, temp is temperature in pretrained CLIP. Since the tar-
get domain data has no labels, we first obtain the pseudo la-
bel ŷtd of the target domain data, and then calculate the cross
entropy loss. For source data, cross-entropy loss is directly
applied using labeled source data.

Lt = CE(ŷtdt , ŷ
td) + αCE(ŷsdt , y

sd), (9)

where the value of α can be adjusted based on the influence
of supervised source domain data.

For the visual specific modality f ′v , pass it through two
learnable linear layers ψ1 and ψ2 to obtain the final output.

ŷv = ψ2(ψ1(f
′
v)). (10)

Utilizing Eq. (8) and Eq. (10), the ensemble output ŷens is
formulated as:

ŷall = w ∗ ŷt + (1− w) ∗ ŷv, (11)

where,w is a learnable parameter obtained by the weight gen-
eration network W .

Like Eq. (9), we will calculate the cross entropy loss for the
adaptive fusion features yens and labels obtained. In addition,
to further embed the updated target domain under the learned
semantic structure, and enhance individual discriminability
and global diversity, an additional information maximization
loss Lim is added to regularize unlabeled target data.

Lim =
1

N

N∑
i=1

K∑
k=1

ycvi log y
c
vi −

K∑
k=1

ŷkv log ŷ
k
v , (12)

where, N is the total number of image samples, K is the total
number of image categories.

Therefore, the loss of specific visual modalities is:

Lv = CE(ŷtdall, ŷ
td) + βCE(ŷsdall, y

sd) + Lim, (13)

where the value of β can be adjusted based on the influence
of supervised source domain data.

3.4 Overall Training Objective
We train our method with the supervised loss and above reg-
ularizations in an end-to-end manner. As depicted in Figure
2, the pre-trained text and vision encoder are frozen. We op-
timize parameters of a counterfactual disentangled network
and discrimination knowledge maintenance network denoted
as θcau and θmod respectively. Combining Eq. (6), Eq. (9),
Eq. (13), we define the following optimization problem:

θcau = argmin
θcau

Ldis, (14)

θmod = arg min
θmod

Lt + Lv. (15)

The overall loss of the entire network is:

Ldis = γ1 ∗ Ldis + γ2 ∗ (Lt + Lv). (16)

4 Experiments
4.1 Datasets and Implementation Details
Datasets. We evaluated our method on two prominent pub-
lic datasets: Office-Home (Venkateswara et al., 2017), and
VisDA-2017 (Peng et al., 2018). Office-Home comprises
images across four distinct domains, encompassing 65 cate-
gories. VisDA-2017 features 152,000 synthetic images in the
source domain and 55,000 real images in the target domain.
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Method plane bicycle bus car horse knife mcycl person plant sktbrd train truck Avg
RN-101 [He et al., 2016] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [Ganin and Lempitsky, 2015] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
JAN [Long et al., 2017] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7
MODEL [Li et al., 2020] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
STAR [Lu et al., 2020] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
CLIP [Radford et al., 2021] 98.2 83.9 90.5 73.5 97.2 84.0 95.3 65.7 79.4 89.9 91.8 63.3 84.4
DAPL [Ge et al., 2023] 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
AD-CLIP [Singha et al., 2023] 98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7
PADCLIP [Lai et al., 2023] 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5
DAMP [Du et al., 2024] 97.3 91.6 89.1 76.4 97.5 94.0 92.3 84.5 91.2 88.1 91.2 67.0 88.4
Ours 97.9 94.3 89.5 81.7 96.9 99.7 90.6 83.0 97.1 92.9 94.8 68.2 90.6

Table 3: Using ResNet101 as the backbone, comparison of our method with state-of-the-art methods for UDA task on VisDA-2017 dataset.
The best and second-best accuracy are indicated in bold and underlined respectively.

Method plane bicycle bus car horse knife mcycl person plant sktbrd train truck Avg
CDTrans* [Xu et al., 2022] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
TVT [Yang et al., 2023a] 97.1 92.9 85.3 66.4 97.1 97.1 89.3 75.5 95.0 94.7 94.5 55.1 86.7
SSRT [Sun et al., 2022] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
CLIP [Radford et al., 2021] 99.1 91.7 93.8 76.7 98.4 91.7 95.3 82.7 86.5 96.0 94.6 60.5 88.9
DAPL [Ge et al., 2023] 99.2 92.5 93.3 75.4 98.6 92.8 95.2 82.5 89.3 96.5 95.1 63.5 89.5
AD-CLIP [Singha et al., 2023] 99.6 92.8 94.0 78.6 98.8 95.4 96.8 83.9 91.5 95.8 95.5 65.7 90.7
PADCLIP [Lai et al., 2023] 98.1 93.8 87.1 85.5 98.0 96.0 94.4 86.0 94.9 93.3 93.5 70.2 90.9
DAMP [Du et al., 2024] 98.7 92.8 91.7 80.1 98.9 96.9 94.9 83.2 93.9 94.9 94.8 70.2 90.9
Ours 98.9 96.6 93.8 79.2 98.7 99.8 96.6 83.2 94.4 93.8 96.6 70.3 91.8

Table 4: Using ViT-B/16 as the backbone, comparison of our method with state-of-the-art methods for UDA task on VisDA-2017 dataset.
Whereas, CDTrans* has used DeiT-base backbone only. The best and second-best accuracy are indicated in bold and underlined respectively.

Training Configuration. We employed ResNet50 [He et
al., 2016], and ViT-B/16 [Dosovitskiy et al., 2021] as visual
encoders V , and utilized a pre-trained CLIP text encoder as
the text encoder T . The parameters of both encoders were
frozen during training. We set the length of the learnable text
prompt L to 32. For optimization, we used the Adam opti-
mizer [Kingma and Ba, 2017] with an initial learning rate of
3e − 3 and trained the model for 30 epochs with 32 batch
sizes. All experiments were conducted on an NVIDIA RTX
A6000 GPU.

4.2 Comparasion with State-of-the-Arts
Results on Office-Home dataset. For a fair comparison,
we evaluate our approach against a comprehensive set of tra-
ditional UDA methods based on CNN and transformer and
CLIP-based approaches. Initially, we employ ResNet-50 as
the backbone for our visual encoder, with the results detailed
in Table 1. Next, we use ViT-B/16 as the visual encoder,
and the corresponding results are shown in Table 2. Overall,
our method consistently demonstrates outperformed perfor-
mance. Especially, our method achieved the best results in 8
out of the 12 tasks evaluated.

Results on VisDA-2017 dataset. Similarly, we conduct
comparisons using ResNet-101 and ViT-B/16 as visual en-
coders.The results are shown in Table 3 and Table 4, respec-
tively. Our method further outperforms the state-of-the-art
method in terms of average accuracy, by 2.2% and 0.9%
respectively. The recognition accuracy has been improved
across specific categories, such as ”bicycle”, ”knife”, ”train”,
etc. Collectively, these improvements underscore the signif-

fv CD DKM avg fv avg

RN-50

× × 74.5

ViT-B/16

84.0
✓ × 78.4 87.1
× ✓ 78.3 87.2
✓ ✓ 78.5 87.4

Table 5: Ablation study of our method with Counterfactual Dis-
entanglement (CD) and Discrimination Knowledge Maintenance
(DKM). Where × and ✓respectively represent removing or adding
the module while maintaining all other configurations constant.

87.5
88.2

88.8 89.1
88.7 88.6

4 6 16 32 48 64

(b) Different prompt lengths

57.3 58.4

58.7

60.2

58.3

59.1 59

58.4

58.7 58.6

2 4 6 8 10
𝛾_1 𝛾_2

(a) Weight values on loss

𝛾1 𝛾2

Figure 4: The results of different weight values on losses.

icance of extracting causal factors and maintaining discrimi-
native knowledge.

4.3 Ablation Study
Effectiveness of each module. We conduct ablation experi-
ments to substantiate the efficacy of counterfactual disentan-
glement and discriminative knowledge maintenance. The ex-
perimental outcomes are detailed in Table 5. Utilizing DAPL
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142.0 

165.5 166.1 166.4 

131.9 136.0 

DANN CLIP DAPL AD-CLIP DAMP Ours

Figure 5: Comparison of the computational complexity in terms of
GFLOPs.

(a) Office-Home (b) VisDA-2017

Figure 6: The confusion matrix visualization on the Office-Home
and VisDA-2017 datasets.

[Ge et al., 2023] as the baseline. A major observation is
that the omission of any module invariably resulted in per-
formance decrements of varying magnitudes, emphasizing
the positive contribution of each module to the overall per-
formance. Similarly, as our method is based on CLIP, we
demonstrated the results of our ablation experiment using dif-
ferent backbone networks.

Parameter sensitivity analysis. We also conduct sensi-
tivity analysis on key parameters, focusing on the weights of
causal loss and knowledge maintenance loss, as well as the
length of learnable tokens. According to Figure 4 (a), we can
see that the weights of both losses affect the performance of
the model to varying degrees. When γ1 is set to 8 and γ2 is set
to 4, the experimental results are the best. According to Fig-
ure 4 (b), we can see that as the length of the learnable token
increases, the accuracy of the model also increases. However,
when the length of the learnable token exceeds 32, the accu-
racy of the model gradually begins to decline. Therefore, we
set the length of the learnable token to 32 in the experiment.

Model Complexity. As shown in Figure 5, the result of
our method requires fewer 4.23%, 17.82%, 18.12%, 18.27%
than DANN [Ganin and Lempitsky, 2015], CLIP [Radford et
al., 2021], DAPL [Ge et al., 2023], and AD-CLIP [Singha et
al., 2023] computational resources than most others.

4.4 Analysis
Confusion matrix visualization. We generated confusion
matrices using our method on the Office-Home dataset and
the VisDA-2017 dataset. As depicted in (a) and (b) of Figure
6, both matrices exhibit a pronounced diagonal structure.

Feature map visualization. Figure 7 shows the visualiza-
tion of the model’s feature map on the Office-Home dataset.
The left portion illustrates the adaptation from the “Clipart”
domain to the “Product” domain, and the right portion depicts
the adaptation from the “Art” domain to the ”Real World” do-
main. The feature map reveals that our method facilitates the

Figure 7: The feature visualization of “Real World” domain on
Office-Home dataset.

(a) Visual embedding (b) Text embedding

Source TargetSource Target

Figure 8: t-SNE visualizations of visual embedding and text embed-
dings from “Art” to “Real World” domains on Office-Home dataset.

model in primarily learning category-related causal features.
By mitigating the interference from background information,
our approach enhances the model’s generalization capability.

t-SNE visualization. Figure 8 shows the t-SNE visualiza-
tion of the “Art” to “Real World” task on the Office-Home
dataset. The visualization reveals that our method success-
fully aligns visual and text embeddings, achieving both do-
main invariance and discriminability. The overlapping ar-
eas indicate the capability to learn domain invariant knowl-
edge. Moreover, the text embeddings exhibit marked sep-
aration between distinct categories, which underscores the
model’s strong discriminative power in differentiating vari-
ous categories.

5 Conclusion
In this paper, we introduce a novel UDA method, which
employs counterfactual disentanglement and discriminative
knowledge maintenance. By leveraging counterfactuals to
disentangle domain-specific and semantics-related features,
our approach mitigates the confounding effects of domain-
related features. To further address the challenge of clas-
sifying samples with ambiguous semantic information, we
propose modal adaptive fusion to enhance the extraction of
class-discriminative features. The proposed method lead to
improved feature disentanglement and class recognizability.
Extensive experiments demonstrate that our method consis-
tently outperforms two strong baselines, offering a robust
method for UDA to harness source code and pre-trained VLM
knowledge. Future work will explore the application of UDA
in open-world scenarios, where models need to adapt to dy-
namically changing environments.
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