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Abstract

Conventional image set methods typically learn
from image sets stored in a single location. How-
ever, in real-world applications, image sets are of-
ten distributed across different locations. Learning
from such distributed sets using deep neural net-
works poses challenges for efficient image set clas-
sification and retrieval. To address this, we pro-
pose Distributed Cascade Manifold Hashing Net-
work (DCMHN) for compact image set represen-
tation. DCMHN represents each image set using
an SPD manifold and utilizes a manifold hashing
network to generate hash codes, enabling efficient
classification and retrieval. The network is trained
in a cascaded manner, where the bilinear mapping
in the BiMap layer is learned first, followed by joint
learning of the hash function and classifier in the
hash layer. DCMHN enforces local consistency on
global variables across neighboring nodes, allow-
ing parallel optimization. Extensive experiments
on three benchmark image set datasets demonstrate
that the proposed DCMHN achieves competitive
accuracies in distributed settings, and outperforms
state-of-the-arts in terms of computation and stor-
age efficiency.

1 Introduction
In recent years, the rapid development of multimedia tech-
nology has led to an explosion in the number of images
captured by cameras and surveillance videos. As a result,
many classification and retrieval tasks now focus on im-
age sets, which consist of multiple images of a specific ob-
ject [Zhu et al., 2014; Huang et al., 2015a; Huang et al., 2017;
Pigou et al., 2018]. Image sets provide richer variability than
single images, but due to factors like lighting, angle, posture,
and background, the image sets from the same object often
exhibit large intra-class variations, making image set classifi-
cation a challenging task.

Image set modeling is crucial for image set tasks, and var-
ious effective methods have been proposed. Affine/convex

∗Corresponding author.

hull [Cevikalp and Triggs, 2010] and linear subspace meth-
ods [Yang et al., 2013; Kim et al., 2007] model image sets
but struggle to capture nonlinear structures. Manifold-based
methods have gained attention for their strong nonlinear mod-
eling capabilities. These methods can be categorized into
three types: Riemannian kernel methods [Wang et al., 2012b;
Hamm and Lee, 2008; Wang et al., 2018b; Shen et al., 2024],
Riemannian metric learning methods [Huang et al., 2015b;
Huang et al., 2015a; Zhu et al., 2018; Lu et al., 2015],
and deep manifold networks [Huang and Van Gool, 2017;
Huang et al., 2018; Chakraborty et al., 2020; Wang et al.,
2021]. Riemannian kernel methods use kernel functions to
embed manifolds into a Reproducing Kernel Hilbert Space
(RKHS), but they ignore Riemannian geometry. Riemannian
metric learning addresses this by using manifold similarity as
the Riemannian metric. To enhance modeling, deep manifold
networks construct neural networks directly on manifolds.
However, these methods learn in continuous space, leading to
high computational and storage costs on large-scale datasets,
making learning of compact image set representations a con-
tinuing challenge.

Conventional image set methods primarily learn from im-
age sets collected at a single location. However, in real-
world applications, such as person re-identification [Cao et
al., 2022], image sets are often collected across multiple lo-
cations. One approach is to centralize the image sets before
applying a centralized learning method. However, this incurs
high communication costs and may exceed the computational
capacity of a single machine [Zhai et al., 2017].

Hashing [Wang et al., 2018a] has attracted extensive inter-
est in large-scale image retrieval due to its advantage of com-
putation and storage. Hashing maps high-dimensional data
into low-dimensional hash codes while preserving similarity
structure among data. The advantage of hashing motivates
us to extend to the application of image retrieval to more
challenging image set classification and retrieval, and thus
proposes Distributed Cascaded Manifold Hashing Network
(DCMHN) to significantly reduce computation and storage
costs. The illustration of the proposed DCMHN is shown in
Figure 1. The main contributions of this work can be summa-
rized as follows:

• We propose the Distributed Cascaded Manifold Hashing
Network (DCMHN) to learn compact image set repre-
sentations using hash codes, enabling efficient classifi-
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Figure 1: Illustration of the proposed DCMHN. The proposed DCMHN represents each image set using an SPD manifold and utilizes a
manifold hashing network, consisting of BiMap, ReEig, and LogEig layers for manifold encoding, and a hash layer to generate hash codes.

cation and retrieval. DCMHN is the first deep neural
network approach designed for compact representation
learning on distributed image sets.

• The manifold hashing network is used to encode the
manifold and is trained in a cascaded manner to re-
duce training time. DCMHN enforces local consistency
across neighboring nodes, enabling parallel optimiza-
tion.

• We evaluate DCMHN on three benchmark image set
datasets, demonstrating competitive accuracy in dis-
tributed settings and superior performance in terms of
computation and storage efficiency compared to state-
of-the-art methods.

2 Related Work
Image Set Classification Conventional image set methods
can be mainly divided into five types: affine/convex hull
methods, linear subspace methods, Riemannian kernel meth-
ods, Riemannian metric learning methods, and deep manifold
networks.

Affine/Convex hull methods, e.g., Affine/Convex Hull
Based Image Set Distance (AHISD/CHISD) [Cevikalp and
Triggs, 2010] characterize an image set by the convex ge-
ometric region, i.e., affine or convex hull, and measure the
distance between two image sets by geometric distance,
i.e., distance of closest approach between convex models.
Linear subspace methods, e.g., Mutual Subspace Method
(MSM) [Yang et al., 2013] and Discriminant Canonical Cor-
relations (DCC) [Kim et al., 2007] represent an image set
as a linear subspace. MSM uses the cosine of the mini-
mum angle between two subspaces as the distance measure-
ment, and DCC aims to seek the projection metric such that
canonical correlations in the learned subspace are maximized.
Riemannian kernel methods, e.g., Covariance Discriminative
Learning (CDL) [Wang et al., 2012b] and Grassmann Dis-
criminant Analysis (GDA) [Hamm and Lee, 2008] map the
manifold into a reproducing kernel Hilbert space(RKHS), and
then employ the kernel discriminant analysis for discriminant
learning. Riemannian metric learning methods, e.g., Log-
Euclidean Metric Learning (LEML) [Huang et al., 2015b]

and Projection Metric Learning (PML) [Huang et al., 2015a]
map the manifold to lower-dimensional discriminative mani-
fold through metric learning. Deep manifold networks, e.g.,
Symmetric Positive Definite Network (SPDNet) [Huang and
Van Gool, 2017] and Grassmann Network (GrNet) [Huang
et al., 2018] generalize Euclidean network paradigm to man-
ifold space and perform end-to-end training through matrix
backpropagation. Later, [Wang et al., 2022] propose two Rie-
mannian operation modules, i.e., Riemannian batch regular-
ization layer, Riemannian pooling layer to improve perfor-
mance. In addition, SymNet [Wang et al., 2021] proposes a
simple SPD manifold deep learning network that learns mul-
tilevel connection matrices and reduces computational com-
plexity.

Hashing Hashing [Liu et al., 2011; Gionis et al., 1999;
Wang et al., 2012a; Liu et al., 2012; Norouzi and Fleet, 2011]
projects the original high-dimensional data into a compact
Hamming space while preserving the similarity structure. Lo-
cality Sensitive Hashing (LSH) [Datar et al., 2004] generates
hash functions in a random manner. Iterative Quantization
(ITQ) [Gong et al., 2012] uses Principal Component Analy-
sis (PCA) to reduce dimension, and then employs orthogo-
nal rotation to reduce quantization error. Supervised Discrete
Hashing (SDH) [Shen et al., 2015] assumes that high-quality
hash codes are ideal for classification, and then are learned
jointly by minimizing quantization losses under a linear clas-
sifier framework. Deep Hashing Network (DHN) [Zhu et al.,
2016] captures the image representation by a convolutional
layer and a pooling layer, and uses cross-entropy loss and
quantization loss supervision to generate a compact binary
code, which addresses the quantization error issue.

3 Distributed Cascaded Manifold Hashing
Network

3.1 Problem Setup
Suppose that we are given a distributed image set dataset
{Si,Yi}Pi=1 that has N samples distributed in P nodes of
a network, as shown in Figure 1. In the i-th node, image set
features and labels are denoted as Si = {Sij ∈ Rl×nij}Ni

j=1

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

and Yi ∈ RC×Ni respectively, where Sij and nij denote
feature and number of images of the j-th image set in the
i-th node respectively, l is the dimension of image feature,
C is the number of classes, Ni denotes the number of im-
age sets in the i-th node, and we have N =

∑P
i=1 Ni. The

goal is to learn distributed hashing network and hash code
B = {Bi ∈ Rd×Ni}Pi=1 from such distributed image set to
perform efficient image set classification and retrieval, where
d is the dimension of hash code.

3.2 Network Structure
SPD manifold Given an image set S, its covariance matrix
is defined as:

X =
1

n− 1

n∑
i=1

(si −m) (si −m)
⊤ (1)

where m, si, and n denote the mean, the i-th image, and the
number of images in S respectively. To ensure positive, we
add a small regularization matrix Tr(X)

α I, where I denotes the
identity matrix, and parameter α is empirically set to 103.
SPD Manifold and Hash Layer As shown in Figure 1,
the proposed DCMHN constructs a manifold hashing net-
work to encode manifold to generate hash code. Specifically,
DCMHN first employs three SPD manifold layers [Huang
and Van Gool, 2017], i.e., BiMap, ReEig, and LogEig lay-
ers to encode manifold, and further employs a hash layer to
transform the continuous feature into hash code. We assume
Xk

i ∈ Rdk×dk denotes the input of the k-th layer of the i-th
node, and define the layers [Huang and Van Gool, 2017]:

BiMap Layer projects each input SPD matrix into a new
one through a bilinear mapping Xk+1

i = Wk⊤
i Xk

iW
k
i ,

where Wk
i ∈ Rdk×dk+1 denotes transformation matrix, and

we have dk+1 < dk.
ReEig Layer injects nonlinearity by tuning-up the small

positive eigenvalues of each input SPD matrix via Xk+1
i =

Umax(ϵI,Σ)U⊤, where U and Σ are eigenvectors and
eigenvalues of Xk

i respectively, ϵ is a predefined small ac-
tivation threshold.

LogEig Layer embeds each input SPD matrix into a flat
space via Xk+1

i = U log(Σ)U⊤.
Hash Layer transforms the input using a linear map-

ping matrix and a nonlinear sign function via Xk+1
i =

sign(Wk⊤
i Xk

i ), where sign denotes the sign function.

3.3 Formulation
As illustrated in Figure 1, the proposed DCMHN uses BiMap,
ReEig, and LogEig layers for manifold encoding, with a Hash
layer to generate hash codes. The ReEig and LogEig layers
are parameter-free, while the BiMap and Hash layers con-
tain learnable parameters. This section details the parameter
learning process, as summarized in Algorithm 1.

Distributed Bilinear Mapping Learning
Conventional deep network often uses stochastic gradient de-
scent, and further employs chain rule as backpropagation
(BP). However, compared to calculating Euclidean gradient,
calculating Riemannian gradients in deep manifold network

is challenging. As such, a variant of SGD on Stiefel mani-
fold [Huang and Van Gool, 2017] has been developed to train
such network, however it leads to very high computational
cost, and usually requires hundreds or even thousands iter-
ations to converge. In this work, instead of using BP, we
propose to learn bilinear mapping in BiMap layer from the
perspective of effective preservation of SPD structure [Wang
et al., 2024b].

We consider the i-th node, and denote Xn,k
i ∈ Rdk×dk as

the input SPD matrix of the k-level BiMap layer of the n-th
image set, where dk denotes feature dimension. As defined
earlier, BiMap layer transforms the input SPD matrix into a
new SPD matrix via the following function via a projection
matrix Wk

i ∈ Rdk×dk+1 , and it is defined as follows:

Xn,k+1
i = Wk⊤

i Xn,k
i Wk

i (2)

We have the following theorem related to property of Wk.

Theorem 1. Given the input SPD matrix Xn,k
i , the output

matrix Xn,k+1
i is a SPD matrix if Wk

i is required to be a row
full-rank matrix, i.e., Wk⊤

i Wk
i = I.

Proof. It is easy to prove the output matrix is satisfied with
the definition of SPD matrix if transformation matrix is full-
rank using simple matrix computation.

Motivated by the popular idea of Principle Component
Analysis (PCA), we propose a simple yet effective solution
to learn Wk

i . Specifically, we aim to preserve SPD structure
across BiMap layer [Wang et al., 2024b], and employ the fol-
lowing reconstruction loss:

min
Wk

i

Ni∑
n=1

∥∥∥Xn,k
i −Xn,k

i Wk
i W

k⊤
i

∥∥∥2
F

(3)

s.t. Wk⊤
i Wk

i = I

where Xn,k
i is first required to be centralized. The above

problem can be equivalently transformed to the eigenvalue
problem, and Wk

i is formed by the eigenvectors correspond-
ing to the largest dk+1 eigenvalues of sample covariance ma-
trix Ck

i =
∑Ni

n=1 X
n,k⊤
i Xn,k

i .
Note that we are given a distributed task, and we need to

consider all the P nodes. To make full of all the distributed
manifolds on the P nodes, we propose to calculate the global
sample covariance matrix Ck =

∑P
i=1 C

k
i , and perform its

eigenvalue decomposition. To achieve this, we introduce a
parameter server to first receive the local covariance matrices
on the P nodes, calculate the global covariance matrix by
averaging the local ones. The parameter server finally returns
the learned bilinear mapping matrices to the P nodes.

Distributed Hash Code Learning
On the i-th node, each SPD manifold is processed through
BiMap, ReEig, and LogEig layers, and we have vectorized
Euclidian features Xi ∈ Rm×Ni , where m denotes the fea-
ture dimension. The feature is then feed into hash layer to
obtain hash code. Existing researches [Shen et al., 2015]
show that optimal hash codes are expected to have good clas-
sification performance. In addition, quantization errors be-
tween continuous features and hash codes affect quality of
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hash codes. Therefore, we consider all the P nodes, and pro-
pose to learn hash codes by jointly minimizing the following
simple yet linear classification loss and quantization loss:

min
V,Bi,U

P∑
i=1

(
∥Yi −U⊤Bi∥2F + λ∥U∥2F + µ∥Bi −V⊤Xi∥2F

)
s.t. Bi ∈ {−1, 1}d×Ni (4)

where U ∈ Rd×C denotes the weighted matrix related to
the linear classifier, V ∈ Rm×d denotes transformation ma-
trix in hash layer, λ and µ denote regularization parameters.
The first term is least square classification loss to improve
discrimination of hash code, the second term is regularization
term, and the third term is quantization loss between contin-
uous feature and hash code. The binary constraint enforces
the continuous feature to approximate hash code, which can
handle large-scale applications efficiently.

Inspired by the brain’s distributed memory processing
[Wen et al., 2018] and brain-inspired coordination strate-
gies [Han et al., 2025; Jia et al., 2025; Wang et al., 2024a],
we formulate a distributed optimization framework. The lo-
cal variable Bi can be optimized independently in each node,
while the global variables U and V are shared among all the
nodes, making them difficult to optimize. Motivated by block
splitting strategy, we introduce a new set of local auxiliary
variable in each node, i.e., Ui, Vi, and optimize these new
local variables in parallel. To the end, (4) can be rewritten as
the following distributed objective function:

min
Vi,Bi,Ui

P∑
i=1

(
∥Yi −U⊤

i Bi∥2F + λ∥Ui∥2F + µ∥Bi −V⊤
i Xi∥2F

)
s.t. Bi ∈ {−1, 1}d×Ni ,Vi = Vj , Ui = Uj , j ∈ N (i) (5)

where N (i) represents the neighbors of the i-th node. In
(5), we impose consistency constraint on global variables in
neighbor nodes rather than all the nodes by utilizing transitiv-
ity property of a connected graph. This optimization problem
is non-convex with respect to the variables Bi, Ui, and Vi.
Therefore, we divide it into multiple sub-problems and opti-
mize the variables in one node while fixing the variables in
other nodes. We use alternating direction multiplier method
(ADMM) to solve (5). To the end, the augmented Lagrangian
function of (5) can be defined as follows:

min
Vi,Bi,Ui

P∑
i=1

(
∥Yi −U⊤

i Bi∥2F + λ∥Ui∥2F + µ∥Bi −V⊤
i Xi∥2F

+
∑

j∈N (i)

Tr
(
Λ⊤

i,j (Vi −Vj)
)
+

α

2

∑
j∈N (i)

∥Vi −Vj∥2F

+
∑

j∈N (i)

Tr
(
Γ⊤

i,j (Ui −Uj)
)
+

β

2

∑
j∈N (i)

∥Ui −Uj∥2F
)

s.t. Bi ∈ {−1, 1}d×Ni (6)

where Λi,j and Γi,j are Lagrangian multipliers for the con-
straints Vi = Vj and Ui = Uj respectively, α and β are
penalty parameters corresponding to augmented Lagrangian.

Update Vi By fixing the other variables and removing ir-
relevant terms, the subproblem related to Vi is reduced as

follows:

JVi
=

P∑
i=1

(
∥Bi −V⊤

i Xi∥2F +
∑

j∈N (i)

Tr
(
Λ⊤

i,j(Vi −Vj)
)

+
α

2

∑
j∈N (i)

∥Vi −Vj∥2F
)

(7)

ADMM is applied to solve (7) by repeating the following two
steps: V

(t)
i := argmin

Vi

J (t−1)
Vi

,

Λ
(t)
i,j := Λ

(t−1)
i,j + α(V

(t)
i −V

(t)
j ).

(8)

where t and t− 1 represent the t and t− 1 iterations respec-
tively. We provide the following theorem to simplify the La-
grangian multipliers.
Lemma 1. The augmented Lagrangian function on Vi,
i.e., (7) is equivalent to the following form:

JVi =
P∑
i=1

(
∥Bi −V⊤

i Xi∥2F +Tr(Λ⊤
i Vi)

+
α

2

∑
j∈N (i)

∥Vi −Vj∥2F
)

(9)

where Λi =
∑

j∈N (i)(Λi,j − Λj,i) is the new Lagrangian
multiplier.

Proof. The lemma can be proven with straightforward matrix
computations.

As can be seen, (9) has fewer Lagrange multipliers than
(7), and computational complexity of ADMM can be greatly
reduced. Based on Lemma 1, we have the following theorem
to update Vi:
Theorem 2. For the new augmented Lagrangian, i.e., (9), we
can update Vi using the following rule:

V
(t)
i :=

(
2XiX

⊤
i + αI

)−1
(
2XiB

⊤
i −Λ

(t−1)
i

+ α
∑

j∈N (i)

V
(t−1)
j

)
Λ

(t)
i := Λ

(t−1)
i + 2α

∑
j∈N (i)

(V
(t)
i −V

(t)
j )

(10)

Proof. The theorem can be proven with straightforward ma-
trix computations.

Update Bi By fixing other variables, the subproblem with
respect to Bi is defined as:

min
Bi

P∑
i=1

(
∥Yi −U⊤

i Bi∥2F + µ∥Bi −V⊤
i Xi∥2F

)
s.t. Bi ∈ {−1, 1}d×Ni (11)

It is challenging to directly optimize Bi as discrete constraint
is NP hard. Following the widely-used coordinate descent in
optimization, discrete cyclic coordinate descent (DCC) [Shen
et al., 2015] is employed to optimize Bi bit by bit, and each
bit admits a closed-form solution.
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Algorithm 1 Distributed Cascade Manifold Hashing Net-
work (DCMHN)
Input: Image sets S = {S1,S2, . . . ,SP , }; Labels Y =
{Y1,Y2, . . . ,YP }; Hash code length d; parameter α, β;
Output: Hash code B = {B1,B2, . . . ,BP };

1: Obtain SPD manifold of each image set via (1);
2: Calculate global covariance matrices of all the nodes

and perform eigenvalue decomposition, and return the
learned bilinear mapping matrix in BiMap layer on each
node;

3: Perform eigenvalue correction to introduce non-linearity
in ReEig layer;

4: Perform Riemannian computation in LogEig layer;
5: Randomly initialize Lagrangian multipliers {Λi}Pi=1,

{Γi}Pi=1, {Ui}Pi=1, {Vi}Pi=1, and penalty parameters α,
β;

6: for All nodes simultaneously do
7: Update {Bi}Pi=1 using DCC algorithm;
8: Update {Vi}Pi=1, {Γi}Pi=1 using (10);
9: Update {Ui}Pi=1, {Λ}Pi=1 using (13);

10: end for

Update Ui By fixing the other variables and removing ir-
relevant terms, the subproblem related to Ui is reduced as
follows:

min
Ui

P∑
i=1

(
∥Yi −U⊤

i Bi∥2F + λ∥Ui∥2F (12)

+
∑

j∈N (i)

Tr
(
Γ⊤
i,j(Ui −Uj)

)
+

β

2

∑
j∈N (i)

∥Ui −Uj∥2F
)

Similar to optimizing Vi, we repeat the following steps to
optimize Ui:

U
(t)
i :=

(
2BiB

⊤
i + (β + 2λ)I

)−1
(
2BiY

⊤
i − Γ

(t−1)
i

+ β
∑

j∈N (i)

U
(t−1)
j

)
Γ
(t)
i := Γ

(t−1)
i + 2β

∑
j∈N (i)

(
U

(t)
i −U

(t)
j

)
(13)

4 Experiments
4.1 Experiment Setting
Datasets Three benchmark image set datasets, i.e., FPHA
[Garcia-Hernando et al., 2018], AFEW [Wang et al., 2012b],
BBT [Li et al., 2015] are used for experiment. The statistics
of the three datasets are summarized in Table 1. For FPHA, a
63-dimensional image feature is extracted for each sequence
[Wang et al., 2021]. For AFEW, a 400-dimensional feature
is extracted for each frame [Wang et al., 2012b]. For BBT, a
512-dimensional deep feature for each frame is extracted by
CNN [Schroff et al., 2015]. The training set of each image set
benchmark is equally distributed across all the nodes in the

Datasets Type #Samples #Training #Testing #Dim
FPHA sequence 1150 600 550 63×63
AFEW video 2118 1747 371 400×400
BBT video 4667 3268 1399 512×512

Table 1: Statistics of three datasets.

Method Type Accuracy mAP
FPHA AFEW BBT Avg FPHA AFEW BBT Avg

DCC [L,C,E] - 0.258 0.939 0.399 - - - -
AHISD [A,C,E] - - - - - - - -
CHISD [A,C,E] 0.642 - - 0.214 0.226 - - 0.075
CDL [M,C,E] 0.250 0.297 0.876 0.474 0.091 0.200 0.885 0.392

LEML [M,C,E] 0.762 - - 0.254 0.368 - - 0.123
RMML-SPD [M,C,E] 0.732 0.159 - 0.297 0.026 0.171 - 0.066

SPDNet [M,C,E] 0.807 0.253 0.972 0.677 0.512 0.251 0.935 0.566
SymNet [M,C,E] 0.810 0.288 0.950 0.682 0.797 0.347 0.793 0.646

ITQ-SPD [M,H,E] 0.299 0.191 0.923 0.471 0.259 0.253 0.923 0.478
SDH-SPD [M,H,E] 0.769 0.159 0.953 0.627 0.616 0.159 0.953 0.576
DCMHN [M,H,D] 0.812 0.315 0.966 0.697 0.787 0.415 0.946 0.716

Table 2: The accuracies and mAPs of all the methods on image set
classification and retrieval tasks respectively, where [A], [L] and [M]
define convex cone, linear subspace and nonlinear manifold meth-
ods respectively. [C] and [H] define continuous and hash methods
respectively. [E] and [D] define centralized and distributed methods
respectively, where ‘-’ indicates that the method is limited by com-
putational efficiency and memory usage and cannot get results on
large-scale data sets.

network to construct distributed data. The network includes
3 nodes for FPHA and AFEW, and 4 nodes for BBT.
Comparison Methods We compare the proposed method
with various advanced image set classification methods,
which can be divided into the following four categories:
Affine/Convex hull methods including AHISD/CHISD [Ce-
vikalp and Triggs, 2010], Linear subspace methods including
DCC [Kim et al., 2007], Nonlinear manifold methods includ-
ing CDL [Wang et al., 2012b], LEML [Huang et al., 2015b],
RMML [Zhu et al., 2018], SPDNet [Huang and Van Gool,
2017], SymNet [Wang et al., 2021], Hashing methods in-
cluding ITQ [Gong et al., 2012], SDH [Shen et al., 2015].
Specifically, ITQ-SPD and SDH-SPD apply ITQ and SDH to
the SPD manifold respectively. The implementations of the
baseline methods are kindly provided by the authors. The
manifold network in the proposed DCMHN is constructed
as fb, fr, fb, fr, fl, fh, where fb, fr, fl, fh denote BiMap,
ReEig, LogEig, Hash layers respectively. The dimensions of
the two BiMap layers are set to [20, 10], [70, 35], [80, 40] for
FPHA, AFEW, and BBT respectively.
Evaluation Metrics Accuracy (Acc) is used as evaluation
metric for classification, and mean Average Precision (mAP)
and Precision-Recall (PR) curves are used as evaluation met-
rics for retrieval.

4.2 Performance Evaluation
Acc and mAP The classification and retrieval perfor-
mances of all the methods on the three datasets are summa-
rized in Table 2. From Table 2, we have the following obser-
vations:

• The proposed DCMHN generally achieves the best per-
formance among all the cases, and improves the best
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Methods SPD Manifold Kernel Matrix Continuous Feature Hash Code
Mem Red Mem Red Mem Red Mem

FPHA 35.71 MB 922× 5.38 MB 750× 4.49 MB 64× 71.88 KB
AFEW 2.53 GB 40000× 28.23 MB 750× 8.27 MB 64× 132.38 KB
BBT 9.11 GB 65536× 116.36 MB 750× 18.23 MB 64× 291.69 KB

Table 3: Storage of different image set representations. ‘Mem’ represents memory usage, and ‘Red’ represents the ratio of memory to hash
code consumed by this feature.

Methods FPHA AFEW BBT
CDL 0.14 0.25 1.85

RMML 39.24 4847.73 14364.62
SPDNet/SymNet 0.15 0.28 1.97

Hashing 0.01 0.01 0.01

Table 4: Time (in seconds) required for distance calculation by dif-
ferent methods.

baseline averagely by 2% and 7% in terms of Acc and
mAP respectively. The empirical results demonstrate the
effectiveness of the proposed method on image set mod-
eling.

• Among two deep Riemannian manifold baselines, Sym-
Net outperforms SPDNet. The deep Riemannian man-
ifold baselines outperform the shallow baselines, due
to superior capability of the deep architecture. Among
hashing baselines, SDH-SPD outperforms ITQ-SPD, as
SDH-SPD is supervised.

• Some baselines, e.g., AHISD, CHISH and LEML cannot
be well scaled to large-scale datasets due to high com-
putational complexity.

Storage The storage usages for SPD manifold, kernel ma-
trix, continuous feature, and hash code of three datasets are
reported in Table 3. As can be observed, the hash code only
requires less than 300 KB of storage for the three datasets,
while manifold feature requires significantly expensive stor-
age, thus manifold methods cannot be applied to large-scale
image set datasets. Particularly, the storage required using
hash code is 64 times less than that required for continuous
feature, and considerably less compared to other features.
The empirical studies demonstrate the significant advantage
of hashing in terms of efficient storage usage.

Time The running time associated with distance calcula-
tion of different methods on three benchmarks is reported in
Table 4, and time of embedding generation is not included.
We can find that the running time of hashing is significantly
lower than that of the other methods. Specifically, on the
AFEW dataset, hashing methods are nearly 280 times faster
than those of continuous feature, and significantly faster than
manifold methods. Hashing methods, including the proposed
DCMHN, which calculate Hamming distance, are theoreti-
cally faster than conventional image set methods that calcu-
late Euclidean distance. The empirical studies verify the su-
periority of the proposed method in terms of efficient distance
calculation.

Metric Method FPHA AFEW BBT

Acc DCMHN-C 0.768 0.285 0.937
DCMHN 0.812 0.315 0.966

mAP DCMHN-C 0.564 0.298 0.828
DCMHN 0.787 0.410 0.946

Table 5: The Acc and mAP of the proposed DCMHN and its contin-
uous variant.
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Figure 2: The PR curves of the proposed DCMHN and its continu-
ous variant.

4.3 Further Analysis
Discrete versus Continuous This section compares the
performance of the proposed method with its continuous vari-
ant that removes binary constraint. The variant is denoted by
adding the suffix ‘-C’. The Acc and mAP of the two meth-
ods on the three datasets are shown in Table 5, and the PR
curves are shown in Figure 2. We can clearly see that even
with binary constraint, the proposed DCMHN outperforms
its continuous variant in all the cases, indicating that binary
constraint does not degrade performance image set tasks. The
empirical studies demonstrate superiority of hash code on
modeling image set, and verify the effectiveness of the pro-
posed optimization strategy.
Code Length Analysis This section analyzes the impact of
hash code length on the performance of the proposed method.
Specifically, the Acc and mAP of the proposed method with
respect to different code lengths varying from 16 to 1024 are
illustrated in Figure 3. As can be seen, the performance of
the proposed method improves as code length increases, and
the best performance is generally achieved when code length
is set to 256. The above empirical results suggest the optimal
hash code length that can achieve good performance.
Node Number Analysis This section analyzes the impact
of number of nodes in the network on the performance of the
proposed method. The Acc, mAP, and running time of the
proposed method with 32 bits on AFEW varying from 2 to
8 nodes are illustrated in Figure 4. As observed, increasing
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Figure 3: The Acc and mAP of the proposed DCMHN with respect to different code lengths.
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Figure 4: The Acc, mAP, and training time of the proposed DCMHN
on AFEW with respect to different numbers of nodes.
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Figure 5: The Acc and mAP of the proposed DCMHN on AFEW
with varying µ.

the number of nodes significantly reduces training time, with
only a slight decline in accuracy and mAP. Using approxi-
mately 3 nodes strikes a balance between performance and
training time. The empirical studies confirm that parallel op-
timization can improve training efficiency.

Trade-off Parameter Analysis This section empirically
analyzes the sensitivity of a trade-off parameter, i.e., µ in
the proposed DCMHN, where µ is used to balance the rel-
ative importance of quantization loss compared to classifi-
cation loss. The Acc and mAP of the proposed method on
AFEW with respect to varying from [10−10, 10−4] are shown
in Figure 5. It can be observed that with the decrease of µ,
the performance remains stable. The good performance can
be achieved when µ is suggested to be less than 10−6.

Visualization This section conducts qualitative empirical
study and performs visualization. The visualization results

(a) CDL (b) ITQ-SPD (c) SDH-SPD

(d) SPDNet (e) SymNet (f) DCMHN

Figure 6: The visualization of BBT by different methods. Each point
represents an image set, and each color indicates a class.

of six representative methods on BBT are shown in Figure 6,
and The widely-used t-SNE is applied to the learned repre-
sentations. It can be observed that SDH-SPD, SPDNet, and
the proposed DCMHN can separate multiple clusters better
than the other methods. These qualitative results are consis-
tent with previous quantitative results, intuitively reinforcing
the effectiveness of the proposed DCMHN.

5 Conclusion
This paper introduces, for the first time, a Distributed Cascade
Manifold Hashing Network (DCMHN) designed to construct
a manifold-based network for learning hash codes in a dis-
tributed manner. The core idea is to model distributed im-
age sets as a connected graph and build a distributed deep
manifold hashing network on this graph, with the network
trained in a cascaded fashion. Compared to existing image set
methods, the proposed approach offers significant advantages
in handling distributed image sets while enhancing computa-
tional and storage efficiency. The empirical studies validate
our theoretical findings.
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