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Abstract
We introduce and analyze distance preservation
games (DPGs). In DPGs, agents express ideal dis-
tances to other agents and need to choose locations
in the unit interval while preserving their ideal dis-
tances as closely as possible. We analyze the exis-
tence and computation of location profiles that are
jump stable (i.e., no agent can benefit by moving
to another location) or welfare optimal for DPGs,
respectively. Specifically, we prove that there are
DPGs without jump stable location profiles and
identify important cases where such outcomes al-
ways exist and can be computed efficiently. Simi-
larly, we show that finding welfare optimal location
profiles is NP-complete and present approximation
algorithms for finding solutions with social welfare
close to optimal. Finally, we prove that DPGs have
a price of anarchy of at most 2.

1 Introduction
Assume a university management wants to optimize the as-
signment of researchers to offices by taking the relationships
between the researchers into account to promote collabora-
tions. For example, scholars who like each other should be
seated close to each other, scholars who dislike each other
should be seated far away from each other, and some scholars
may want to be neither too close nor too far from each other.
However, given this information, how should we decide on
the new office assignment? And can we, e.g., ensure that no
researcher would prefer to move to another office?

In recent years, questions similar to these have been ac-
tively researched for numerous models [Brânzei and Larson,
2011; Bullinger et al., 2021; Agarwal et al., 2021; Berriaud
et al., 2023; Bullinger and Suksompong, 2024]. For instance,
Bullinger and Suksompong [2024] study topological distance
games for which agents need to be assigned to the nodes of a
graph and each agent’s utility depends on its distance to the
other agents in the graph. All of these models have in com-
mon that for each agent, the other agents can be partitioned
into friends, enemies, and neutrals: agents want to be as close
as possible to their friends, as far away as possible from their
enemies, and they do not care about the positions of neutrals.
However, in practice, the agents’ preferences may be more

complicated. For instance, in our office assignment example,
it seems plausible that senior researchers want to be at some
distance from their PhD students to ensure that they are not
interrupted too much, but the PhD students should not be as
far away as possible since this makes meetings between the
PhD student and the senior researcher cumbersome.

To capture such distance preferences and explore their ef-
fects, we introduce and analyze distance preservation games
(DPGs). In these games, each agent specifies an ideal dis-
tance for each other agent or indicates that the other agent’s
position does not matter to them. Based on this information,
the agents need to choose locations in the unit interval with
the aim of preserving their ideal distances as closely as possi-
ble. Specifically, we assume that an agent’s utility linearly de-
creases when the difference between the actual distance and
their ideal distance to an agent increases. Given a DPG, we
aim to find location profiles that are jump stable (i.e., no agent
can benefit by jumping to another location) or welfare opti-
mal (i.e., the location profile maximizes utilitarian the social
welfare), respectively. Put differently, this means we seek lo-
cation profiles that preserve the agents’ ideal distances well.

Example 1. To further illustrate DPGs, consider the follow-
ing example where three researchers need to be assigned to
one of many identical offices in a corridor. The agents are a
PhD student a, a postdoc b, and a professor c. The PhD stu-
dent wants to be neither too far nor too close to the professor
and does not care about the location of the postdoc. The post-
doc wants to be as far away as possible from the PhD student
and as close as possible to the professor. Lastly, the professor
wants to be at a moderate distance from both other agents.

We capture this as a DPG as follows: the PhD student a
has an ideal distance of 1

2 to c and does not care about the
position of b. The postdoc b has an ideal distance of 1 to a
and of 0 to c. Finally, the professor c has an ideal distance of
1
2 to both a and b. We note that DPGs can also be presented
via preference graphs, where an edge from x to y with weight
z means that agent x wants to be at distance z to agent y. The
preference graph of our toy example is shown in Figure 1.

Now, if we locate the PhD student at 0, the postdoc at 1
2 ,

and the professor at 1, the postdoc b wants to change their
location to be closer to the professor. By contrast, if the PhD
student is at 0, the professor at 1

2 , and the postdoc at 1, we
preserve the agents’ ideal distances optimally and no agent
has an incentive to change their position.
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Figure 1: The preference graph of the DPG in Example 1

Our Contribution. In this paper, we initiate the study of
distance preservation games. Specifically, we will analyze
these games with respect to jump stability and welfare opti-
mality. Roughly speaking, a location profile is jump stable
if no agent can benefit by moving to another position. In
our setting, this corresponds to the notion of Nash equilib-
ria. On the other hand, a location profile is welfare optimal
if it maximizes the (utilitarian) social welfare, i.e., the sum
of the agents’ utilities. An overview of our results is given in
Table 1.

We first examine jump stable location profiles and show
the following results.
• We prove that there are DPGs without jump stable location

profiles and that deciding whether a DPG admits such a
location profile is NP-complete.

• With the aim of deriving more positive results, we study
two natural classes of DPGs, namely symmetric and acyclic
ones. First, we say a DPG is symmetric if the ideal distance
for i to j is the same as the ideal distance for j to i for all
agents i and j. For such symmetric DPGs, we show that
jump stable location profiles are guaranteed to exist and can
be computed by a best response dynamics. However, we
also prove that this best response dynamics may need ex-
ponential time and, more generally, that finding jump stable
location profiles in symmetric DPGs is PLS-complete.

• As a second restriction, we investigate acyclic DPGs, which
are defined to have an acyclic preference graph. For this
class of DPGs, we show that jump stable location profiles
always exist and can be computed efficiently.
Secondly, we analyze welfare optimal location profiles and

show the following results.
• We prove that it is NP-complete to find welfare optimal

location profiles, even for some of the simplest classes of
DPGs. In more detail, we show this claim for DPGs where
the preference graph forms a path or where the agents’ ideal
distances, if any, are required to be 1.

• We then focus on finding approximately welfare optimal lo-
cation profiles and show that a greedy algorithm guarantees
half of the optimal social welfare.

• We prove that the price of anarchy of every DPG, i.e., the
ratio between the optimal social welfare and the social wel-
fare of the worst jump stable location profile, is at most 2.

Related Work. The problem of assigning agents to posi-
tions on some topology based on their preferences among
each other has recently attracted significant attention. We re-
fer to the papers by Bullinger and Suksompong [2024] and
Berriaud et al. [2023] for a more extensive discussion of this
literature. The most relevant related models include the fol-
lowing:

• In Schelling games [e.g., Agarwal et al., 2021; Bilò et
al., 2022; Bullinger et al., 2021; Kreisel et al., 2024], the
agents are partitioned into classes and located on the nodes
of a graph. An agent’s utility depends on the fraction of
agents of the same class in their neighborhood of the graph.

• In the dinner party arrangement problem [e.g., Berriaud et
al., 2023; Bodlaender et al., 2020; Ceylan et al., 2023; Aziz
et al., 2024], n agents have to be located on a graph with
n nodes. Each agent has a utility function over the other
agents and an agent’s utility in an assignment is the sum of
the utilities for their neighbors in the graph.

• In topological distance games [e.g., Bullinger and Suksom-
pong, 2024; Deligkas et al., 2024], agents are located on the
nodes of a graph and have utilities for the other agents. An
agent’s utility for a position depends on their utilities and
the distances to the other agents in the graph.

The central question for all of these models is to find de-
sirable assignments of the agents to the nodes of the graph.
Thus, these papers consider similar problems to ours but they
focus on different settings. In particular, DPGs differ from the
aforementioned models in two crucial aspects: the agents re-
port ideal distances over the other agents instead of utilities,
and our underlying topology is the continuous unit interval
instead of a discrete graph.

Further, our work is related to facility location on the real
line [e.g., Procaccia and Tennenholtz, 2013; Feldman et al.,
2016; Chan et al., 2021]. In this setting, the goal is to place
one or multiple facilities on the real line depending on the
agents’ preferences on the location of the facilities. In par-
ticular, an agent’s disutility for a location is typically the dis-
tance to their own location. One can see facility location as
a variant of our model, where the agents report positions and
their ideal distance to the facility is 0. We note that Filos-
Ratsikas et al. [2017] considered an extension of facility lo-
cation where agents report both ideal distances to the facility
and their location, which is, to our knowledge, the only other
game-theoretic paper that studies the idea of ideal distances.

More broadly, DPGs are also connected to many other top-
ics in computational social choice, such as hedonic games
[e.g., Aziz and Savani, 2016] and social distance games
[e.g., Brânzei and Larson, 2011; Balliu et al., 2022], where
the agents need to be partitioned into coalitions based on their
preferences over each other.

Finally, DPGs are related to problems considered in ma-
chine learning because they can be seen as a game-theoretic
variant of unidimensional scaling, a special case of the multi-
dimensional scaling problem [e.g., Dunn-Rankin et al., 2014;
Borg et al., 2018]. Specifically, in unidimensional scaling, we
are given ideal distances between all pairs of objects and the
goal is to locate the objects based on this information on the
real line while preserving the distances between the agents
[e.g., McIver, 1981; Pliner, 1996; Groenen et al., 1998]. This
can be seen as a variant of DPGs without agents. However,
the prior work in unidimensional scaling is limited to heuris-
tics and experimental evaluations of algorithms. Moreover,
our work has similarities with clustering problems as a loca-
tion profile can be seen as an aggregate similarity measure for
agents [e.g., Bansal et al., 2004; Xu and Wunsch, 2008].
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2 Model
In a distance preservation game (DPG), there is a set N =
{1, . . . , n} of agents who express ideal distances over each
other. In more detail, each agent i ∈ N has a relationship set
Mi ⊆ N \{i} which contains the agents about whom i cares,
and an ideal distance function di : Mi → [0, 1] which spec-
ifies the ideal distance of agent i to all agents in Mi. Given
this information, the agents must choose locations in the unit
interval. Hence, the outcome of a DPG is a location profile
A ∈ [0, 1]n, which specifies for every agent i ∈ N a loca-
tion Ai in the unit interval.

In DPGs, the agents aim to preserve their ideal distances
as closely as possible. Specifically, we assume that the util-
ity of each agent i from an agent j ∈ Mi linearly decreases
when the absolute difference between their actual distance
and agent i’s ideal distance to j increases, i.e.,

ui(A, j) = 1−
∣∣∣∣|Ai −Aj | − di(j)

∣∣∣∣.
By this definition, it holds that ui(A, j) ∈ [0, 1] for all

location profiles A and agents i ∈ N , j ∈ Mi. Furthermore,
agent i’s utility for agent j is 1 precisely if the actual distance
between these two agents is equal to agent i’s ideal distance
to j. The utility of each agent i ∈ N for a location profile
A is the sum of the utilities that i receives from the agents in
Mi, i.e., ui(A) =

∑
j∈Mi

ui(A, j).
The utility function ui(A, j) is an affine transformation of

the cost ci(A, j) = ||Ai − Aj | − di(j)|. As a consequence,
all our results except for approximation ratios remain valid
when using the cost ci instead of the utility ui. We decided
to focus on utilities instead of the cost because the minimum
social cost turns out to be inapproximable.

We emphasize that the action space of every DPG is the
unit interval and the agents’ ideal distances induce their util-
ity functions. Hence, a distance preservation game (DPG) is
fully described by a tuple I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ spec-
ifying the set of agents N , their relationship sets Mi, and
their ideal distance functions di. We will frequently repre-
sent DPGs via graphs. Specifically, the preference graph GI

of a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is a weighted directed
graph GI = (N,E, d) on the agents such that (i, j) ∈ E if
and only if j ∈ Mi and d(i, j) = di(j) for all i ∈ N , j ∈ Mi.
That is, an edge from i to j with weight x in the preference
graph indicates that i wants to be at distance x from j.

2.1 Objectives
Given a DPG, our aim is to find a location profile that guar-
antees high utilities to the agents. We will formalize this idea
by two standard concepts, namely jump stability and welfare
optimality. These concepts have been repeatedly considered
in related settings [e.g., Agarwal et al., 2021; Bullinger et al.,
2021; Kreisel et al., 2024; Bullinger and Suksompong, 2024].

Jump stability. Given a location profile, jump stability re-
quires that no agent can increase their utility by unilaterally
jumping to another location in the unit interval. Formally, we
denote by Ai7→x the location profile derived from another lo-
cation profile A by placing agent i at Ai7→x

i = x and all other

agents j ∈ N \ {i} at Ai7→x
j = Aj . We say a location pro-

file A is jump stable for a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩
if ui(A) ≥ ui(A

i7→x) for all agents i ∈ N and locations
x ∈ [0, 1]. We note that jump stable location profiles are
equivalent to Nash equilibria, but we prefer to use the term
“jump stability” since it is commonly used in related works.

Welfare optimality. Welfare optimality requires of a lo-
cation profile that its (utilitarian) social welfare, i.e., the
sum of the agents’ utilities, is maximal. To this end, we
define the social welfare of an assignment A for a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ by SWI(A) =

∑
i∈N ui(A).

Then, a location profile A is welfare optimal for a DPG I if
SWI(A) ≥ SWI(A

′) for all other location profiles A′.

2.2 Classes of Distance Preservation Games
In our analysis of DPGs, we will often focus on more con-
strained subclasses of these games. In particular, we will
discuss the following restrictions of distance preservation
games. The first three restrictions capture large natural
classes of DPGs, whereas the remaining two classes are rather
restricted and will mainly be used for hardness results.

Symmetric DPG. Intuitively, a DPG is symmetric if for
each pair of agents i, j ∈ N , agents i and j have the
same ideal distance to each other. More formally, a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is symmetric if for all agents
i, j ∈ N , i ∈ Mj implies that j ∈ Mi and di(j) = dj(i).

k-discrete DPGs. The high-level idea of k-discrete DPGs
is that there is a precision parameter k ∈ N and that the agents
are only allowed to report ideal distances that are multiples
of 1

k . More formally, a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is
k-discrete if di(j) ∈ { 0

k ,
1
k , . . . ,

k
k} for all i ∈ N , j ∈ Mi.

We believe that this assumption is rather natural as, e.g., 100-
discrete DPGs ask the agents to specify their ideal distances
with up to 2 decimal digits.

Acyclic DPGs. In acyclic DPGs, the preference graph of
the game is acyclic. That is, we restrict the relationship struc-
ture between the agents instead of their ideal distances. For-
mally, we call a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ acyclic if
there is no sequence of agents i1, . . . , ik such that ij+1 ∈ Mij
for all j ∈ {1, . . . , k − 1} and i1 ∈ Mik . Acyclic DPGs
arise naturally in hierarchical settings, where agents only care
about the distances to their superiors.

Enemies and Neutrals DPGs. In an enemies and neutrals
DPG, all agents are either enemies and want to be as far away
from each other as possible, or they do not care about each
other’s location. Moreover, we require enemies and neutrals
DPGs to be symmetric. Formally, we say that a DPG I =
⟨N, (Mi)i∈N , (di)i∈N ⟩ is an enemies and neutrals DPG if it
is symmetric and di(j) = 1 for all i ∈ N , j ∈ Mi.

Path DPGs. A path DPG is a special case of an acyclic
DPG where the preference graph forms a path. That is, a
DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is called a path DPG if
the agents can be ordered such that ij+1 ∈ Mij for all j ∈
{1, . . . , n− 1} and Min = ∅.
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3 Jump Stability
We will now analyze the existence and computation of jump
stable location profiles. To this end, we first show that such
location profiles do not exist for all DPGs.
Proposition 1. There are DPGs without jump stable location
profiles.

Proof. Let I be a DPG with two agents N = {1, 2} such
that M1 = {2}, M2 = {1}, d1(2) = 1, and d2(1) = 0. In-
tuitively, this means that agent 1 wants to be as far away as
possible from agent 2 and agent 2 wants to be as close as pos-
sible to agent 1. Hence, in a location profile A with A1 ̸= A2,
agent 2 can improve their utility by changing their location to
A1. By contrast, if A1 = A2, agent 1 can improve their util-
ity by moving to any other location. Consequently, one of the
two agents always has an incentive to deviate. Therefore, no
jump stable location profile exists.

Motivated by this example, we examine computational
questions regarding jump stability in Section 3.1. Further-
more, we turn to restricted classes of DPGs in Sections 3.2
and 3.3 with the aim of deriving more positive results. Due
to space constraints, we defer most proofs of this section and
Section 4 to the extended version [Aziz et al., 2025] and give
proof sketches instead.

3.1 Checking for Jump Stability
We first consider the problem of deciding whether a location
profile is jump stable for a DPG. As we show next, this prob-
lem can be solved efficiently because we only need to check a
linear number of locations for every agent to decide whether
they can improve their utility by changing their position.
Theorem 1. It can be verified in polynomial time whether a
location profile is jump stable for a DPG.

Proof Sketch. For deciding whether a location profile A is
jump stable for a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩, we
need to check for every agent i whether there is a benefi-
cial jump. To this end, we consider an agent i ∈ N and
let hj(x) = ui(A

i7→x, j) denote the utility agent i receives
from an agent j ∈ Mi when jumping to x. Moreover, let
Lj = max(0, Aj − di(j)) and Rj = min(1, Aj + di(j)).
Our key insight is that hj(x) is linear on the intervals [0, Lj ],
[Lj , Aj ], [Aj , Rj ], and [Rj , 1]. Applying this for all agents
in Mi implies that h(x) = ui(A

i7→x) =
∑

j∈Mi
hj(x) is a

piecewise linear function with at most 3n + 1 linear regions.
Because linear functions on a closed interval are maximized
at one of the endpoints of the interval, it suffices to check
whether i can benefit by jumping to one of the 3n + 2 end-
points. This can be done in polynomial time.

Theorem 1 implies that the problem of deciding whether a
DPG admits a jump stable location profile is in NP as we can
guess and verify such location profiles if they exist. Unfor-
tunately, we will next show that this problem is NP-complete
for general DPGs.
Theorem 2. It is NP-complete to decide whether a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ admits a jump stable location
profile, even if |Mi| ≤ 1 for all i ∈ N .

Proof. It follows from Theorem 1 that the problem is in NP.
To show NP-hardness, we will give a reduction from BAL-
ANCEDPARTITION [Garey and Johnson, 1979]. In this prob-
lem, we are given a set of items S = {s1, . . . , sk} with
weights w : S → N such that w(s) ≤ 1

2

∑
x∈S w(x) for

all s ∈ S, and we need to decide whether there is a partition
(X,S \ X) such that

∑
s∈X w(s) =

∑
s∈S\X w(s). Given

an instance (S,w) of BALANCEDPARTITION, we define B =∑
s∈S w(s) and we construct the following “cyclic” DPG: we

set N = {1, . . . , k}, Mi = {i+1} and di(i+1) = w(si)
B for

all i ∈ N \ {k}, and Mk = {1} and dk(1) =
w(sk)
B . To ease

notation, we let Ak+1 = A1 and dk(k + 1) = dk(1).

Since w(s) ≤ B
2 for all s ∈ S, it holds that di(i + 1) ≤ 1

2
for all i ∈ N . This implies that x − di(i + 1) ∈ [0, 1] or
x + di(i + 1) ∈ [0, 1] for all i ∈ N , x ∈ [0, 1]. Hence, if
ui(A) < 1 for an agent i and a location profile A, this agent
can benefit by jumping to Ai+1−di(i+1) or Ai+1+di(i+1).
Thus, a location profile A is jump stable for the constructed
DPG if and only if ui(A) = 1 for all i ∈ N .

We will now show that a jump stable location profile exists
if and only if there is a solution to the instance (S,w) of BAL-
ANCEDPARTITION. First, suppose that there is a jump stable
location profile A. Consequently, ui(A) = 1 for all i ∈ N , so
|Ai−Ai+1|−di(i+1) = 0. Because di(i+1) = w(st)

B > 0,
it holds that Ai ̸= Ai+1 for all i ∈ N . Next, let R = {i ∈
N : Ai > Ai+1} and L = {i ∈ N : Ai < Ai+1}. By defini-
tion, the set L and R are disjoint. Moreover, it holds for the
agent i minimizing Ai that Ai < Ai+1 and Ai−1 > Ai, so
i ∈ L and i− 1 ∈ R. Now, since |Ai−Ai+1| = di(i+1) for
all i ∈ N , it holds that Ai − Ai+1 = di(i + 1) if i ∈ R
and Ai+1 − Ai = di(i + 1) if i ∈ L. This means that∑

i∈L di(i + 1) −
∑

i∈R di(i + 1) =
∑

i∈L(Ai+1 − Ai) −∑
i∈R(Ai − Ai+1) =

∑
i∈N (Ai+1 − Ai) = 0. Here, the

last step follows as
∑

i∈N (Ai+1 − Ai) = Ak+1 − A1 and
Ak+1 = A1 by definition. Since di(i + 1) = w(si)

B for all
i ∈ N , this implies that

∑
i∈L w(si) =

∑
i∈R w(si), which

shows that there is a solution to the partition instance.
For the converse, let there be a partition (X,S \X) such

that
∑

s∈X w(s) =
∑

s∈S\X w(s). Without loss of gen-
erality, we assume that sk ∈ X . Now, consider the loca-
tion profile A given by A1 = 1

2 , Ai = Ai−1 + di−1(i)
for all si ∈ X \ {s1}, and Ai = Ai−1 − di−1(i) for all
si ∈ S \ (X ∪ {x1}). We observe that A is a valid loca-
tion profile since Ai ∈ [0, 1] for all i ∈ N . This holds
because

∑
si∈X di(i + 1) = 1

B

∑
si∈X w(si) = 1

2 and∑
si∈S\X di(i + 1) = 1

B

∑
si∈S\X w(si) = 1

2 . Further,
it holds for all agents i ∈ N \ {k} that ui(A) = 1 since
|Ai−Ai+1| = di(i+1) by construction. Finally, for agent k,
we note that

∑
si∈X\{sk} w(si)−

∑
si∈S\X w(si) = −w(sk)

since sk ∈ X and
∑

si∈X w(si) =
∑

si∈S\X w(si). This
implies that

∑
si∈X\{sk} di(i + 1) −

∑
si∈S\X di(i + 1) =

−dk(1). Thus, Ak = A1 +
∑

si∈X\{sk} di(i + 1) −∑
si∈S\X di(i+1) = A1 − dk(1). This shows that uk(A) =

1, so we conclude that A is jump stable as all agents get their
maximal utility.
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ALGORITHM 1: Best Response Dynamics
Input: A symmetric DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩
Output: A location profile A

1 Let A be a location profile s.t. Ai = 0 for all i ∈ N ;
2 while exists x ∈ [0, 1] and i ∈ N s.t. ui(A

i 7→x) > ui(A)
do

3 x∗ ← min{x ∈ [0, 1] : x ∈ argmaxy∈A ui(A
i 7→y)};

4 A← Ai 7→x∗
;

5 Return A;

3.2 Symmetric Distance Preservation Games
Observe that both Proposition 1 and Theorem 2 rely on asym-
metric ideal distances and cyclic preference graphs. We hence
examine next how our results change when disallowing these
features and start by analyzing symmetric DPGs.

In particular, we show next that jump stable location pro-
files are guaranteed to exist for symmetric DPGs and that they
can be computed by a simple best response dynamics. In
more detail, in the best response dynamics, which is outlined
in Algorithm 1, agents repeatedly change their location to the
left-most position that maximizes their utility given the posi-
tion of the other agents. Further, we will prove that this best
response dynamics terminates after at most O(kn2) iterations
of the while loop if the DPG is additionally k-discrete.

Theorem 3. For symmetric DPGs, jump stable location pro-
files are guaranteed to exist. If the DPG is additionally k-
discrete for some k ∈ N, the best response dynamics finds a
jump stable location profile in O(kn2) steps.

Proof Sketch. To prove the existence of jump stable location
profiles, we show that, for symmetric DPGs, a beneficial
jump always increases the social welfare. This implies that
welfare optimal location profiles are jump stable, so jump sta-
ble location profile are guaranteed to exist. Moreover, if the
considered DPG is additionally k-discrete, we prove that an
optimal jump increases the social welfare by at least 2

k . Since
the social welfare is at most

∑
i∈N |Mi| ≤ n(n− 1), the best

response dynamics converges in at most O(kn2) steps.

Theorem 3 suggests a tradeoff between the precision of the
agents’ ideal distances and the runtime of the best response
dynamics: the smaller the k such that a DPG is k-discrete, the
faster a jump stable location profile is found. We next show
that this tradeoff is tight because the best response dynamics
may indeed need Ω(k) steps for symmetric k-discrete DPGs.

Example 2. Consider the DPG given by the preference graph
in Figure 2 and assume that all agents start at 0. First, agents
1, 2, 3, and 4 do not have an incentive to move because they
are at their ideal distance from each other. Next, agents 7, 8,
9, and 10 have no incentive to move as long as they are at the
same position as at least two of their friends (5, 6, and one of
11 and 12). Thirdly, the agents in 11 and 12 will not move as
long as they are at the same position as 7, 8 and 9, 10. Hence,
the only agents who want to move are 5 and 6. At their current
positions, these agents receive a utility of 4+ (1− 1

k ). If they
move to 1

k , they obtain the best possible utility of 5. In turn,

1 2 3 4

5 6

7 8 9 10

11 12

0 0 0

0 0

0

1 1 1 11 1 1 1

0 0 0 00 0 0 00 0

1
k

0 0

1
k

Figure 2: The preference graph of the DPG of Example 2. The edges
are bidirectional and colorcoded to ease readability. Blue edges in-
dicate an ideal distance of 0, red edges of 1, and green edges of 1/k.

agents 7, · · · , 10 will move to 1
k . Lastly, the agents 11 and 12

will also move to this position. However, now agents 5 and
6 again have an incentive to move to the location 2

k , and the
agents 7, · · · , 12 will follow again. This process repeats until
the agents 5, · · · , 12 are at 1 and thus requires Ω(k) steps.

Example 2 demonstrates that the best response dynamics
may need exponential time if, e.g., k = 2n. This leads to
the question of whether jump stable location profiles can be
found efficiently for all symmetric DPGs. We next answer
this question by showing that finding jump stable location
profiles in symmetric DPGs is PLS-complete. Specifically,
the complexity class PLS (“Polynomial Local Search”) cap-
tures optimization problems for which (locally) optimal so-
lutions are guaranteed to exist due to local search arguments.
However, it is believed that it is not possible to efficiently find
locally optimal solutions for PLS-hard problems.

Theorem 4. Finding a jump stable location profile in a sym-
metric DPG is PLS-complete.

Proof Sketch. The membership in PLS follows as we can
use the social welfare as a potential function. In particu-
lar, by combining Theorem 1 with the fact that each ben-
eficial jump increases the social welfare, we can find in
polynomial time another location profile with higher social
welfare or prove the local optimality of a location profile.
For PLS-hardness, we provide a reduction from the PLS-
complete problem MAXCUT under the FLIP neighborhood
[Schäffer and Yannakakis, 1991]. In this problem, we are
given a weighted undirected graph G = (V,E,w) with edge
weights w : E → R>0 and the goal is to find a parti-
tion of the vertices (X,V \ X) such that the cut weight∑

(x,y)∈E : x∈X,y∈V \X w(x, y) cannot be increased by mov-
ing a vertex from X to V \ X or vice versa. In our reduc-
tion, we map each vertex v ∈ V to a vertex agent iv , and
we define the ideal distance between all vertex agents ix, iy
with {x, y} ∈ E by dix(iy) = diy (ix) =

1
2 + w({x,y})

2maxe∈E w(e) .
Next, we add several auxiliary agents to ensure that the ver-
tex agents can only be located at 0 or 1 in a jump stable lo-
cation profile. We hence get a partition of the vertices by
considering the vertex agents at 0 and 1, and we will show
that this partition is locally optimal for MAXCUT under the
FLIP neighborhood if and only if the corresponding location
profile is jump stable.
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3.3 Acyclic Distance Preservation Games
As a second escape route to Proposition 1 and Theorem 2,
we will next investigate acyclic DPGs. For these DPGs, we
show that jump stable location profiles always exist and can
be efficiently computed.

Theorem 5. For acyclic DPGs, a jump stable location profile
always exists and can be computed in polynomial time.

Proof Sketch. For acyclic DPGs I = ⟨N, (Mi)i∈N , (di)i∈N ⟩
there is an order i1, . . . , in over the agents such that Mit ⊆
{i1, . . . , it−1} for all it ∈ N . We iterate through the agents
in this order and place each agent it at the optimal position
given the locations of the agents i1, . . . , it−1, which are al-
ready fixed. An optimal position for it can be found in poly-
nomial time by using Theorem 1. Since it only cares about
the agents i1, . . . , it−1 and their position maximizes their util-
ity subject to the positions of these agents, this process indeed
finds a jump stable location profile.

4 Welfare Optimality
We now turn to welfare optimal location profiles, which, by
definition, always exist. However, as we show next, finding
such location profiles is computationally intractable even for
some of the simplest classes of DPGs.

Theorem 6. Given a DPG I and value q ∈ Q, it is NP-
complete to decide whether there is a location profile A such
that SWI(A) ≥ q even if I is (i) a path DPG or (ii) an ene-
mies and neutrals DPG.

Proof Sketch. First, for both variants, membership in NP is
straightforward as a location profile with sufficient social wel-
fare can be verified in polynomial time. On the other hand,
for NP-hardness, we provide two independent reductions. In
more detail, for path DPGs, we show NP-hardness by a reduc-
tion from BALANCEDPARTITION similar to the one in The-
orem 2. Specifically, given an instance of BALANCEDPAR-
TITION with k items, we construct a path DPG with k + 5
agents such that an assignment with a social welfare of k + 4
exists if and only if the partition instance has a solution.

For enemies and neutrals DPGs, we provide a reduction
from MAXCUT. In this problem, we are given an undirected
graph G = (V,E) and a value k, and we need to decide if
there is a cut in G with weight at least k. Given such an in-
stance, we construct an enemies and neutrals DPG by using
G as the preference graph: for each vertex v ∈ V , we intro-
duce an agent iv with Miv = {iu ∈ N : {u, v} ∈ E} and
div (j) = 1 for all j ∈ Mi. We then show for enemies and
neutrals DPGs that we can assume Ai ∈ {0, 1} for each agent
i ∈ N without decreasing the social welfare. Further, the so-
cial welfare of such solutions corresponds to the weight of the
partition {v ∈ V : Aiv = 0} and {v ∈ V : Aiv = 1}.

The reduction for path DPGs shows that it is NP-hard to de-
termine for a DPG whether there is a location profile where
every agent i gets the maximum possible utility of |Mi|. Con-
sequently, it is also computationally intractable to find Pareto-
optimal location profiles or location profiles that maximize

the egalitarian social welfare. Further, our reduction for en-
emies and neutrals DPGs shows that, for this case, maximiz-
ing social welfare is effectively equivalent to solving MAX-
CUT. Hence, the inapproximability results for MAXCUT
carry over to DPGs [Papadimitriou and Yannakakis, 1991;
Håstad, 2001], which yields the following corollary.
Corollary 1. For enemies and neutrals DPGs, there is no
polynomial time algorithm that computes location profiles
whose social welfare is guaranteed to be at least 16

17 of the
optimal social welfare, unless P = NP .

4.1 Approximation Algorithms
Theorem 6 shows that for many interesting DPGs, it is impos-
sible to efficiently compute welfare optimal location profiles.
In light of this, we now provide approximation algorithms
for computing location profiles with close to optimal social
welfare. In particular, we show next that a greedy approach
guarantees at least half of the optimal social welfare.
Theorem 7. Given a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩,
we can compute a location profile A with SWI(A) ≥
1
2

∑
i∈N |Mi| in polynomial time.

Proof Sketch. Given a DPG I , we choose an arbitrary or-
der i1, . . . , in over the agents and construct a location profile
as follows. First, we place agent i1 at 0. Then, we iterate
through our sequence and place each agent it with t > 1
at 0 or 1, depending on which position generates a higher
social welfare for the agents i1, · · · , it. We then show that,
when the agents i1, . . . , it−1 have already been placed, plac-
ing agent it at the better of these two positions generates a
welfare of at least 1

2 |{i ∈ {i1, . . . , it} : it ∈ Mi| + 1
2 |{i ∈

{i1, . . . , it} : i ∈ Mit |. From this insight, we infer the the-
orem since SWI(A) ≥ 1

2

∑n
ℓ=1 |{i ∈ {i1, . . . , iℓ} : iℓ ∈

Mi|+ |{i ∈ {i1, . . . , iℓ} : i ∈ Miℓ | = 1
2

∑
i∈N |Mi|.

Given the location profile A constructed in the proof of
Theorem 7, we can further increase the social welfare by a
linear programming approach. For this, let i1, . . . , in be an
arbitrary order over the agents such that Ai1 ≤ · · · ≤ Ain . It
is possible to formulate a linear program (LP) that uses the
agents’ positions Bi1 , . . . , Bin as variables and maximizes
the social welfare subject to the condition that 0 ≤ Bi1 ≤
· · · ≤ Bin ≤ 1 (see the extended version [Aziz et al., 2025]).
Since the location profile A is a feasible solution for this lin-
ear program, the optimal solution A∗ of this LP satisfies that
SWI(A

∗) ≥ SWI(A) ≥ 1
2

∑
i∈N |Mi|. Note that, while this

linear program can be used for all orders of the agents, we
cannot give a lower bound on its social welfare in general.

Additionally to our general approximation, we can obtain
better approximation algorithms in many special cases. In
particular, in the next theorem, we analyze approximation ra-
tios for the simple DPGs considered in Theorem 6.
Theorem 8. The following claims holds:
(1) For path DPGs, there is an FPTAS for computing the op-

timal social welfare.
(2) For enemies and neutrals DPGs, there is a polynomial

time algorithm that computes location profiles whose so-
cial welfare is at least 0.879 of the optimal social welfare.
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Paths Enemies & Neutrals Acyclic Symmetric General

Jump Stability in P in P in P PLS-complete NP-complete

Welfare Optimality NP-complete
FPTAS

APX-hard
0.879-Approx.

NP-complete
1
2 -Approx.

APX-hard
1
2 -Approx.

APX-hard
1
2 -Approx.

Table 1: Summary of our results. Each column indicates a subclass of DPGs and the corresponding entries show the computational complexity
of finding a jump stable and welfare optimal location profiles as well as our approximation ratios for the optimal social welfare.

Proof Sketch. For enemies and neutrals DPGs, we use the
close connection between MAXCUT and finding a welfare
optimal location profile. In particular, this connection al-
lows us to apply the approximation algorithm of Goemans
and Williamson [1994] for MAXCUT to our setting.

For path DPGs, we design an FPTAS by introducing a set
of possible locations L = { 0

k ,
1
k , . . . ,

k
k}. We then show that

we can find the location profile A∗ that maximizes the social
welfare subject to the condition that A∗

i ∈ L for all i ∈ N
in polynomial time with respect to |N | and k. Specifically,
we reduce this problem to finding a longest path in a directed
acyclic graph with nk vertices. Moreover, we prove that the
social welfare of A∗ is at least 1− 2

k times the optimal social
welfare, so our algorithm is indeed an FPTAS.

4.2 Price of Anarchy
Finally, we relate our results for welfare optimality and jump
stability by investigating the price of anarchy of DPGs. The
price of anarchy, as suggested by Koutsoupias and Papadim-
itriou [2009], is the ratio between the optimal social welfare
and that of the worst jump stable location profile. To formally
define this concept, let JS(I) denote the set of jump stable lo-
cation profiles for a DPG I . Then, the price of anarchy of a
DPG I with JS(I) ̸= ∅ is

PoA(I) =
maxA∈[0,1]n SWI(A)

minA∈JS(I) SWI(A)
.

We next show that every DPG (that permits jump stable
location profiles) has a price of anarchy of at most 2. Conse-
quently, every algorithm for computing jump stable location
profiles guarantees at least half of the optimal social welfare.

Theorem 9. It holds that PoA(I) ≤ 2 for all DPGs I with
JS(I) ̸= ∅. Further, there is a DPG I with JS(I) ̸= ∅ and
PoA(I) = 2.

Proof. Consider a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ and let
A ∈ JS(I). We focus on an agent i ∈ N and will show that
ui(A) ≥ |Mi|

2 . For this, we observe that ui(A) ≥ ui(A
i7→0)

and ui(A) ≥ ui(A
i7→1) since A is jump stable. Next, let j

denote an agent in Mi. When agent i jumps to 0, we have that
ui(A

i7→0, j) = 1 − |A(j) − di(j))|. Similarly, it holds that
ui(A

i7→1, j) = 1− |1−A(j)− di(j)|. Next, it can be shown
by a case distinction with respect to the absolute values that
|A(j)−di(j)|+|1−A(j)−di(j)| ≤ 1, so 1−|A(j)−di(j))|+
1−|1−A(j)−di(j)| ≥ 1. Applying the same argument for all
agents in Mi shows that ui(A

i7→0)+ui(A
i7→1) ≥ |Mi|. Since

ui(A) ≥ ui(A
i7→0) and ui(A) ≥ ui(A

i7→1), this means that

ui(A) ≥ |Mi|
2 . Finally, by summing over all agents, it follows

that the social welfare of A is at least half of the optimum.
Next, to show that our bound on the price of anarchy is

tight, let I be a DPG with four agents N = {1, 2, 3, 4} such
that M1 = M3 = {2, 4}, M2 = M4 = {1, 3}, and di(j) = 1
for all i ∈ N , j ∈ Mi. Moreover, let A denote the location
profile where A1 = A2 = 0 and A3 = A4 = 1. For each
agent i, both agents in Mi are at the opposite ends of the unit
interval in A. Thus, all points in [0, 1] yield utility 1 for each
agent. Consequently, A is jump stable and SWI(A) = 4.
However, in the location profile A′ with A′

1 = A′
3 = 0 and

A′
2 = A′

4 = 1, every agent’s utility is 2 and SWI(A
′) = 8.

Hence, PoA(I) = 2.

The proof of Theorem 3 shows that welfare optimality im-
plies jump stability for symmetric DPGs. Thus, for symmet-
ric DPGs, the price of stability, i.e., the ratio between the op-
timal social welfare and that of the best jump stable location
profile [Anshelevich et al., 2008], is 1. In contrast, the price
of stability can be arbitrarily close to 2 for general DPGs.

5 Conclusion
We initiate the study of distance preservation games (DPGs)
where multiple agents need to choose locations in the unit
interval based on their ideal distances to each other. For
these games, we examine the existence and computation of
both jump stable and welfare optimal location profiles. In
more detail, we first show that jump stable location profiles
are not guaranteed to exist and that it is NP-complete to de-
cide whether a DPG admits such a location profile. On the
other hand, we derive more positive results by focusing on
large and realistic subclasses of DPGs, namely symmetric
and acyclic DPGs. Specifically, we show for these DPGs that
jump stable location profiles always exist and that they can
often be computed efficiently. Furthermore, we prove that it
is computationally intractable to find welfare optimal location
profiles even for severely restricted DPGs. We thus design a
1
2 -approximation for the social welfare of general DPGs. Fi-
nally, we show that DPGs have a price of anarchy of at most 2.

Our work points to several directions for future work. First,
we believe it to be worthwhile to study the effect of ideal dis-
tances between agents for further settings. For instance, one
could also analyze DPGs when assuming a discrete graph or
higher dimensional continuous spaces as the topology instead
of the unit interval. Another interesting direction is to add ad-
ditional constraints to DGPs. For example, one could study
these games under the condition that there must be a small
distance between each pair of agents.
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