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Abstract
Diffusion-based image super-resolution (SR) meth-
ods have demonstrated remarkable performance.
Recent advancements have introduced determinis-
tic sampling processes that reduce inference from
15 iterative steps to a single step, thereby signif-
icantly improving the inference speed of existing
diffusion models. However, their efficiency re-
mains limited when handling complex semantic re-
gions due to the single-step inference. To address
this limitation, we propose SAMSR, a semantic-
guided diffusion framework that incorporates se-
mantic segmentation masks into the sampling pro-
cess. Specifically, we introduce the SAM-Noise
Module, which refines Gaussian noise using seg-
mentation masks to preserve spatial and seman-
tic features. Furthermore, we develop a pixel-
wise sampling strategy that dynamically adjusts the
residual transfer rate and noise strength based on
pixel-level semantic weights, prioritizing seman-
tically rich regions during the diffusion process.
To enhance model training, we also propose a se-
mantic consistency loss, which aligns pixel-wise
semantic weights between predictions and ground
truth. Extensive experiments on both real-world
and synthetic datasets demonstrate that SAMSR
significantly improves perceptual quality and detail
recovery, particularly in semantically complex im-
ages.

1 Introduction
Image super-resolution (SR) is a fundamental yet challeng-
ing problem in low-level vision, aiming to reconstruct a high-
resolution (HR) image from a given low-resolution (LR) in-
put [Wang et al., 2020]. The task is inherently ill-posed due
to the complexity and unknown nature of degradation mod-
els in real-world scenarios. Recently, diffusion models, as an
emerging generative paradigm, have achieved unprecedented
success in image generation and demonstrated remarkable

∗Hao Tang is the corresponding author. This work was done
while Zihang Liu was visiting Peking University. Our code is re-
leased at https://github.com/Liu-Zihang/SAMSR.
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(b) A simplified pipeline of the proposed method SAMSR. It refines
Gaussian noise and distillation method using segmentation masks to
preserve spatial and semantic features.

Figure 1: A comparison between the most recent SOTA one-step SR
model and our SAMSR model. Different from recent works with
simple noise distribution, the proposed method incorporates seman-
tic segmentation information into the noise distribution and gause
diffusion process.

potential in various low-level vision tasks, including image
editing, inpainting, and colorization.

Currently, strategies for employing diffusion models in im-
age SR can be broadly categorized into two approaches: (i)
inserting the LR image as input to the denoiser and retraining
the model from scratch, [Rombach et al., 2022; Saharia et al.,
2022] and (ii) utilizing an unconditional pre-trained diffusion
model as a prior and modifying its reverse path to generate
the desired HR image [Choi et al., 2021; Chung et al., 2022;
Wang et al., 2021]. However, both strategies face significant
computational efficiency challenges. Conventional methods
typically initiate from pure Gaussian noise, failing to lever-
age the prior knowledge embedded in the LR image, con-
sequently requiring a substantial number of inference steps
to achieve satisfactory performance and severely constraining
the practical application of diffusion-based SR techniques.
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Although various acceleration techniques have been pro-
posed to accelerate diffusion model sampling [Lu et al., 2022;
Lugmayr et al., 2020; Song et al., 2020], these methods of-
ten compromise performance in low-level vision domains that
demand high fidelity. Recent innovative research has be-
gun to reformulate the diffusion process in image restora-
tion tasks, attempting to model the initial step as a combi-
nation of LR images and random noise [Yue et al., 2024].
However, the inference speed remains limited. Some subse-
quent works have explored deterministic sampling strategies
for image SR, learning bidirectional deterministic mappings
between noise and HR image generation to improve inference
speed [Wang et al., 2024], which is shown in Fig. 1a. How-
ever, these models frequently suffer from limited authenticity
and reduced capability in processing complex semantic im-
ages due to constrained inference steps.

To address these challenges, we propose a seman-
tic segmentation-based pixel-wise sampling framework,
SAMSR as shown in Fig. 1b, a semantic segmentation guided
framework to address the limitations of deterministic sam-
pling in diffusion-based image SR. Existing methods often
apply uniform noise addition and global parameters, mak-
ing it challenging to recover fine details in semantically com-
plex regions. To overcome this, we introduce the SAM-Noise
Module, which leverages segmentation masks generated by
the Segment Anything Model (SAM) to perform spatially
adaptive noise sampling, preserving both semantic and spa-
tial features. Additionally, we propose a semantic-guided
forward process that dynamically adjusts the residual trans-
fer rate and noise strength at the pixel level based on seman-
tic weights, enabling prioritized recovery of semantically rich
regions. To enhance training, a semantic consistency loss is
introduced to align the pixel-wise semantic weights between
the prediction and the ground truth. These innovations allow
SAMSR to effectively utilize semantic information, achiev-
ing superior performance in both real-world and synthetic
datasets, particularly in recovering fine details and textures.

Our main contributions are summarized as follows: (i) We
introduce, for the first time, a segmentation-mask-based ran-
dom noise sampling method. This approach performs single-
distribution noise sampling separately within each masked re-
gion and normalizes and combines them, allowing the Gaus-
sian noise to retain both the spatial and semantic features of
the original image. (ii) We leverage the segmentation masks
obtained from SAM to derive pixel-level sampling hyperpa-
rameters, differentiating the noise addition speed for pixels
with varying levels of semantic richness. This ensures that se-
mantically rich regions are distinctly recovered within a sin-
gle sampling step. (iii) We propose a novel consistency se-
mantic loss that utilizes ground-truth images during training
to enhance the model’s understanding and application of re-
gion segmentation masks, leading to improved performance.

2 Related Work
Advances in Super-Resolution Techniques. Super-
resolution (SR) has undergone significant evolution, transi-
tioning from early methods based on handcrafted priors to
deep learning-based approaches. Early SR algorithms lever-

aged priors such as non-local similarity [Sun et al., 2008],
sparse coding [Yang et al., 2010; Cai et al., 2019a], and low-
rankness [Milanfar, 2012; Cai et al., 2019a]. These hand-
crafted approaches were effective for basic degradations but
lacked flexibility and generalization for complex real-world
scenarios [Zhang et al., 2021].

Deep learning revolutionized SR with the introduction of
convolutional neural networks (CNNs) in SRCNN [Dong et
al., 2014], which marked the beginning of a series of inno-
vations. Residual learning [Zhang et al., 2018b], attention
mechanisms and transformers further improved SR perfor-
mance in terms of fidelity and perceptual quality [Cao et al.,
2023]. Generative adversarial networks (GANs) like ESR-
GAN [Wang et al., 2018] pushed SR towards generating more
realistic textures but often introduced perceptual artifacts and
training instability [Ledig et al., 2017].

Recently, diffusion models, initially developed for genera-
tive tasks [Saharia et al., 2022], have emerged as promising
tools for SR. Unlike GANs, diffusion models iteratively re-
fine Gaussian noise into structured HR images, offering su-
perior theoretical guarantees and perceptual quality. Methods
like SR3 [Saharia et al., 2022] and SRDiff [Song et al., 2020]
adapt diffusion models for SR by modifying their reverse
processes or combining LR images with noise. However,
these methods are often computationally expensive, requir-
ing hundreds or thousands of iterative steps [Ho et al., 2020;
Lu et al., 2022; Lugmayr et al., 2020].
Acceleration of Diffusion Models for SR. The inefficiency
of diffusion models has motivated extensive research into ac-
celeration techniques. DDIM introduced deterministic sam-
pling paths, which reduced inference steps but often com-
promised image fidelity in SR tasks [Ho et al., 2020; Lu et
al., 2022]. Progressive sampling methods, like those used in
Latent Diffusion Models (LDM), offered more efficient sam-
pling but still required tens of steps to achieve satisfactory
results [Rombach et al., 2022].

To address these challenges, ResShift [Yue et al., 2024]
proposed embedding LR information directly into the
Markov chain, significantly reducing sampling steps while
preserving fidelity. Similarly, SinSR [Wang et al., 2024]
distilled the mapping between Gaussian noise and HR im-
ages into a lightweight student network, achieving single-
step SR with up to a tenfold speedup. However, these meth-
ods face limitations in semantically complex regions, as they
rely on uniform noise priors rather than adaptive spatial in-
formation [Yue et al., 2024; Wang et al., 2024]. Recent ad-
vancements such as HoliSDiP [Tsao et al., 2024] integrate
semantic segmentation with diffusion frameworks, providing
global and localized semantic information for better spatial
fidelity. This approach demonstrates the potential to further
reduce sampling complexity while enhancing image qual-
ity by leveraging holistic semantic priors [Cao et al., 2023;
Tsao et al., 2024].
Applications of SAM in Various Domains. Segment
Anything Model (SAM) [Kirillov et al., 2023] and its
successor SAM2 [Ravi et al., 2024] have been adapted
to diverse fields, including medical imaging, video anal-
ysis, and super-resolution. Below, we summarize its
applications in these areas and their relevance to this
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Figure 2: The overall framework of the proposed SAMSR method. The SAM-Noise Module (SNM) generates semantically-guided noise
maps ϵ′ for the forward process while computing pixel-wise semantic weights. These weights are utilized to adaptively adjust the residual
transfer rate and noise strength in both forward and reverse processes, enabling fine-grained control over semantic region reconstruction.

work. (i) SAM in Medical Image Segmentation: SAM has
been widely adopted in medical imaging. Models like
Med-SAM-Adapter and SAMed leverage parameter-efficient
fine-tuning strategies, such as adapters and low-rank adap-
tations, to tailor SAM for domain-specific applications
[Wu et al., 2023; Zhang and Liu, 2023; Leng et al.,
2024]. For instance, SAM-based segmentation has been ex-
plored in retinal vessel segmentation [Zhang et al., 2024]
and polyp segmentation [Xiong et al., 2024]. Addition-
ally, MedSAM-2 [Zhu et al., 2024] demonstrates how
memory mechanisms can adapt SAM for 3D segmenta-
tion tasks, allowing it to handle unordered medical im-
age slices. These works emphasize SAM’s ability to ad-
dress challenges like data scarcity and fine-grained seg-
mentation in medical domains [Shen et al., 2024; Yao et
al., 2023]. (ii) SAM in Video Understanding and Analysis:
In video segmentation and tracking, SAM has been adapted
to dynamic contexts by incorporating temporal modeling
and memory management. For example, SAMURAI intro-
duces motion-aware memory mechanisms to enhance ob-
ject tracking under occlusion and rapid motion [Yang et
al., 2024]. Similarly, SAM2Long uses tree-based mem-
ory architectures to improve segmentation consistency across
long video sequences [Ding et al., 2024]. In surgical video
segmentation, Surgical SAM2 achieves real-time segmenta-
tion by employing efficient frame pruning, reducing com-
putational demands while maintaining accuracy [Liu et al.,
2024b]. These adaptations enable SAM to excel in spa-
tiotemporal tasks requiring consistent object identity across
frames. (iii) SAM in Image and Video SR: SAM’s semantic
capabilities have recently been extended to super-resolution
tasks. SAM Boost utilizes semantic priors to improve align-
ment and fusion in video super-resolution, enabling better
handling of large motions and occlusions [Lu et al., 2023;
Liu et al., 2024a]. HoliSDiP combines SAM-derived seg-
mentation maps with diffusion models, providing spatial
guidance for improved image super-resolution in real-world
scenarios [Tsao et al., 2024]. By integrating SAM’s zero-shot
segmentation and spatial adaptability, these works demon-
strate the potential of SAM in enhancing detail reconstruction
and semantic consistency in SR tasks.

3 Methodology
3.1 Overview
The SinSR model and the ResShift model differ primarily
in their ability to reduce the number of inference steps from
15 to a single step through a deterministic sampling strategy.
In the original SinSR, the forward diffusion process begins
by combining a low-resolution (LR) image y with Gaussian
noise ϵ, scaled by a residual transfer rate ηt and noise strength
κ. This is formulated as:

q(xt|x0, y) = N(xt;x0 + ηt(y − x0), κ
2ηtI), (1)

while the reverse process is represented by a deterministic
mapping:

xt−1 = ktx̂0 +mtxt + jty, (2)

where kt, mt, and jt are coefficients derived from ηt. Al-
though SinSR achieves single-step sampling efficiency, its re-
liance on global Gaussian noise ϵ and uniform diffusion pa-
rameters ηt and κ limits its flexibility in handling semanti-
cally complex regions.

To address this, we propose the SAMSR framework, which
introduces semantic guidance via the SAM-Noise Module
and SAM-based Forward Process. The SAM-Noise Module
refines the global Gaussian noise ϵ into a spatially adaptive
noise map ϵ′, as described in Sec. 3.2. The SAM-based For-
ward Process dynamically adjusts the residual transfer rate
ηt and noise strength κ based on semantic weights derived
from SAM masks, as detailed in Sec. 3.3. Furthermore, to
enhance the model’s understanding of semantic information
during training, we introduce a semantic consistency loss
that aligns semantic features between predictions and ground
truth, which will be elaborated in Sec. 3.4.

The overall framework of SAMSR is illustrated in Fig. 2.
As shown in Fig. 2(a), the forward process combines the
SAM-Noise Module and pixel-wise weight computation to
generate semantically-guided noise. In the reverse process
(Fig. 2(b)), these semantic cues are utilized to dynamically
adjust the sampling hyperparameters, enabling region-aware
image reconstruction. This semantic-guided framework al-
lows SAMSR to better preserve details in semantically rich
regions while maintaining global consistency.
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Figure 3: Architecture of the SAM-Noise Module. The mod-
ule consists of two main components: (1) A Semantic Enhance-
ment Block integrating bicubic interpolation (BIC), Segment Any-
thing Model (SAM), global average pooling (GAP), and threshold-
ing (TSD) operations for mask generation; (2) A noise sampling
and normalization pipeline that leverages semantic information to
produce spatially-adaptive noise distributions. This design enables
semantically-guided noise generation while preserving structural
consistency.

3.2 SAM-Noise Module
The SAM-Noise Module aims to integrate the spatial and se-
mantic features of the original image into Gaussian noise,
thereby enhancing the diffusion model’s ability to handle im-
ages with complex semantic information. As shown in Fig. 3,
to improve the accuracy of semantic segmentation, the given
LR image is first passed through a bicubic interpolation pro-
cess as input to the SAM. The resulting mask information is
then processed through global average pooling and threshold-
ing operations to obtain a binary tensor mask of the original
LR image. The specific computation formula is as follows:

Fp = BIC(LR), Fp ∈ R3×4H×4W ,

Fd = SAM(Fp), Fd ∈ RM×4H×4W ,

Fu = GAP (Fd), Fu ∈ RM×H×W ,

Fa = TSD(Fu), Fa ∈ RM×H×W .

(3)

where BIC is the bicubic interpolation, the SAM is the seg-
ment anything model, and the GAP is the global average
pooling. To obtain the final binary mask, a thresholding oper-
ation is applied to Fu, where values greater than a predefined
threshold T are set to 1, and the rest are set to 0:

Fa(i, j) =

{
1, if Fu(i, j) > T,

0, otherwise.
(4)

We set the threshold T to 0.5. To generate refined noise
for the forward diffusion process, we incorporate the binary
mask Fa into the noise sampling procedure. Specifically, we
first sample M independent noise maps Zm ∈ R3×H×W

from a standard normal distribution N (0, 1), where m =
1, 2, . . . ,M . These noise maps are then multiplied by the
binary mask in the element Fa, ensuring that the noise is ap-
plied only within the regions covered by the mask. Mathe-
matically, the masked noise Nm is defined as:

Nm = Fa ⊙ Zm, Zm ∼ N (0, 1), m = 1, 2, . . . ,M, (5)

where ⊙ denotes the element-wise multiplication. Next, the
M masked noise maps are summed to produce a combined

noise map Nsum:

Nsum =
M∑

m=1

Nm. (6)

To ensure the noise map is normalized for the diffusion
process, we standardize Nsum to have zero mean and unit vari-
ance. The final noise map ϵ′ is computed as follows:

ϵ′ =
Nsum − µNsum

σNsum

, (7)

where µNsum and σNsum represent the mean and standard devi-
ation of Nsum. The resulting noise ϵ′ is used as the input to
the forward diffusion process, ensuring that noise is spatially
restricted to the mask-covered regions while maintaining a
normalized distribution.

3.3 SAM-based Forward and Reverse Process
To refine the residual transfer rate and noise strength based
on semantic regions, we introduce a pixel-wise weight matrix
W (x, y), which is derived from the binary masks Fa. Specif-
ically, for each pixel location (x, y), W (x, y) is defined as the
normalized coverage across all M masks, where normaliza-
tion is performed using the maximum pixel coverage:

W (x, y) =

∑M
m=1 F

m
a (x, y)

max(x′,y′)

∑M
m=1 F

m
a (x′, y′)

, W (x, y) ∈ [0, 1],

(8)
where Fm

a (x, y) ∈ {0, 1} represents the binary value of the
m-th mask at pixel location (x, y), and M denotes the total
number of masks. The denominator represents the maximum
coverage among all pixels in the image.

Using the weight matrix W (x, y), the residual transfer rate
ηt and noise strength κ are adjusted as follows:

ηnew
t (x, y) = ηt · (1 +m ·W (x, y)) ,

κnew(x, y) = κ · (1−m ·W (x, y)) ,
(9)

where m is the hyper-parameter that controls the noise ad-
dition speed and intensity for pixels with different levels of
semantic richness during the forward diffusion process.

Utilizing the Pixel-wise Weight Matrix, we update the for-
ward and reverse process to introduce semantic adaptiveness
into the deterministic sampling framework. Specifically, the
adjustments are applied to the residual transfer rate ηt and
noise strength κ, enabling pixel-wise control based on seman-
tic guidance.

Therefore, using the noise map ϵ′, we can update the for-
ward process of the diffusion model starting from an initial
state from the LR image y as below:

xT = y + κnew
√
ηnew
t ϵ′. (10)

The updated reverse process at time step t is given as:

xt−1(x, y) = knew
t x̂0(x, y) +mnew

t xt(x, y) + jnew
t y(x, y),

(11)
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Algorithm 1 Training the Pixel-wise Sampling Framework

Require: Pre-trained teacher diffusion model fθ
Require: Paired training set (X,Y )

1: Init fθ̂ from the pre-trained model, i.e., θ̂ ← θ
2: while not converged do
3: Sample x0, y ∼ (X,Y )
4: Compute Wy(x, y) using Equation 8
5: Compute κnew, ηnew

T using Equation 9
6: Compute knew

t ,mnew
t , jnew

t using Equation 12
7: Sample ϵ ∼ N (0, (κnew)

2
ηnew
T I)

8: xT = y + ϵ
9: for t = T, T − 1, . . . , 1 do

10: if t = 1 then
11: x̂0 = fθ(x1, y, 1)
12: else
13: xt−1 = knew

t fθ(xt, y, t) +mnew
t xt + jnew

t y
14: end if
15: end for
16: Ldistill = LMSE(fθ̂(xT , y, T ), x̂0)
17: Linverse = LMSE(fθ̂(x̂0, y, 0), xT )
18: x̂T = fθ̂(x0, y, 0)
19: Lgt = LMSE(fθ̂(detach(x̂T ), y, T ), x0)
20: Compute Wx̂0

(x, y),Wx0
(x, y) using Equation 8

21: LSC = LMSE(Wx̂0
(x, y),Wx0

(x, y))
22: L = Ldistill + Linverse + Lgt + λLSC
23: Perform a gradient descent step on∇θ̂L
24: end while
25: return The student model fθ̂

where knew
t , mnew

t , and jnew
t are the updated coefficients de-

rived from the pixel-wise adjusted residual transfer rate ηnew
t .

These parameters are defined as:

knew
t = 1− ηnew

t−1 +
√
ηnew
t−1η

new
t −

√
ηnew
t−1

ηnew
t

,

mnew
t =

√
ηnew
t−1

ηnew
t

,

jnew
t = ηnew

t−1 −
√
ηnew
t−1η

new
t ,

(12)

where ηnew
t represents the dynamically adjusted residual

transfer rate at each pixel location (x, y), which is computed
in Eq. (9).

3.4 Semantic Consistency Loss
To further incorporate semantic guidance into the training
process, we introduce a Semantic Consistency Loss LSC,
which aligns the semantic weights between the predicted out-
put x̂0 and the ground truth x0. Using the Pixel-wise Weight
Matrix W (x, y) defined in Sec. 3.3, we compute the normal-
ized semantic weights Wx̂0(x, y) for the predicted image and
Wx0(x, y) for the ground truth. The loss is formulated as:

LSC = LMSE (Wx̂0
(x, y),Wx0

(x, y)) . (13)

This additional loss is integrated into the original training
objective, which consists of the distillation lossLdistill, reverse

loss Lreverse, and ground truth loss Lgt. The updated training
objective is defined as:

θ̂ = argmin
θ̂

Ey,x0,xT
[Ldistill + Lreverse + Lgt + λLSC] ,

(14)
where λ is a hyper-parameter that controls the contribution of
the semantic consistency loss.

By explicitly enforcing alignment between the semantic
weights of the prediction and ground truth, the proposed LSC
improves the model’s ability to utilize semantic segmentation
masks effectively, leading to better semantic understanding
during training. The overall of the proposed method is sum-
marized in Algorithm 1.

4 Experiments
4.1 Experimental Setup
Compared Methods. We compare our method with several
representative SR models, including RealSR-JPEG [Ji et al.,
2020], ESRGAN [Wang et al., 2018], BSRGAN [Zhang et
al., 2021], SwinIR [Liang et al., 2021], RealESRGAN [Wang
et al., 2021], DASR [Liang et al., 2022], LDM [Rombach et
al., 2022], ResShift [Yue et al., 2024] and SinSR [Wang et
al., 2024].
Metrics. To evaluate the fidelity of our method on synthetic
datasets with reference images, we used PSNR, SSIM, and
LPIPS [Zhang et al., 2018a]. Additionally, two recent non-
reference metrics were employed to assess the realism of
the generated images: CLIPIQA [Wang et al., 2023], which
leverages a pretrained CLIP [Radford et al., 2021] model on
a large-scale dataset, and MUSIQ [Ke et al., 2021].
Training Details. To ensure a fair comparison, we adopted
the same experimental configuration and backbone architec-
ture as described in prior work. However, our approach in-
troduces modifications to the forward diffusion process and
corresponding loss function. These adjustments enable a sig-
nificant reduction in the number of training iterations com-
pared to existing models. Specifically, our model achieves
convergence in only 10,000-15,000 iterations. We attribute
this improvement to the integration of a semantic consistency
loss, which accelerates the convergence of the student model
and further optimizes the training efficiency.

4.2 Experimental Results
Evaluation on Real-world Datasets. We comprehensively
evaluate SAMSR on both real-world and synthetic datasets
to demonstrate its robustness and effectiveness across diverse
scenarios. For real-world evaluation, we utilize RealSR [Cai
et al., 2019b] and RealSet65 [Yue et al., 2024]. Both datasets
exhibit diverse degradation patterns and lack ground truth.
SAMSR is compared against SOTA SR methods, using non-
reference metrics CLIPIQA and MUSIQ [Wang et al., 2023;
Ke et al., 2021]. As shown in Table 1, SAMSR achieves
superior performance in both metrics, benefiting from its
semantic-guided noise sampling and region-aware diffusion
dynamics.
Evaluation on Synthetic Datasets. For synthetic datasets,
we follow the standard pipeline to create LR inputs from
3000 HR images randomly selected from ImageNet [Wang
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(a) LR input

(b) ESRGAN (c) SwinIR (d) DASR (e) BSRGAN (f) RealESRGAN

(g) LDM-30 (h) LDM-100 (i) ResShift-15 (j) SinSR (k) SAMSR

(a) LR input

(b) ESRGAN (c) SwinIR (d) DASR (e) BSRGAN (f) RealESRGAN

(g) LDM-30 (h) LDM-100 (i) ResShift-15 (j) SinSR (k) SAMSR

Figure 4: Qualitative comparisons on real-world examples. Please zoom in for a better view.

Methods RealSR RealSet65

CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

ESRGAN [Wang et al., 2018] 0.2362 29.048 0.3739 42.369
RealSR-JPEG [Ji et al., 2020] 0.3615 36.076 0.5282 50.539
BSRGAN [Zhang et al., 2021] 0.5439 63.586 0.6163 65.582
SwinIR [Liang et al., 2021] 0.4654 59.636 0.5782 63.822
RealESRGAN [Wang et al., 2021] 0.4898 59.678 0.5995 63.220
DASR [Liang et al., 2022] 0.3629 45.825 0.4965 55.708
LDM-15 [Rombach et al., 2022] 0.3836 49.317 0.4274 47.488

ResShift-15 [Yue et al., 2024] 0.5958 59.873 0.6537 61.330
SinSR-1 [Wang et al., 2024] 0.6887 61.582 0.7150 62.169
SAMSR (Ours) 0.7179 63.696 0.7324 65.089

Table 1: Quantitative results on two real-world datasets. The best and second best results are highlighted in bold and underline, respectively.

et al., 2024]. Evaluation metrics include fidelity measures
(PSNR, SSIM, LPIPS) [Zhang et al., 2018a] and percep-
tual quality metrics (CLIPIQA, MUSIQ) [Wang et al., 2023;
Ke et al., 2021]. Results in Table 2 indicate that SAMSR at-
tains comparable fidelity metrics to existing diffusion-based
models while significantly improving perceptual quality. The
introduction of semantic masks enables pixel-wise adjust-
ment of residual transfer rates and noise strengths, enhanc-
ing detail preservation in semantically rich regions and allow-
ing SAMSR to outperform SinSR in balancing detail recov-
ery and perceptual realism. These comprehensive evaluations
demonstrate SAMSR’s effectiveness and versatility in both
real-world and controlled synthetic environments.

4.3 Model Analysis
Hyper-parameter m. The hyper-parameter m controls the
noise addition speed and intensity for pixels with different
levels of semantic richness during the forward diffusion pro-
cess. Table 3 summarizes the performance of SAMSR on
the Realset65 and RealSR dataset under different values of
m. We observe that both excessively large and small values
of m degrade the model’s authenticity. Experiments show
that when m is within the range of [1/5, 1/8], our method
achieves outstanding results on both the Realset65 and Re-
alSR datasets. Therefore, in this paper, we set m to 1/5.
Hyper-parameters k and ηt. ηt is the residual transition ra-
tio defined during the diffusion process, which controls the
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Method PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑

ESRGAN [Wang et al., 2018] 20.67 0.448 0.485 0.451 43.615
RealSR-JPEG [Ji et al., 2020] 23.11 0.591 0.326 0.537 46.981
BSRGAN [Zhang et al., 2021] 24.42 0.659 0.259 0.581 54.697
SwinIR [Liang et al., 2021] 23.99 0.667 0.238 0.564 53.790
RealESRGAN [Wang et al., 2021] 24.04 0.665 0.254 0.523 52.538
DASR [Liang et al., 2022] 24.75 0.675 0.250 0.536 48.337
LDM-30 [Rombach et al., 2022] 24.49 0.651 0.248 0.572 50.895
LDM-15 [Rombach et al., 2022] 24.89 0.670 0.269 0.512 46.419

ResShift-15 [Yue et al., 2024] 24.90 0.673 0.228 0.603 53.897
SinSR-1 [Wang et al., 2024] 24.56 0.657 0.221 0.611 53.357
SAMSR (Ours) 24.74 0.666 0.217 0.619 54.146

Table 2: Quantitative results on ImageNet-Test. The best and second best results are highlighted in bold and underline, respectively.

Hyper-parameters RealSR RealSet65

m p κ CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

1/2 0.3 2.0 0.6992 60.483 0.7193 62.451
1/4 0.3 2.0 0.7019 61.642 0.7221 62.633
1/5 0.3 2.0 0.7179 63.696 0.7324 65.089
1/6 0.3 2.0 0.7092 62.734 0.7251 62.914
1/8 0.3 2.0 0.7119 62.385 0.7291 64.218
1/10 0.3 2.0 0.7069 61.982 0.7216 63.814
1/20 0.3 2.0 0.6953 61.492 0.7194 62.843

Table 3: Quantitative results of models under different Hyper-parameters (m, p, κ).

Method CLIPIQA↑ MUSIQ↑
SAMSR(ηnew

t , κ) 0.7208 63.613
SAMSR(ηt, κnew) 0.7194 63.241
SAMSR(ηnew

t , κnew) 0.7324 65.089

Table 4: A comparison of the SAMSR method with different hyper-
parameters (evaluation on RealSet65 datasets).

gradual transition speed from the HR image to the LR im-
age in the Markov chain. κ is the control parameter for noise
intensity during the diffusion process, affecting the strength
of noise introduced at each diffusion step. In this paper, we
modify ηt and κ using the hyper-parameter m, incorporating
dense semantic guidance. This ensures that semantically sig-
nificant regions are prioritized for finer recovery during a sin-
gle step of reverse diffusion, while background regions main-
tain higher global consistency. Table 4 further explores the
effects of individually modifying ηt and κ.
Effective of Pixel-wise Sampling. Previous research has
shown that learning the deterministic mapping between xt

and x0 is hindered by the non-causal nature of the generative
process. However, our experiments demonstrate that modify-
ing the local noise intensity across different masked regions
of an image effectively mitigates this issue. This allows the
student network in the knowledge distillation process to bet-
ter solve the ODE process in a single step, while maintaining
the same model size.
Effective of Consistency Semantic Loss. Our consistency
semantic loss aims to improve the model’s ability to under-
stand and apply semantic information. Specifically, we es-
tablish a loss function based on the semantic weight differ-

Num. of Iters Train. Time CLIPIQA↑ MUSIQ↑
ResShift 500k 7.64days 0.6537 61.330
SinSR 30k 2.57days 0.7150 62.169
SAMSR 10-15k 1.89days 0.7324 65.089

Table 5: A comparison of the training time cost and results on
NVIDIA RTX4090.

ences between the ground-truth image and the predicted im-
age x0, enhancing the model’s ability to recover semantic de-
tails. From Table 5, we observe that the consistency seman-
tic loss not only significantly accelerates the model’s conver-
gence speed but also effectively improves its performance,
demonstrating its effectiveness during the training process.

5 Conclusion
In this paper, we propose a semantic segmentation-guided dif-
fusion model named SAMSR. Specifically, we introduce a
pixel-wise sampling framework based on semantic segmen-
tation, where noise is sampled within masked regions to re-
tain the spatial and semantic characteristics of the original
image. Additionally, we leverage segmentation masks to de-
rive pixel-level sampling hyperparameters, enabling differen-
tiated noise schedules for pixels with varying semantic rich-
ness. This ensures that semantically rich regions achieve sig-
nificant recovery within a single sampling step. Furthermore,
we propose a semantic consistency loss to accelerate the con-
vergence of the model. Experimental results show that our ap-
proach achieves significant performance improvements, par-
ticularly for SR tasks on semantically complex images.
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