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Abstract

Point cloud classification is critical for three-
dimensional scene understanding. However, in
real-world scenarios, depth cameras often capture
partial, single-view point clouds of objects with dif-
ferent poses, making their accurate classification a
challenge. In this paper, we propose a novel point
cloud classification network that captures the de-
tailed spatial structure of objects by constructing
tetrahedra, which is different from point-wise oper-
ations. Specifically, we propose a RISpaNet block
to extract rotation-invariant features. A rotation-
invariant property generation module is designed in
RISpaNet for constructing rotation-invariant tetra-
hedron properties (RITPs). Meanwhile, a multi-
scale pooling module and a hybrid encoder are used
to process RITPs to generate integrated rotation-
invariant features. Further, for single-view point
clouds, a complete point cloud auxiliary branch
and a part-whole correlation module are jointly
employed to obtain complete point cloud features
from partial point clouds. Experimental results
show that this network performs better than other
state-of-the-art methods, evaluated on four pub-
lic datasets. We achieved an overall accuracy of
94.7% (+2.0%) on ModelNet40, 93.4% (+5.9%) on
MVP, 94.7% (+6.3%) on PCN and 94.8% (+1.7%)
on ScanObjectNN. Our project website is https:
/Nuxurylf.github.io/RISpaNet_project/.

1 Introduction

Point cloud is three-dimensional (3D) data collected by depth
devices, which provides a direct representation of the envi-
ronment and objects [Qian er al., 2022; Liu er al., 2023].
Point cloud processing, including techniques such as classi-
fication and segmentation, is a fundamental requirement for
unmanned systems to understand 3D scenes [Fei er al., 2022;
Fan et al., 2023].

Since the introduction of PointNet [Qi et al., 2017al,
learning-based architectures have emerged with the ability
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Figure 1: A single camera viewpoint and random poses of objects
in the real world. (a) shows a portion of the point cloud acquired
by a camera. (b) shows diverse poses of a cup. (c) shows the pre-
diction results of four classifiers: PointNet, PointMamba, RICov++
and LGR-Net.

to directly process point cloud data. Recently, an increas-
ing number of studies have employed deep neural networks
for processing point clouds to achieve high-precision classi-
fication [Wei er al., 2023; Li et al., 2018; Liang et al., 2024;
Lin et al., 2022; Qiu et al., 2022; Yu et al., 2022]. How-
ever, most methods presume a complete, prescribed pose
point cloud as network input. In the real world, the captured
point cloud is usually single-viewed and partial. For example,
single-view and arbitrary pose features of objects in the real
world are shown in Fig. 1 (a) and (b).
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Applying rotational enhancement during training could al-
leviate the impact of arbitrary poses on classifiers [Qi et
al., 2017a; Qi et al., 2017b; Wang et al., 2019]. How-
ever, due to the large number of degrees of freedom for 3D
data, the effect of the above rotational enhancement is lim-
ited. Rotation-invariant models are key to accurately clas-
sifying objects for point clouds, which focus on designing
features with rotational invariance [Poulenard et al., 2019;
Chen et al., 2019; Deng et al., 2018; Zhang et al., 2022;
Zhao et al., 2022]. However, the performance of these meth-
ods tends to be suboptimal compared to translationally invari-
ant methods, since a portion of spatial information of objects
is often ignored or lost during the construction of rotation-
invariant features.

The single-view point cloud data of objects with arbitrary
poses results in a performance decline of classification, as
presented in Fig. 1 (c). To solve this problem, we pro-
pose a rotation-invariant network for point cloud classifica-
tion. Specifically, a RISpaNet block is designed for extracting
rotation-invariant features from point clouds, which includes
a rotation-invariant property generation module (RIPGM), a
pooling module and a hybrid encoder. In RIPGM, a highly
expressive rotation-invariant tetrahedron property (RITP) is
developed. RITP is constructed as a local tetrahedron cen-
tered on a reference point to efficiently capture spatial struc-
ture of objects. The pooling module is used to extract multi-
scale features. A hybrid encoder is designed to generate
rotation-invariant features through different encoding mecha-
nisms including convolution, attention mechanisms and state
space models. For single-view point clouds, a complete point
cloud auxiliary branch and a part-whole correlation module
are designed to obtain complete point cloud features from
partial point clouds.

To summarize, our main contributions are:

* Rotation-invariant Tetrahedron Properties. A highly
expressive rotation-invariant property is designed by
constructing local tetrahedra to capture spatial informa-
tion of objects.

* RISpaNet. RISpaNet is a fundamental block in our
model. This block includes a rotation-invariant property
generation module, a multi-scale pooling module and a
hybrid encoder. Different coding mechanisms are em-
bedded in the hybrid encoder to extract the integrated
rotation-invariant features from RITPs.

e Two-branch design. The complete point cloud auxil-
iary branch is designed to acquire complete point cloud
features during the training phase. The part-whole corre-
lation module is used to achieve the mapping from miss-
ing point cloud features to complete point cloud features.
The two-branch structure can improve the single-view
point cloud classification accuracy.

We performed experiments on the ModelNet40, MVP,
PCN and ScanObjectNN datasets. Compared to state-of-the-
art methods, our method achieved competitive or even the
best performance.

2 Related Work
2.1 Learning-based Point Cloud Analysis

Recently, deep learning methods have become popular for
processing point cloud data [Albert and Tri, 2023; Wang et
al., 2024; Shen et al., 2024]. Initially, researchers used 3D
voxel grids to process point clouds, which are easy to under-
stand [Shi er al., 2023; Li et al., 2024; Singh and Yadav,
2024]. However, the voxelization process inevitably leads to
information loss, which is closely related to the chosen reso-
lution. PointNet [Qi er al., 2017a] is a pioneer in point cloud
feature extraction using multi-layer perceptions and global
pooling operations. PointNet++ [Qi ef al., 2017b] was fur-
ther proposed for multi-scale local feature encoding. Cur-
rently, the transformer framework has received widespread
interest in point cloud processing. An efficient point self-
attention layer was designed in Point Transformer [Zhao et
al., 2021]. The dual-channel structure has been proposed in
a dual-transformer network [Han et al., 2023] for efficient
feature extraction. Recently, the Mamba framework based on
state-space models has gained a lot of attention [Yang ef al.,
2024; Ju et al., 2024; Zhou et al., 2025]. Mamba is a novel ar-
chitecture that provides an efficient solution through its inno-
vative design of a selective state-space model and linear time
complexity [Albert and Tri, 2023]. Point-Mamba [Liang
et al., 2024] successfully applied Mamba to point cloud pro-
cessing. However, the above methods are difficult to apply to
the real world since the rotation of the object and the single-
view features are not considered.

2.2 Single-view Point Cloud Analysis

Most of the inputs to current learning-based point cloud clas-
sifiers are complete point clouds. However, in the real world,
the acquired 3D data are often partial point clouds from a
single viewpoint. The predicted complete point cloud gener-
ated by point cloud completion methods can be used as in-
put to classifiers [Cheng et al., 2022; Sarmad et al., 2019;
Pan er al., 2023]. Studies directly addressing single-view
point cloud classification are still relatively few. A single-
view point cloud classifier called SVP-classifier [Moham-
madi et al., 2022] was proposed for partial point cloud clas-
sification. SVP-classifier achieved classification based on
global features, which were multi-view features mapped from
single-view features. PAPNet [Xu er al., 2023] was a single-
view classification network that learned object pose changes
during its implementation. However, PAPNet still has its lim-
itations, as noted in the literature [Xu et al., 2023], with in-
accuracies in pose estimation and vulnerabilities to adversar-
ial attacks, potentially leading to the failure of the perception
system. In this paper, we aim to design an efficient point
cloud classification network that directly processes single-
view point clouds.

2.3 Rotation-invariant Analysis

Objects can be viewed from different perspectives and their
poses are arbitrary in the real world. Therefore, rotation in-
variance is critical for practical applications in 3D object clas-
sification [Chen er al., 2019]. Several methods [Zhang
et al., 2019; Zhang et al., 2022] based on rotation-invariant
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Figure 2: The process of constructing rotation-invariant tetrahedron
properties.

features have been proposed. RIConv [Zhang et al., 2019]
constructed rotation-invariant features based on the center of
mass from a local point set formed by & nearest neighbor
points. RIConv++ [Zhang et al., 2022] designed rotation-
invariant descriptors based on the theory of Local Reference
Frames (LRFs). The LRF can preserve global rotation in-
variant features. Note that the LRF may be unstable due to
changes in the centroid, especially if the shape contains dis-
turbances. RISurConv [Zhang ef al., 2025] constructed a
locally triangulated surface to capture detailed surface struc-
tures for extracting highly expressive rotation-invariant sur-
face properties. However, the classification accuracies of
these methods decrease in single-view point cloud classifi-
cation tasks. We aim to design a point cloud classification
network that is robust to single views and arbitrary rotations.

3 Method

To improve the accuracy of classifiers for arbitrary pose and
single-view features in real scenarios, we propose a rotation-
invariant point cloud feature extraction module and a dual-
branch network architecture.

3.1 Rotation-invariant Tetrahedron Properties

RITP is used to capture detailed spatial structure by construct-
ing local tetrahedra around a reference point p;. The process
of generating RITP is shown in Fig. 2 (a). For a reference
point p;, k nearest neighbors could be obtained to form a lo-
cal point set. Then a tetrahedron is formed based on the point
p; and the nearest neighbors x; and other two adjacent points,
z;—1 and z; 1. RITP can be expressed as:

RITP(‘TI) N [L03L17L27q)07q)17(1)2700701302a (1)
o, O, 607 /817 Y0, 71, Wo, W1, W2, w3]
where, L; represents the distance from the reference point p;

to the other three vertices of the tetrahedron. ®; represents
the relationship between the three edges in the tetrahedron

with p; as vertex. L; and ®; are specified as:

Lo = dist(pi, x;), Ly = dist(p;, x-1), 2
Ly = dist(p;, wi41), ®o = Z(piwi_i, pidy), 3)

Oy = L(pizii, pity), @2 = L(pixisi. Diwisi) @)

0o, 01, 02, ag, a1, Bo, B1, Yo, 11 represent the relationship
between point normals and edges in a tetrahedron:

O = L(ipy piws), 01 = Z(Rp s Didiz)s (5)
02 = L(ny, iwi1), a0 = L(Tig), TiTi-1), 6)
a1 = L, Ti@i1), Bo = L(farys Tig1zici), (7
Bi = L(igr Tt @) Yo = LT 1, Tia), (8)
N =L, 1, Ti1@itt)- )

where 773 represents the normal of the corresponding vertex.
wo, W1, W, wg represent the relationships between the four
faces that make up the tetrahedron:

wo = Z(PiT; X PiTitt, Pi%ird X Pi%ii), (10)
wi = Z(PiTiti X D, Pitii X Dixy), (11)
wy = Z(Pilti 1 X i, Pilts X DiTiiid), (12)
wg = L(T;xit1 X (TiZi—1, piTi—i X M) (13)

There is a significant difference in mathematical logic be-
tween RITP and other methods, which RITP exhibits high
dimensional considerations. The specific difference is shown
in Figs. 2 (b) and (c). The rotation-invariant property in RI-
Conv++ is at the point level. RISurConv is at the surface
level. Our RITP is at 3D structure level.

3.2 RISpaNet Block

RISpaNet is the core in our network (shown in Fig. 3),
which is designed to extract the rotation-invariant features
from point clouds. RISpaNet consists of three modules: the
RIPGM, the pooling module and the hybrid encoder.

By constructing tetrahedra from nearest points, RIPGM
generates RITP. A multi-scale pooling module (MSPM) is
used to extract multi-scale features from RITP. As shown in
Fig. 3, the pooling module consists of a convolution mod-
ule and two pooling layers. RITP is processed by the pool-
ing module to obtain multi-scale features Fr;rpmui. MSPM
enables network to contain global, local and contextual infor-
mation compared to single pooling.

A hybrid encoder is designed to further process Frirpmul
to obtain rotation-invariant features. As shown in Fig. 3, hy-
brid encoder consists of three different structures of encoders:
Mamba, self-attention mechanism (SA) and convolutional
neural network (CNN). These three components are chosen
because they each represent a different encoding way. Each
of them is good at extracting different information. Mamba
is a novel network architecture based on state-space models
(SSMs), designed to efficiently capture long-range dependen-
cies while preserving linear computational complexity. SA
is a mechanism for capturing the contextual relationships of
data by calculating the correlations between queries (()) and
keywords (K) and weighting the values (V') with these cor-
relations as weights. CNN could extract local features from
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Figure 3: RISpaNet block structure. RISpaNet consists of three modules: the rotation-invariant property generation module (RIPGM), the
multi-scale pooling module (MSPM) and the hybrid encoder. The RIPGM is used to generate the rotational-invariant tetrahedron properties
(RITP). The multi-scale pooling module is applied to process the RITP to obtain multi-scale features. The hybrid encoder is designed to

extract the integrated rotational-invariant features.

data through convolutional operations. The sum of the out-
puts from these three encoders is processed with a convolu-
tional layer to obtain rotation-invariant features. The specific
frameworks of Mamba and SA are shown in Fig. 4.
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Figure 4: The structures for Mamba, SA and decoder. Mamba cap-
tures data features through state space models. SA captures data
correlations through @), K and V. Mamba and multi-head attention
layers are used in decoder.

3.3 Two-branch Network Structure

To improve classification accuracy of partial point clouds, we
design a complete point cloud auxiliary branch (CPCAB) to
obtain complete point cloud features from partial. The net-
work structure is shown in Fig. 5. The input to the CPCAB is
the complete point cloud from the dataset used. The CPCAB
is used only in the training phase. In the inference phase, we
only use the partial point cloud branch. The input to the par-
tial channel is a partial, single-view point cloud captured by
the depth device. Five RISpaNet blocks are used to extract
rotation-invariant features.

The parameters of RISpaNet blocks in the auxiliary and
partial branch are shared. The outputs of the two branches
are the complete point cloud feature f.,,, and the partial point
cloud feature f,q,¢. To achieve the mapping of partial point
cloud features to complete point cloud features, we design
a part-whole correlation module (PWCM). The structure of
PWCM is similar to the multi-scale pooling module, except
that there is no pooling layer. Finally, the predicted complete
point cloud feature f.ompre provided by PWCM is processed
by the decoder to obtain the predicted object label y. The
structure of the decoder used is shown in Fig. 4.

3.4 Loss

The loss function of our network consists of two parts: the
class loss Ljs and the feature loss Ly.,. The loss of the
overall network is Liotai = Leis + AL feq, where A is a trade-
off parameter. The cross-entropy loss is used in L.;s, where
Les = Feross(Ygt ¥). Yge 18 the true label. The mean square
error loss is used in the feature loss Ly.,, where Lyc, =

Fmse(fcom7 fcompre)~
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Figure 5: Two-branch structure. The proposed network contains two branches: the partial point cloud branch (PPCB) and the complete
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results.

4 Experiment

4.1 Application Details

The network was tested on an NVIDIA RTX 3080 Ti GPU
with four datasets: MoldeNet40 [Wu et al., 2015], MVP
[Pan et al., 2023], PCN [Yuan et al., 2018] and ScanOb-
jectNN [Uy er al., 2019]. The inputs to the network are 1024
3D coordinates and their corresponding point normals. It is
worth noting that normals are optional for our method. In
cases of no normals, we use the weighted eigenvector corre-
sponding to the smallest eigenvalue as the normals. To evalu-
ate the classification results, we followed the existing work on
rotation invariance and performed experiments in three cases:
(1) both training and test data were rotated around the z-axis
(2/2), (2) training data were rotated around the z-axis and test
data were arbitrarily rotated (2/503), and (3) both training
and test data were arbitrarily rotated (SO3/503).

4.2 Complete Point Cloud Classification

The proposed method was initially validated on complete
point clouds from ModelNet40. We trained and tested on all
40 classes in ModelNet40. We simply used the partial point
cloud branch (PPCB) to connect directly to the decoder for
training and testing. For simplicity, the single-branch way is
called Ours-PPCB. The Adam optimizer was used. The learn-
ing rate started at 0.00033 and was reduced by 20% every 20
epochs. The batch for training was 56. We compared two
types of methods: rotation-sensitive methods and rotation-
invariant methods. The results are shown in Table 1. The
results of PointNet [Qi et al., 2017al, PointCNN [Li et al.,
2018], PointNet++ [Qi et al., 2017b], DGCNN [Wang et al.,
2019], RIConv [Zhang ef al., 2019] and RIConv++ [Zhang
et al., 2022] are from RISurConv [Zhang et al., 2025]. The
results of the SF-CNN [Rao et al., 2019], Li et al [Li et al.,
2021], LGR-Net [Zhao et al., 2022] and Wang et al. [Wang

Method z/2503/503z/503

PointNet [Qi er al., 2017a] 87.0 80.3 21.6
PointCNN [Li et al., 2018] 913 845 41.2
PointNet++ [Qi ef al., 2017b] 89.3  85.0 28.6
DGCNN [Wang e al., 2019] 922 81.1 20.6
PointMamba [Liang ef al., 2024]89.3  86.4 24.1

RIConv [Zhang et al., 2019] 86.5 864 86.4
RIConv++ [Zhang eral.,2022] 91.3 91.3 91.3
Lietal. [Lietal,2021] 90.2 90.2 90.2
SF-CNN [Rao et al., 2019] 914 90.1 84.8
Wang et al. [Wang et al., 2024] 93.2  93.0 93.2
LGR-Net [Zhao et al., 2022] 90.9 O91.1 90.9
RISurConv [Zhang er al., 2025] 93.5 92.7 93.4

Ours-PPCB (without normal) 945 945 94.5
Ours-PPCB 94.7 94.7 94.6

Table 1: Comparisons of the classification accuracy (%) on Model-
Net40

et al., 2024] are from Wang et al. [Wang er al., 2024] . The
results of RISurConv [Zhang et al., 2025] and PointMamba
[Liang et al., 2024] were trained on the corresponding code
provided on the official website.

For the rotation-sensitive method, Table 1 shows a signifi-
cant drop in classification accuracy when the testing rotation
differs from the training rotation. In contrast, the classifi-
cation accuracy of the rotation-invariant methods decreases
only slightly in this case. Our method achieves the highest
classification accuracy as shown in Table 1, even without nor-
mal vectors.
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MVP PCN

Method Params(M) z/z S03/5S03 z/S03 z/z SO3/S03 z/S0O3
Rotation PointNet [Qi ef al., 2017al 3.50 812 739 235 82.1 74.5 23.2
-sensitive PointCNN [Li et al., 2018] 0.60 72.2 68.2 20.2 71.5 67.2 21.2
method PointMamba [Liang et al., 2024] 12.3 88.9 77.8 225 882 782 25.4
RIConv++ [Zhang et al., 2022] 0.40 83.8 83.6 83.7 822 82.0 82.2
Lietal. [Lietal,2021] 2.91 794 793 794 81.1 81.1 81.0
Rotation Wang et al. [Wang er al., 2024] 1.88 85.4 85.2 85.3 86.2 86.4 86.0
-invariant LGR-Net [Zhao et al., 2022] 5.55 81.2 81.3 81.2 83.1 83.3 83.1
method RISurConv [Zhang et al., 2025] 13.96 87.7 87.5 87.6 88.6 88.4 88.5
Ours-PPCB 10.09 923 92.2 92.2 935 93.5 93.5
Ours 10.43 933 934 934 947 94.7 94.7

Table 2: Comparisons of the classification accuracy (%) on MVP and PCN

4.3 Single-view Point Cloud Classification

We performed the single-view partial point cloud classifi-
cation task on two datasets: the MVP and the PCN. MVP
comprises 16 classes of point clouds captured by 26 fixed-
pose depth cameras, while PCN includes 8 classes of point
clouds from 8 viewpoints. For training in the two-branch
way, the Adam optimizer was used. The learning rate started
at 0.00044 and was reduced by 15% every 10 epochs. The
batch for training was 40. As for ), it was set to 0.001 for the
first 10 epochs, 0.0001 for epochs 11 to 20 and 0.00001 for
subsequent epochs.

All comparison methods were trained using the official
code provided in the corresponding literature. As shown in
Table 2, our method performs excellently in all cases, even
in the single-channel way. This demonstrates that RISpaNet
block is effective in extracting rotation-invariant features.
Compared to ours-PPCB, the classification accuracy of our
two-channel method is significantly improved. This demon-
strates the effectiveness of CPCAB and PWCM. Our method
achieves 93.4% classification accuracy in MVP and 94.7% in
PCN, achieving a significant improvement on the classifica-
tion results of existing methods.

4.4 Real World Object Classification

For classification task in the real world, we performed ex-
periments on the ScanObjectNN dataset, which is a 3D point
cloud dataset with 15 classes captured by an RGB-D camera.
In our experiments, we used the processed files and choose
the hardest variant PB_T50_RS to train our network with the
partial point cloud branch. Due to the fact that normal were
not provided in PB_T50_RS, 3D coordinate form was used as
input. The results are presented in Table 3. It can be seen that
the classification accuracy of our method achieves as high as
94.8%, which is significantly superior to the performances of
existing methods.

4.5 Ablation Experiments

RITP. To validate the effectiveness of the designed RITP,
ablation experiments were performed on rotation-invariant
properties, comparing with rotation-invariant surface proper-
ties (RISP) in RISurConv [Zhang et al., 2025] and informa-
tive rotation-invariant features (IRIF) in RIConv++ [Zhang et
al., 2022]. All three rotationally invariant features mentioned
above were subsequently extracted using the pooling mod-
ule and the hybrid encoder in RISpaNet. Both training and
test data are arbitrarily rotated (SO3/SO3) on MVP. It can

Method 2/2503/5032/503 be seen from Table 4 .that the RITP-based method gchie;ves
- - the highest classification accuracy, demonstrating its high-

PointNet [Qi et al., 2017a] 68.2 422 171 expressive rotation-invariant property.

PointCNN [Li et al., 2018] 78.5 518 14.9 RISpaNet. To validate the effectiveness of the pooling

PointNet++ [Qi er al., 2017b]  77.9 60.1 15.8 module and hybrid encoder in the RISpaNet block, abla-

DGCNN [Wang et al., 2019]  78.1 634 16.1 tion experiments were performed on feature extraction. Both

PointMamba [Liang et al., 792701 656 338 training and test data are arbitrarily rotated (SO3/S03) on
RIConv [Zhang et al., 2019] 68.1 68.3 683 MVP. The results are shown in Table 5. The accuracy of
RIConv++ [Zhang et al., 2022] 80.3 80.3 80.3 Model A is higher than that of Model B, indicating that the
Wang et al. [Wang et al., 2024] 82.7 829 727 multi-scale pooling module is beneficial for classification.
LGR-Net [Zhao et al., 2022] 83.4 83.4 834 Hybrid encoders can efficiently extract rotation-invariant fea-
RISurConv [Zhang et al., 2025] 93.1 93.1 931 tures by comparing the accuracy of model B with model D
Ours-PPCB 94.8 948 948 and model A with model C.

Table 3: Comparisons of the classification accuracy (%) on ScanOb-
jectNN

Efficiency Analysis. We performed a comprehensive anal-
ysis for network efficiency during training and testing, as
shown in Table 6. We compared our method with RIConv++
[Zhang et al., 2022], RISurConv [Zhang et al., 2025] and
LGR-Net [Zhao et al., 2022]. The training and inference
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Property IRIF  RISP  RITP
Accuracy(%)  85.1 88.7 93.4

Table 4: Comparisons of the classification accuracy (%) on different
rotation-invariant property

Model MSPM Hybrid encoder Conv Accuracy(%)

A v v 934
B v 91.8
C v v 91.2
D v 89.9

Table 5: Comparisons of the classification accuracy (%) on different
modules in our method

Methods Params(M) Train(s) Infer(ms)
RIConv++ 0.40 17 0.014
RISurConv 13.96 30 0.022
LGR-Net 5.55 21 0.018
Ours 10.43 32 0.024

Table 6: Efficiency analysis of parameters, training and inferring
time

1072 103 10=* 10~° 10°¢
822 90.0 91.3 93.1 87.1

A 10-*
Accuracy 77.1

Table 7: Parametric analysis of A

speeds of our network are generally comparable to existing
methods, while the number of parameters is kept at a reason-
able level.

Parametric Analysis. A was obtained experimentally. We
performed sensitivity tests for A\, as shown in Table 7. A is
appropriate between 1072 and 10~°. Based on the results
of the sensitivity experiments, it is shown that the network is
sensitive to A in Loss.

5 Conclusion

In this paper, we propose a novel rotation-invariant network
for point cloud classification. A highly expressive rotation-
invariant property, called RITP, is designed to capture object
spatial information by constructing tetrahedra. The RISpaNet
block is used to extract rotation-invariant features of objects,
including a rotation-invariant property generation module, a
multi-scale pooling module and a hybrid encoder. Further-
more, for single-view point clouds, the joint use of a com-
plete point cloud auxiliary branch and a part-whole corre-
lation module is developed to obtain complete point cloud
features from partial point clouds. Extensive experimental
validation demonstrates the superior performance of our net-
work for point cloud classification tasks, particularly achiev-
ing classification accuracies of 93.4% and 94.7% on the MVP
and PCN benchmarks, respectively.

Our method is designed to accommodate the requirements
of practical scenarios, with profound implications for future
research and applications. In the future, we plan to apply this
method to specific manipulation tasks to provide a cognitive
foundation for robots.
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