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Abstract
Oriented object detection has advanced with the
development of convolutional neural networks
(CNNs) and transformers. However, modern de-
tectors still rely on predefined object candidates,
such as anchors in CNN-based methods or queries
in transformer-based methods, which struggle to
capture spatial information effectively. To address
the limitations, we propose GSDet, a novel frame-
work that formulates oriented object detection as
Gaussian splatting. Specifically, our approach per-
forms detection within a 3D feature space con-
structed from image features, where 3D Gaussians
are employed to represent oriented objects. These
3D Gaussians are projected onto the image plane
to form 2D Gaussians, which are then transformed
into oriented boxes. Furthermore, we optimize
the mean, anisotropic covariance, and confidence
scores of these randomly initialized 3D Gaussians,
using a decoder that incorporates 3D Gaussian sam-
pling. Moreover, our method exhibits flexibility,
enabling adaptive control and a dynamic number
of Gaussians during inference. Experiments on 3
datasets indicate that GSDet achieves AP50 gains of
0.7% on DIOR-R, 0.3% on DOTA-v1.0, and 0.55%
on DOTA-v1.5 when evaluated with adaptive con-
trol and outperforms mainstream detectors. Code
link https://github.com/wokaikaixinxin/GSDet.

1 Introduction
Oriented object detection aims to identify and locate objects
with arbitrary orientations in images [Murrugarra-LLerena et
al., 2025; Xie et al., 2024]. Unlike objects in horizontal ob-
ject detection, oriented objects often appear in various scales,
aspect ratios, and orientations, which significantly increases
the difficulty of accurate detection [Cheng et al., 2022a;
Xia et al., 2018]. These challenges necessitate the develop-
ment of techniques that can effectively localize and classify
oriented objects regardless of their complexity.

Over the years, oriented object detection has evolved sig-
nificantly, driven by advancements in both CNN-based [Xie

∗Corresponding author

3D Gaussisans

3D feature space

Oriented boxes &
2D Gaussisans

Image space

Coarse Gaussians 3D Gaussisans

Splatting

2D Gaussisans

Random Gaussians

(a)

(b)

Optimize

Optimize Splatting

Figure 1: (a) GS for rendering. The 3D Gaussians are initialized
through SFM or random points and optimized for mean, covariance,
opacity, and color. All image pixels are computed through a tile-
based rasterizer. (b) GS for oriented object detection. Randomly
initialized 3D Gaussians are placed in a 3D feature space and trained
to optimize mean, covariance, and confidence scores. The 3D Gaus-
sians are then projected onto the image plane to form 2D Gaussians,
which are subsequently transformed into oriented boxes.

et al., 2024; Han et al., 2021] and transformer-based [Zeng
et al., 2024] methods. CNN-based object detectors can be
broadly categorized into one-stage and two-stage detectors.
One-stage detectors [Han et al., 2021] predict object cate-
gories and bounding boxes directly from the feature map in
a single pass, utilizing dense object candidates like anchors
to cover potential object locations. In contrast, two-stage de-
tectors [Xie et al., 2024] first generate region proposals us-
ing a region proposal network and then refine these propos-
als to produce the final results. Recently, transformer-based
methods [Zeng et al., 2024] have gained traction in this field,
which treat object detection as a set prediction problem and
use a set of learnable queries from the encoder to directly pre-
dict the final bounding boxes and class labels.

Although CNN-based and transformer-based methods have
demonstrated promising performance, they still rely on man-
ually designed object candidates, such as anchors, region pro-
posals, and queries. Moreover, these candidates, which rep-
resent potential objects, struggle to effectively capture spatial
information of objects.

To address these issues, we propose a novel framework that
directly detects oriented objects from random 3D Gaussians.
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Figure 2: Comparisons of different schemes for object candidates. (a) In one-stage CNN-based detectors, dense anchors are enumerated
across all image grids. (b) In two-stage CNN-based detectors, region proposals are selected through region proposal networks. (c) In
transformer-based detectors, learnable queries are produced by the encoder. (d) In our GSDet, 3D Gaussians are randomly initialized.

The random initialization does not involve learnable neu-
ron parameters. Regarding spatial information, a 3D feature
space is constructed from image features. Within this space,
the 3D Gaussians are optimized to represent oriented objects
and can be projected onto the image plane to form 2D Gaus-
sians, which are then transformed into oriented boxes. This
Gaussian-to-box method eliminates the need for prior an-
chors, proposals, or queries, which simplifies the generation
of object candidates and establishes a streamlined pipeline.

Our method is inspired by Gaussian splatting (GS), as il-
lustrated in Figure 1. The philosophy of Gaussian-to-box
paradigm is analogous to the Gaussian-to-image process in
Gaussian splatting [Kerbl et al., 2023], where a scene is
represented by 3D Gaussians and high-quality rendering is
achieved by projecting these 3D Gaussians onto the 2D im-
age space. Gaussian splatting has demonstrated significant
advancements in 3D scene representation tasks. However, to
the best of our knowledge, no prior work has successfully ap-
plied Gaussian splatting to oriented object detection.

In this paper, we propose GSDet, a novel approach that
formulates oriented object detection as Gaussian splatting. A
3D feature space is constructed by treating multi-scale feature
maps from the encoder as supporting planes within a 3D coor-
dinate system. In this space, 3D Gaussians serve as a flexible
representation of objects and are initialized randomly, with-
out relying on structure-of-motion (SFM) points. The Gaus-
sian attributes, including the mean, anisotropic covariance,
and confidence scores, are optimized using a decoder that in-
corporates 3D Gaussian sampling to extract spatial features.
The predicted 3D Gaussians are projected onto the image
plane to form 2D Gaussians, which are further transformed
into predicted boxes via decomposition.

Our GSDet exhibits remarkable flexibility during infer-
ence. Firstly, it allows for a dynamic number of initial 3D
Gaussians as input. We can train the model with a certain
number of Gaussians and then use a different number dur-
ing inference. Secondly, GSDet enables iterative reuse of the
decoder to refine the predicted Gaussians through adaptive
control, allowing Gaussians to focus on foreground objects.

Experiments on 3 datasets validate the effectiveness of GS-
Det. Its performance is further improved through the use of
adaptive control and an increased number of Gaussians dur-
ing inference. Contributions are summarized as follows:

• We propose a detector GSDet, which is the first work to
formulate oriented object detection as Gaussian splatting

to the best knowledge of our knowledge.
• We perform detection within a 3D feature space con-

structed from image features, where the designed 3D
Gaussian sampling captures spatial information.

• Anisotropic 3D Gaussians are employed to represent ori-
ented objects through their attributes. They are projected
onto the image plane to form 2D Gaussians, which are
then transformed into oriented boxes.

• Our Gaussian-to-box detection paradigm exhibits favor-
able properties, including adaptive control and dynamic
Gaussians during inference, owing to the random initial-
ization of 3D Gaussians.

2 Related Work
Oriented object detection. The mainstream methods in
oriented object detection can be broadly categorized into
CNN-based and transformer-based approaches. CNN-based
methods, which have achieved significant success, are fur-
ther divided into single-stage and two-stage methods. Two-
stage methods [Ding et al., 2019; Xie et al., 2024] utilize
a region proposal network (RPN) to generate dense propos-
als, which are then refined by a region of interest (RoI)
head. In contrast, single-stage methods [Hou et al., 2022;
Nie and Huang, 2023] bypass the need for region proposals
and detect objects directly from dense anchors.

To eliminate the need for dense anchor or proposal candi-
dates, transformer-based methods establish a paradigm based
on a set of queries [Zeng et al., 2024; Hu et al., 2023]. These
queries represent both the semantic and location information
of objects, and are selected through the encoder [Zhu et al.,
2020]. Mainstream transformer architectures consist of an
encoder and a decoder, with attention mechanisms serving as
their core. Self-attention in the decoder enables queries to
interact with one another, while cross-attention integrates en-
coder features with queries.

Unlike these methods, our approach is the first to predict
oriented boxes directly from random Gaussians using Gaus-
sian splatting, eliminating the need for pre-designed anchors,
proposals, or learned queries, as illustrated in Figure 2.

Gaussian splatting has emerged as a significant technique
in computer graphics, offering explicit scene representation
and efficient rendering capabilities [Kerbl et al., 2023]. It
represents objects and surfaces as collections of Gaussians,
allowing for high-quality image synthesis. This method has
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Figure 3: The overview of GSDet. 3D Gaussians, defined by their mean, covariance, and confidence scores, are employed to represent objects
and are initialized randomly. A 3D feature space is constructed from image features, where 3D Gaussian sampling is designed to capture
spatial information. The decoder outputs predicted 3D Gaussians, which are projected into 2D Gaussians, supervised via loss functions, and
ultimately transformed into oriented boxes. During inference, adaptive control and a dynamic number of Gaussians are introduced.

been explored in various applications, including scene recon-
struction [Yang et al., 2024; Wu et al., 2024], SLAM [Yan
et al., 2024; Matsuki et al., 2024], and autonomous driv-
ing [Zhou et al., 2024b; Zhou et al., 2024a], demonstrating
its versatility and potential for real-time rendering. Despite
the success of Gaussian splatting in these domains, there are
no previous solutions that successfully adapt Gaussian splat-
ting for oriented object detection. We believe that the slow
progress of Gaussian splatting in oriented object detection
is primarily due to the different optimization objectives, i.e.,
Gaussians and oriented boxes. To the best of our knowledge,
this is the first work that adopts Gaussian splatting for ori-
ented object detection.

3 Method
Oriented object detection identifies oriented boxes and class
labels for objects in images. The core of our GSDet is to ad-
dress oriented object detection through Gaussian splatting. In
this section, we provide a detailed description of our detector.
The overview of our GSDet is illustrated in Figure 3.

3.1 Gaussian for Oriented Object
Oriented box. The objects rotate arbitrarily in oriented ob-
ject detection. Typically, an oriented box is represented as
(cx, cy, w, h, θ), where cx and cy denote the center coordi-
nates, w and h represent the width and height, and θ specifies
the angle of orientation. To make better use of spatial fea-
tures, we introduce another representation (cx, cy, cz, s, θ),
where cz denotes the scale of objects and s denotes the as-
pect ratio. The cz and s are calculated as:

cz = log2(
√
wh), s = log2(

√
h

w
), (1)

where wh denote the area, and h
w denote the aspect ratio of

objects. The log2(·) is used to limit the range of value. Fur-

thermore, the (cx, cy, cz) directly represents the center of a
3D Gaussian in a 3D space, which will be introduced below.

3D Gaussian representation. In our approach, anisotropic
3D Gaussians are initialized randomly. The basic 3D Gaus-
sianN3d(µ3d,Σ3d) is described by its mean µ3d, covariance
matrix Σ3d, and confidence score c.

Geometrically, the mean µ3d represents the center coordi-
nates of ellipsoids, and can be defined as:

µ3d = (cx, cy, cz)⊤. (2)

The covariance matrices Σ3d have geometric meaning only
when they are positive semi-definite. Typically, it is difficult
to constrain the learnable model parameters using gradient
descent to generate such valid matrices. To avoid invalid ma-
trices during training, we optimize the factorized form of the
covariance matrix. The covariance matrix can be factorize
into a rotation matrix R3d and scaling matrix Λ3d:

Σ3d = (R3dΛ3d)(R3dΛ3d)
⊤, (3)

where the rotation matrix R3d and scaling matrix Λ3d are
expressed as:

R3d =

(
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
,Λ3d =

(
λ1

λ2

λ3

)
. (4)

The rotation matrix R3d describes the rotation of the entire
Gaussian by angle θ around a specified axis geometrically.
In our setting, the 3D Gaussians rotate only around the z-
axis, as the image is captured from a single perspective. The
scaling matrix Λ3d changes the size of a Gaussian by scaling
it along the x-, y-, and z-axis. The λ1, λ2, and λ3 are scaling
factors in different eigenvector directions and determine how
much the Gaussian is stretched or shrunk in each direction.
Specifically, the λ1 and λ2 are calculated as:

λ1 =
1

2σ
· 2cz−s, λ2 =

1

2σ
· 2cz+s, (5)
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where σ = 3 by default according to the 3-sigma rule. The
λ3 is not explicitly defined, but features closer to cz receive
more attention, which will be elaborated in Sec. 3.2.

The confidence score c is used for classification.
Splatting: 3D Gaussian→ 2D Gaussian. In oriented ob-

ject detection, only the original image view is considered, not
new viewpoints. Consequently, the 3D Gaussians are pro-
jected onto the image plane along the z-axis to produce 2D
Gaussians N2d(µ2d,Σ2d). The mean µ2d is calculated as:

µ2d = (cx, cy)⊤. (6)

The covariance Σ2d can also be factorized by rotation ma-
trix R2d and scaling matrix Λ2d, i.e., Σ2d = (R2dΛ2d)
(R2dΛ2d)

⊤. The R2d and Λ2d can be calculated as:

R2d =

(
cos θ − sin θ
sin θ cos θ

)
,Λ2d =

(
λ1

λ2

)
. (7)

The confidence score c is consistent between each 2D
Gaussian and its corresponding 3D Gaussian.

The time consumption in the splatting process is negligible,
as 3D Gaussians can directly achieve orthogonal projection
using these concise formulas.

Transformation: 2D Gaussian → Oriented box. Each
Gaussian characterizes a potential object in our method,
rather than multiple Gaussians jointly determining a poten-
tial object. Thus, given the mean µ2d, rotation matrix R2d,
and scaling matrix Λ2d, the oriented boxes as final results
are transformed from 2D Gaussians by the reverse process of
Eq. 1, Eq. 5, Eq. 6 and Eq. 7 through decomposition.

3.2 Architecture
Our framework consists of an image encoder and a detection
decoder, which is a simple paradigm. The image encoder pro-
vides 3D feature space and the detection decoder is trained to
refine the random 3D Gaussians.

Image encoder. The image encoder is composed of a
backbone [He et al., 2016; Liu et al., 2021] and a feature
pyramid network (FPN) [Lin et al., 2017a]. The backbone
takes in the raw image as its input and extracts image fea-
tures for the subsequent FPN. The FPN is utilized to gener-
ate multi-scale feature maps with 256 channels. Specifically,
we construct the pyramid with levels ranging from P2 to P6,
where Pl has a resolution that is 2l times lower than that of the
image. The l ∈ {2, 3, 4, 5, 6} represents the pyramid level.

3D feature space. Since oriented object detection lacks
real depth information, we construct a 3D feature space based
on the feature pyramid. The z-axis coordinates Zl of each
feature map are computed as:

Zl = log2(2
l/4). (8)

We rescale the feature maps P3 ∼ P6 to the same size
[WF , HF ] as P2 by interpolation. These feature maps, act-
ing as supporting planes, are aligned along the x- and y-axes
in the 3D feature space, denoted as {F2, F3, F4, F5, F6}.

3D Gaussian sampling. We implement 3D Gaussian sam-
pling in a decomposition manner. We first sample in the fea-
ture maps and then integrate the Gaussian weights of the z-
axis. The main sampling area Gxy(i, j) based on the 3-sigma
rule for each feature map is calculated as follows:

Algorithm 1 GSDet Training
Input: images, GT
Output: loss L

1: {P2, . . . , P6} ← Encoder(images)
2: {F2, . . . , F6} ← 3DFeatureSpace({P2, . . . , P6})
3: Initial3DGau← Random Initialization
4: Result3DGau← Decoder({F2, . . . , F6}, Initial3DGau)
5: Result2DGau← Splatting(Result3DGau)
6: GT2DGau← Transform(GT)
7: L← Loss(Result2DGau, GT2DGau)
8: return L

sum(((σΛ2d)
−1R2d((i, j)

⊤ − µ2d))
◦2) ≤ 1, (9)

where (i, j) ∈ [0,WF ]× [0, HF ]. (·)◦2 denotes squaring each
element. sum(·) denotes the summation of all elements. The
Gaussian weight on the z-axis is calculated as follows:

Gz
l =

exp(−(Zl − cz)2)

Σl exp(−(Zl − cz)2)
. (10)

The sampling area Gxy and weight Gz
l assigns high impor-

tance to spatial locations near the center (cx, cy, cz). The 3D
Gaussian sampling is calculated as follows:

fl = Gz
l · GauAlign(Gxy, Fl), (11)

where fl denotes the sampled features from Fl. In-
spired by RRoIAlign() [Ding et al., 2019], we introduce
GauAlign(), which first crops main regional features based
on Gxy and then resizes them into a uniform size of 7 × 7
with 256 channels using bilinear interpolation. This operator
naturally aligns the oriented Gaussians with axis-aligned fea-
tures. Last, the sampled features f are obtained by summing
fl from all levels, calculated as f =

∑6
l=2fl.

Detection decoder. The decoder stacks multiple layers,
each integrating 3D Gaussian sampling, self-attention [Car-
ion et al., 2020], and dynamic convolution [Sun et al., 2021].
The f sampled through 3D Gaussian sampling is passed into
self-attention for the relations between Gaussians. Dynamic
convolution further enhances feature fusion. Finally, a feed-
forward network outputs 3D Gaussians as predictions.

3.3 Training
The training procedure for GSDet is shown in Algorithm 1.
Given input images and ground truth (GT), the model is
trained to predict both locations and classes of objects.

Loss for 2D Gaussians. We assign multiple predictions to
GT and apply the set prediction loss [Carion et al., 2020]. We
measure the distance and overlap between the predicted and
GT 2D Gaussians. The GT 2D Gaussians are transformed
from GT annotations. Specifically, the Gaussian Wasserstein
distance (gwd) is employed to quantify the distance [Yang et
al., 2021b], and the SkewIoU is used to calculate the over-
lap [Yang et al., 2023]. Additionally, Focal loss [Lin et al.,
2017b] is used for classification. The loss is formulated as:

L = δgwdLgwd + δskewiouLskewiou + δclsLcls, (12)

where δgwd, δskewiou and δcls are weights of each compo-
nent. We set δgwd = 2, δskewiou = 5, and δcls = 2 by
default.
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Figure 4: The dynamic number
of iterations in adaptive control
during inference.
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Figure 6: Dynamic number of Gaussians during inference.

3.4 Inference
Adaptive control of Gaussian. We can evaluate GSDet with
a dynamic number of iterations by reusing the decoder dur-
ing inference. After each iteration, some predicted 3D Gaus-
sians focus on foreground objects, while others are located in
the background. Predicted Gaussians with lower confidence
scores are replaced with random Gaussians for the next itera-
tion. Meanwhile, high-confidence Gaussians are retained for
final results and then replaced with relatively random Gaus-
sians centered within their areas for the next iteration.

Dynamic number of Gaussian. Thanks to the random
initialization, we can evaluate GSDet with a dynamic number
of random Gaussians during inference which do not need to
be equal to the training stage. In contrast, previous methods
rely on the same number of anchors or queries during training
and inference, which is inflexible.

4 Experiments
4.1 Experimental Setups
Datasets. We conduct extensive experiments on three
datasets DOTA-v1.0 [Xia et al., 2018], DOTA-v1.5 [Xia et
al., 2018] and DIOR-R [Cheng et al., 2022a].

• DOTA-v1.0 [Xia et al., 2018] comprises 1,869 images
in the trainval set and 937 images in the test set,
annotated with 188,282 instances across 15 categories.

• DOTA-v1.5 [Xia et al., 2018] dataset extends the
DOTA-v1.0 dataset by adding a new category named
“Container Crane” while keeping the same images. The
number of instances is increased to 403,318 in total.

• DIOR-R [Cheng et al., 2022a] dataset consists of
11,725 training images in the trainval set, 11,738
test images in the test set and 192,512 instances be-
longing to 20 categories.

Implementation details. Our code is built on MMrotate
with pytorch. The optimizer AdamW [Loshchilov and Hut-
ter, 2018] is used with the learning rate as 2.5 × 10−5 and
the weight decay as 10−4. All models are trained with the
batchsize 4 on two Nvidia 2080ti (2 images per GPU). The
training schedule is 24 epochs, with the learning rate divided
by 16 and 22 epochs. Data augmentation strategies contain
only random flips. For DOTA-v1.0 and DOTA-v1.5 datasets,
images are cropped into patches of 1024×1024 with overlaps
of 200. The predictions of DOTA-v1.0/v1.5 are submitted to
the official website for evaluation.

Evaluation metrics. The average precision at various in-
tersections over union (IoU) thresholds is utilized to measure
the precision and recall rates of the detected objects, includ-
ing AP50, AP75, and mAP. Additionally, frames per second
(FPS) is employed to evaluate the speed of methods.

4.2 Properties of GSDet
Adaptive control. We investigate the effect of adaptive con-
trol by increasing the number of iterations from 1 to 5 during
inference, as shown in Figure 4. The model is trained with
500, 700, and 900 Gaussians, respectively. As the number of
iterations increases from 1 to 5, the model achieves a 0.3%
AP50 improvement with 900 training Gaussians and a 0.6%
AP50 improvement with both 500 and 700 training Gaussians.

Dynamic number of Gaussians. Figure 5 compares our
GSDet with ARS-DETR [Zeng et al., 2024]. Both models
are trained with 900 Gaussians or queries and evaluated us-
ing 500, 700, 900, 1300, 2000 Gaussians or queries. To en-
able ARS-DETR to evaluate with 1300 or 2000 queries, we
employ two strategies: cloning existing queries with non-
maximum suppression and concatenating random queries.
With the former strategy, ARS-DETR experiences a slight
decrease in accuracy, whereas the latter strategy results in a
significant accuracy drop. In contrast, as the number of Gaus-
sians increases from 500 to 2000 during inference, GSDet
achieves a 1.6 AP50 improvement.

Additionally, we train GSDet with 500, 700, and 900 Gaus-
sians and evaluate its performance across varying numbers of
Gaussians during inference. Figure 6 illustrates that as the
number of Gaussians increases from 100 to 2000, the AP50

consistently improves, demonstrating the flexibility.

4.3 Main Results
We compare GSDet with modern CNN-based one-stage, two-
stage, and transformer-based detectors. We train and evaluate
GSDet with 900 Gaussians in both Table 1 and 2. Table 1
presents the detailed results for each category on DOTA-v1.0.
GSDet achieves an AP50 of 75.44% with one iteration and
75.74% with three iterations using the ResNet50 [He et al.,
2016]. Notably, its performance improves further when using
the Swin-T [Liu et al., 2021]. Furthermore, with a multi-scale
training strategy, GSDet achieves an AP50 of 80.04%.

Table 2 provides the AP50, AP75, mAP, and FPS results
on DIOR-R, DOTA-v1.0, and DOTA-v1.5. GSDet achieves
a AP50 of 70.05% on DIOR-R, 75.74% on DOTA-v1.0, and
67.84% on DOTA-v1.5 with three iterations. These results
confirm that Gaussian splatting for oriented object detection
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Method B. PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50
O

ne
-S

ta
ge

PSC [Yu and Da, 2023] R50 88.24 74.42 48.63 63.44 79.98 80.76 87.59 90.88 82.02 71.58 59.12 60.78 65.78 71.21 53.06 71.83
R3Det [Yang et al., 2021a] R101 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79
S2A-Net [Han et al., 2021] R50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
H2RBox [Yang et al., 2022] R50 88.93 78.89 46.27 68.79 81.12 75.45 86.68 90.89 86.71 87.33 64.15 68.83 62.81 69.39 59.79 74.40

DHRec [Nie and Huang, 2023] R50 88.58 77.90 53.84 72.93 78.45 78.84 87.64 90.88 88.78 85.46 56.11 66.74 67.58 70.25 57.53 74.57
SASM [Hou et al., 2022] R50 86.42 78.97 52.47 69.84 77.30 75.99 86.72 90.89 82.63 85.66 60.13 68.25 73.98 72.22 62.37 74.92
FRED [Lee et al., 2024] Re50 89.37 82.12 50.84 73.89 77.58 77.38 87.51 90.82 86.30 84.25 62.54 65.10 72.65 69.55 63.41 75.56

T w
o-

St
ag

e

SCRDet [Yang et al., 2019] R101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
RoI Trans. [Ding et al., 2019] R50 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 52.81 53.95 67.61 74.67 68.75 61.03 74.61
Gliding V. [Xu et al., 2020] R101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
AOPG [Cheng et al., 2022a] R50 89.27 83.49 52.50 69.97 73.51 82.31 87.95 90.89 87.64 84.71 60.01 66.12 74.19 68.30 57.80 75.24
DODet [Cheng et al., 2022b] R50 89.34 84.31 51.39 71.04 79.04 82.86 88.15 90.90 86.88 84.91 62.69 67.63 75.47 72.22 45.54 75.49
O. R-CNN [Xie et al., 2024] R50 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87

Q
ue

ry

D. DETR-O [Zhu et al., 2020] R50 84.89 70.71 46.04 61.92 73.99 78.83 87.71 90.07 77.97 78.41 47.07 54.48 66.87 67.66 55.62 69.48
EMO2-DETR [Hu et al., 2023] R50 88.08 77.91 43.17 62.91 74.01 75.09 79.21 90.88 81.50 54.04 51.92 59.44 64.74 71.81 58.96 70.91
ARS-DETR [Zeng et al., 2024] R50 86.97 75.56 48.32 69.20 77.92 77.94 87.69 90.50 77.31 82.86 60.28 64.58 74.88 71.76 66.62 74.16
RQFormer [Zhao et al., 2025] R50 87.45 78.57 47.36 69.01 79.58 81.27 88.53 90.89 82.80 86.21 58.68 64.20 75.21 74.44 61.39 75.04
O. Former [Zhao et al., 2024] R50 88.14 79.13 51.96 67.34 81.02 83.26 88.29 90.90 85.57 86.25 60.84 66.36 73.81 71.23 56.49 75.37

G
S

GSDet (900 @ 1) R50 88.65 81.31 51.11 73.48 78.59 82.76 88.17 90.83 84.04 81.35 59.68 62.27 74.68 69.91 64.89 75.44
GSDet (900 @ 3) R50 88.57 81.17 51.70 73.19 80.22 83.54 88.64 90.82 84.10 81.59 59.48 64.69 75.08 70.00 63.33 75.74
GSDet (900 @ 1) Swin-T 85.05 80.85 52.90 72.31 80.22 83.65 87.58 89.65 83.95 85.65 62.15 62.94 76.28 72.19 61.64 75.80
GSDet (900 @ 3) Swin-T 85.89 81.41 52.98 72.52 80.59 83.12 87.96 90.04 83.92 85.86 62.51 63.13 76.53 72.41 61.61 76.03
GSDet (900 @ 1)* Swin-T 88.04 85.55 57.22 79.44 81.28 84.77 88.73 90.82 87.11 87.32 68.64 68.54 79.57 80.81 72.79 80.04

Table 1: Comparison with state-of-the-art methods on DOTA-v1.0. * denotes multi-scale training and testing. (900@3) indicates that GSDet
is evaluated with 900 Gaussians and 3 iterations in adaptive control. The best and second-best results are highlighted in bold and underlined.

Type Method Backbone DIOR-R DOTA-v1.0 DOTA-v1.5

AP50 AP75 mAP FPS AP50 AP75 mAP AP50 AP75 mAP

One-stage Oriented Rep [Li et al., 2022] R50 66.31 44.36 42.81 29 74.38 46.56 44.57 64.04 38.05 37.43
One-stage DCFL [Xu et al., 2023] R50 66.41 41.83 40.88 29 73.13 39.62 41.14 67.00 39.13 38.60
One-stage H2RBox-v2 [Yu et al., 2023] R50 57.13 32.13 32.77 30 72.60 39.67 40.53 64.71 32.18 34.97
Two-stage COBB-sig [Xiao et al., 2024] R50 65.65 42.78 - 14 75.52 48.35 45.61 66.25 41.34 40.04

Query ARS-DETR [Zeng et al., 2024] R50 66.12 45.81 43.89 12 74.16 49.41 46.21 64.29 38.23 37.08
GS GSDet (900@1) R50 69.35 48.27 46.19 28 75.44 52.15 47.77 67.29 42.49 41.11
GS GSDet (900@3) R50 70.05 48.91 46.69 21 75.74 52.40 48.16 67.84 43.69 41.60

Table 2: Comparisons with different oriented object detectors on DIOR-R, DOTA-v1.0, and DOTA-v1.5.

Metrics Center Full Grid Isotropic Random

mAP 5.44 7.61 46.33 46.83 47.77
AP75 4.06 6.13 50.85 51.12 52.15
AP50 11.60 15.11 73.01 73.59 75.44

Table 3: Comparison with other initialization strategies on DOTA-
v1.0. The random initialization works best.

outperforms both CNN-based and transformer-based meth-
ods. Additionally, the inference speed of GSDet is faster than
that of two-stage and transformer-based methods owing to
random initialization and simple architecture.

4.4 Ablation Study
Gaussian initialization. We study the effect of different
Gaussian initialization strategies in Table 3, including: (1)
“Center” means all Gaussians are located in the central re-
gion, with a height and width set to 10% of the image size;
(2) “Full” indicates that all Gaussians are initialized to cover
the entire image; (3) “Grid” means that each Gaussian is dis-
tributed within each grid, with a total of 30×30 grids arranged
across the image; (4) “Isotropic” signifies that all Gaussians

3D Gau.
Represent

3D Gau.
Sample mAP AP75 AP50

38.96 39.03 67.01
✓ 47.03 50.61 74.01
✓ ✓ 47.77 52.15 75.44

Table 4: The effect of 3D Gaus-
sian representation and sam-
pling on DOTA-v1.0.

Self-
Attention

Dynamic
Conv. mAP AP75 AP50

33.24 32.07 61.91
✓ 37.87 38.41 66.21
✓ ✓ 47.77 52.15 75.44

Table 5: The effect of self-
attention and dynamic convolu-
tion on DOTA-v1.0.

are isotropic and randomly initialized. The performance of
the “Center” and “Full” strategies is notably poor, with AP50

of only 11.60% and 15.11%, respectively. We argue that
Gaussians under these two strategies can not effectively cover
potential object regions. In contrast, the “Random” initializa-
tion achieves the best performance, with an AP50 of 75.44%,
followed by the “Isotropic” and “Grid” strategies. The results
indicate that anisotropic random Gaussians are more likely to
align with potential object areas.

3D Gaussian representation and sampling. We evaluate
the impact of 3D Gaussian representation and 3D Gaussian
sampling in Table 4. This ablation begins with an additional
angle branch [Yang and Yan, 2020] and a set of randomly
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Figure 7: Top: random Gaussians. Only a small number of random
2D Gaussians are shown for better visualization. Middle: refined
Gaussians from the middle decoder layer focus on foreground ob-
jects. Bottom: final Gaussians and predicted results.

Method AP AP75 AP50

Cross-Attention 38.22 38.42 69.29
Dynamic Conv. 47.77 52.15 75.44

Table 6: The comparison be-
tween cross-attention and dy-
namic conv. on DOTA-v1.0.

Method AP AP75 AP50

Feature pyramid 45.13 47.17 73.21
3D feature space 47.77 52.15 75.44

Table 7: The comparison be-
tween feature pyramid and 3D
feature space on DOTA-v1.0.

High-conf. Low-conf. AP50 FPS AP50 FPS

1
It

er
. 75.44 25

3
It

er
. 74.78 18

✓ 75.44 25 75.53 18
✓ 75.44 25 75.65 18

✓ ✓ 75.44 25 75.74 18

Table 8: The effect of Gaussian update strategy in adaptive control.

initialized rectangles, achieving an AP50 of 67.01%. Under
these conditions, learning object orientation proves challeng-
ing. Incorporating the 3D Gaussian representation results in
a 7% improvement, demonstrating the feasibility of Gaus-
sian splatting. Further applying 3D Gaussian sampling re-
sults in a 1.43% improvement, confirming that 3D Gaussian
sampling captures spatial information more effectively than
relying solely on GauAlign().

Self-attention and dynamic convolution. We check the
effect of self-attention and dynamic convolution in the de-
coder, as shown in Table 5. Our method achieves an AP50

of 61.91% without self-attention and dynamic convolution.
Sequentially incorporating self-attention results in AP50 of
66.21%. When both of them are applied, the model achieves
an AP50 of 75.44%. Additionally, we compare an alternative
implementation, replacing dynamic convolution with cross-
attention, as shown in Table 6. The performance degrades
with cross-attention. We argue that the input keys and values
here are not processed by a standard transformer encoder.

3D feature space. We compare the effect of the 3D fea-
ture space with the feature pyramid {P2, . . . , P6}, as shown
in Table 7. In this ablation study, we represent oriented ob-

SHRA

Figure 8: Different randomly initialized Gaussians with a yellow
color and corresponding predicted results.

jects with 2D Gaussians and employ RRoIAlign() to ex-
tract features from transformed rectangles in {P2, . . . , P6}.
The results indicate a 2.23% drop in AP50 when using the
pyramid, attributed to the lack of spatial information.

Gaussian update strategy. Table 8 illustrates the effect of
the update strategy for predicted high- and low-confidence 3D
Gaussians in adaptive control. The results indicate a 0.66%
drop in AP50 with more iterations, when the output of the
current step is directly used as input for the next step. We ar-
gue that the output distribution is not learned during training.
By gradually applying the two update strategies, our GSDet
achieves performance gains with only a slight drop in FPS,
which verifies the effectiveness of adaptive control.

Qualitative results. We visualize the Gaussians and pre-
dictions in Figure 7. The initial Gaussians vary each time due
to randomness. After refinement, the Gaussians focus more
effectively on potential object areas. The predictions demon-
strate that GSDet accurately detects dense, large scale and
aspect ratio objects. In addition, Figure 8 illustrates various
randomly initialized Gaussians and their corresponding pre-
dictions. We observe that initial Gaussians positioned near
objects contribute to the final predictions, and GSDet effec-
tively handles diverse inputs. Interestingly, relatively large-
scale Gaussians are able to predict small-sized objects.

5 Conclusion
This paper introduces GSDet, a novel detector that is the first
to formulate oriented object detection as Gaussian splatting.
By leveraging anisotropic 3D Gaussians for object represen-
tation within a 3D feature space, GSDet effectively captures
spatial information through Gaussian sampling to optimize
Gaussians’ attributes. 3D Gaussians are projected onto the
image plane to form 2D Gaussians, which are then trans-
formed into oriented boxes. Benefiting from the random
initialization, the proposed Gaussian-to-box paradigm elim-
inates the reliance on pre-designed object candidates, allow-
ing for adaptive control and dynamic number of Gaussians
during inference. Extensive experiments validate the superior
performance of GSDet over mainstream methods.
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