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Abstract

In Federated Learning (FL), the decentralized na-
ture of client training introduces vulnerabilities, no-
tably backdoor attacks. Prevailing anomaly detec-
tion approaches typically perform binary classifi-
cation, dividing clients into trusted and untrusted
groups. However, these methods face two criti-
cal challenges: the insider threat, where malicious
clients concealed within the trusted group compro-
mise the global model, and the benign exclusion,
where legitimate contributions from benign clients
are mistakenly classified as untrusted and disre-
garded. These issues weaken both the robustness
and fairness of FL systems, exposing inherent de-
fense vulnerabilities. To address these challenges,
we propose FedDLAD, a Federated Learning Dual-
Layer Anomaly Detection framework designed to
enhance resilience against backdoor attacks. The
framework leverages the Connectivity-Based Out-
lier Factor (COF) module to perform a robust initial
classification of clients by analyzing structural data
connectivity. The Interquartile Range (IQR) mod-
ule further reinforces this by mitigating the insider
threat through the removal of residual malicious
influences within the trusted group. Furthermore,
the Pardon module dynamically reintegrates mis-
classified benign clients from the untrusted group,
thereby preserving their valuable contributions and
addressing the benign exclusion. We conduct ex-
tensive evaluations of FedDLAD against state-of-
the-art defenses on real-world datasets, demonstrat-
ing its superior ability to reduce backdoor attack
success rates while maintaining robust model per-
formance. Code is available at: https://github.com/
dingbinb/FedDLAD.

1 Introduction

Federated Learning (FL) [McMahan er al., 2017] is an emerg-
ing distributed machine learning paradigm that allows multi-
ple devices or organizations to collaboratively train models
while keeping raw data decentralized. In recent years, FL

*Corresponding author

has attracted considerable attention across various domains,
including healthcare [Alzubi et al., 2022; Salim and Park,
2022], financial services [Basu et al., 2021; Chatterjee et
al., 2023], and intelligent transportation systems [Manias and
Shami, 2021; Zhao et al., 2022; Zhu et al., 2023].

While FL provides substantial privacy benefits by keep-
ing data decentralized, it also introduces security vulnera-
bilities stemming from the server’s limited visibility into lo-
cal training processes. Existing research [Sun et al., 2019;
Bagdasaryan et al., 2020; Fang and Chen, 2023; Zhang et
al., 2024] has demonstrated that FL is particularly vulnerable
to backdoor attacks. These attacks embed hidden malicious
behaviors into the global model, which performs normally
on standard inputs but generates attacker-controlled outputs
when specific triggers are present. This covert manipulation
allows the model to behave normally on typical inputs but
produce malicious outputs when triggered, thus evading de-
tection during standard evaluation.

Defense mechanisms against backdoor attacks in FL gener-
ally fall into two categories: robust aggregation and anomaly
detection. Robust aggregation enhances model resilience by
refining the aggregation process to minimize the influence of
malicious updates. Representative algorithms in this category
include Krum [Blanchard et al., 20171, Bulyan [Guerraoui et
al., 2018], Median [Yin et al., 2018], Trimmed Mean [Yin et
al., 2018], RLR [Ozdayi et al., 20211, and FLTrust [Cao et
al., 2020]. Byzantine-robust methods such as Krum, Bulyan,
Median, and Trimmed Mean are typically designed under the
assumption of independent and identically distributed (IID)
client data, which limits their effectiveness in non-IID set-
tings. RLR [Ozdayi er al., 2021] mitigates backdoor threats
through directional voting and adaptive learning rates, but its
performance remains sensitive to variations in data distribu-
tion and the malicious client ratio (MCR). FLTrust [Cao et
al., 2020] assigns trust scores based on cosine similarity be-
tween client and server updates; however, its reliance on a
server-side root dataset reduces practicality and may conflict
with FL’s privacy-preserving principles.

Anomaly detection methods, such as FLAME [Nguyen et
al., 2022], FLDetector [Zhang et al., 2022], MultiMetrics
[Huang er al., 2023], MASA [Xu er al., 2024], and Fed-
DMC [Mu et al., 2024], are widely used to identify and filter
backdoored clients. These methods generally aim to retain
only clients considered trustworthy for aggregation, while ex-
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cluding those flagged as suspicious or potentially malicious.
However, as single-layer detection approaches, they face con-
siderable limitations in non-IID settings. The increased het-
erogeneity, data imbalance, and behavioral variability among
clients make it significantly more difficult to accurately dis-
tinguish between benign and malicious participants. As a
result, some malicious clients may evade detection and be
mistakenly included, whereas some benign clients may be
unjustly excluded. This misclassification not only compro-
mises the security and robustness of the global model, but
also introduces unnecessary computational and communica-
tion overhead, ultimately degrading the overall efficiency and
reliability of the FL system.

To address the limitations of single-layer anomaly de-
tection in enhancing robustness against backdoor attacks,
we propose the Federated Learning Dual-Layer Anomaly
Detection Framework (FedDLAD). First, the Connectivity-
Based Outlier Factor (COF) module assigns anomaly scores
to each client’s uploaded model parameters, effectively clas-
sifying clients into trusted and untrusted groups. To further
mitigate residual backdoor threats within the trusted group,
we introduce the Interquartile Range (IQR) module as a sec-
ondary anomaly detection mechanism. While COF focuses
on detecting anomalies in the uploaded model parameters, the
IQR module specifically targets client updates. In this phase,
anomaly detection is performed across all dimensions of both
trusted and untrusted client updates, and detected anomalies
are addressed by flipping the direction of abnormal entries.

In addition, to preserve the contributions of benign clients
mistakenly classified as untrusted, we aggregate updates from
the trusted group to generate a reference update. We then
calculate the cosine similarity between each untrusted update
and this reference. For updates exhibiting high similarity, a
Pardon mechanism is applied, which helps improve overall
model performance by retaining valuable contributions.

The main contributions of this paper are as follows:

* We leverage the COF algorithm to classify clients into
trusted and untrusted groups based on their uploaded
model parameters. To further address potential back-
door clients within the trusted group, we apply the IQR
module for secondary anomaly detection, flipping the di-
rection of detected anomalous updates to strengthen the
model’s robustness against malicious interference.

» To preserve the contributions of benign clients mistak-
enly assigned to the untrusted group, we introduce a
Pardon mechanism. This mechanism aggregates updates
from the trusted group to create a reference update, then
computes the similarity between each untrusted update
and this reference. Updates exhibiting high similarity
are pardoned and reintegrated into the global model.

* We conduct comprehensive experiments on multiple
datasets and validate the effectiveness of the IQR and
Pardon modules through ablation studies. The results
demonstrate that the IQR module effectively reduces po-
tential backdoor risks within the trusted group, while
the Pardon module successfully reintegrates misclassi-
fied benign clients, leading to significant improvements
in both overall model performance and fairness.

2 Related Work

Recent advancements in FL defending against backdoor at-
tacks have mainly focused on two defense categories. The
first focuses on anomaly detection methods that filter anoma-
lous clients before aggregation, reducing the impact of mali-
cious contributions on the global model. For instance, [Li et
al., 2021] employs K-means clustering [Hamerly and Elkan,
2003] to identify suspicious clients; FedDMC [Mu et al.,
2024] utilizes binary tree-based clustering with noise (BT-
BCN); and FLAME [Nguyen et al., 2022] leverages HDB-
SCAN [MclInnes et al., 2017] to distinguish between benign
and malicious clients. Additionally, FLDetector [Zhang et al.,
2022] detects malicious clients based on model consistency,
while MultiMetrics [Huang er al., 2023] integrates multiple
metrics, including Euclidean distance, Manhattan distance,
and Cosine similarity, to identify anomalies. Despite their ef-
fectiveness, these methods still face challenges in accurately
distinguishing malicious clients from benign ones, resulting
in potential misclassification that can compromise system se-
curity and degrade overall model performance.

Robust aggregation methods refine aggregation rules to re-
sist malicious updates from backdoored clients. Krum [Blan-
chard et al., 2017] computes the sum of Euclidean distances
between each client’s update and all others, selecting the up-
date with the smallest sum as the global model update. The
Median [Yin et al., 2018] algorithm selects the median for
each dimension, while Trimmed Mean [Yin et al., 2018] re-
moves outliers and computes the average accordingly. How-
ever, under non-IID client data, these Byzantine-resilient
methods often suffer performance degradation due to the in-
creased diversity and distribution discrepancies in updates,
which impair their ability to mitigate malicious contributions
effectively. The RLR [Ozdayi er al., 2021] method adjusts
the learning rate by voting on update directions in each di-
mension, but its effectiveness decreases in non-IID scenarios
where benign and malicious updates are mixed [Qin et al.,
2024]. FLTrust [Cao et al., 2020] relies on the server pos-
sessing a root dataset to compute cosine similarity-based trust
scores, yet this assumption conflicts with FL'’s decentralized
nature and becomes ineffective when client and server data
distributions differ substantially.

3 Preliminaries and Problem setting

3.1 Preliminaries
Connectivity-Based Outlier Factor

The Connectivity-Based Outlier Factor (COF) [Kara and
Eyiipoglu, 2023] is a local anomaly detection algorithm that
identifies outliers by evaluating the average chaining distance
between each data point and its k-nearest neighbors. For a
given point p, COF quantifies its anomaly score based on the
degree of connectivity to its neighborhood, where connectiv-
ity is measured through the cumulative path length required
to traverse from the point to its neighbors. A higher COF
score reflects weaker connectivity, indicating that the point
deviates from the local structure and is more likely to be an
outlier. Conversely, a lower score implies stronger local con-
nectivity, suggesting the point conforms to the surrounding
data distribution.
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Figure 1: Overview of the FedDLAD Framework.

Interquartile Range

The Interquartile Range (IQR) [Vinutha ez al., 2018] is a sta-
tistical method widely used to identify outliers by analyzing
the distribution of data. This technique assesses how far a
specific data point deviates from the typical range by examin-
ing the dataset’s quartiles. The process starts with sorting the
dataset, followed by calculating the first quartile (¢)1) and the
third quartile (Q3). The difference between these two quar-
tiles, known as the interquartile range, represents the expected
spread of the data. Data points falling outside this range are
regarded as potential outliers, which makes the IQR an effec-
tive tool for anomaly detection.

Federated Learning

In the FL scenario, each client locally trains the global model
broadcast by the server and uploads the locally updated model
parameters for aggregation. Assume the FL system con-
sists of IV clients, where each client k& holds a dataset Dy, =
{(@k,i, yr,i) ik, of size ny. The server controls client partic-
ipation in each training round, and the global training objec-
tive is formally defined as follows:

w* = arg min ijzl A f(w,Dy),

ey

1 Nk
f(W,Dk) > TTk Zi:] f 2)

where w* denotes the optimal global model parameters,
f(w,Dy) represents the average loss computed over client
k’s dataset Dy, (xk,i, yx,;) denotes the i-th sample in Dy, and
Ak indicates the weight assigned to client ks loss.

(W7 (xk,ia yk,i))a

3.2 Problem Setting

Attacker’s Capabilities

We assume that the attacker has access to the local data and
model parameters of compromised clients. Under this as-
sumption, the attacker is able to manipulate the samples of
targeted classes and alter the local model parameters dur-
ing training. However, the attacker cannot interfere with the
training processes of uncompromised clients nor influence the
server’s aggregation procedure.

Attacker’s Goals

The backdoored model is crafted to predict a specific target
class when inputs contain embedded triggers. For instance,
in image classification tasks, a backdoored model may mis-
classify airplane images with triggers as birds, while correctly
classifying other clean images. For any input x, the expected
output of the backdoored model My, can be formulated as
follows:

.f DC ean
Mw<x)={y e ©)
yta'rget else,
and the training objective can be formulated as follows:
H‘lhi,n E(mfy)NDclea,n E(Mw(x)’ y)
Average loss on clean data
“)

+ >\ ’ ]E(w/: yta’rget)NDpoiso'rL K(MW("I‘J)’ ytaTg€t>7

Average loss on poisoned data
where £ is the loss function, y¢arge: is the target label, Deeqn
represents the clean dataset, D,is0n represents the poisoned
dataset, and A is a balancing parameter.
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Limitations of Single-Layer Anomaly Detection

Existing backdoor defense strategies based on single-layer
anomaly detection often overlook the necessity of secondary
processing [Nguyen et al., 2022; Zhang et al., 2022; Huang et
al.,2023; Xu et al., 2024; Mu et al., 2024]. These approaches
typically aggregate information solely from the trusted client
group, thereby overlooking critical issues such as residual
backdoor clients within the trusted group and the exclusion
of benign clients mistakenly flagged as untrusted. The ef-
fectiveness of anomaly detection algorithms largely depends
on the distribution of client data, with optimal performance
generally achieved under homogeneous conditions. Never-
theless, the prevalent non-IID nature of client data in FL en-
tangles benign and malicious information, posing substantial
challenges for accurate anomaly detection. Therefore, these
methods suffer from two major limitations:

Limitation 1. Residual Backdoor Information: Although
single-layer anomaly detection methods are capable of identi-
fying many malicious clients, they often fall short in reliably
distinguishing between benign and malicious clients in com-
plex non-IID scenarios. Consequently, residual malicious
contributions may remain within the trusted group, leading
to the embedding of backdoor triggers into the global model
across multiple training rounds.

Limitation 2. Misclassification of Benign Information:
Due to inherent limitations in detection accuracy, some be-
nign clients are mistakenly classified as untrusted. As such,
their valuable contributions are excluded from the global
model update, resulting in both wasted communication and
computational resources. This misclassification not only im-
pedes potential model improvements but also undermines
overall system efficiency.

4 Methodology

4.1 Overview of the FedDLAD Framework

As illustrated in Figure 1, the FedDLAD framework consists
of the following steps: (1) COF-Based Anomaly Detection,
(2) IQR-Based Secondary Anomaly Detection, (3) Pardoning
Updates from the Untrusted Group, and (4) Aggregating the
Pardoned Update with the Reference.

Building upon the COF-based anomaly detection applied
to model parameters, the IQR module serves as a secondary
detector designed to address Limitation 1. This module thor-
oughly inspects updates across all dimensions within both
trusted and untrusted groups. It effectively identifies anoma-
lous updates and mitigates their effects by flipping their direc-
tions. To further resolve Limitation 2, FedAvg [McMahan et
al., 2017] is utilized to aggregate the IQR-processed updates
from the trusted group and produce a reliable reference up-
date. Subsequently, the cosine similarity between this refer-
ence and each update from the untrusted group is computed.
Updates exhibiting the highest similarity scores are pardoned
and reintegrated into the global model.

4.2 Detailed Methodology

COF-Based Anomaly Detection

At the end of communication round ¢, the server collects
model parameters from & clients and constructs a cosine dis-

tance matrix M € R**¥ where each entry represents the pair-
wise distance between two clients’ model parameters. The
matrix M is then processed by the COF algorithm to com-
pute anomaly scores for each client, denoted as score, =
COFM)(p = 1,2,3,...,k). Based on these scores, the
server partitions the clients into two disjoint groups: the
trusted group C = {c1,¢2,¢3,...,¢k, } and the untrusted
group C' = {c},ch,c5,..., ¢, }, where ky + ko = k, with
kq1 and ks representing the number of clients in C' and C’,
respectively.

IQR-Based Secondary Anomaly Detection

Following the COF module, a secondary anomaly detection
is performed using the IQR module to mitigate the limita-
tions of COF. For the current round ¢, the server obtains up-
dates G ={g1, 92,93, - - -, g, } from trusted group and G’ =
{91,95,93,---, 9}, from untrusted group. Then, for each
dimension d € {0,1,2,...,5}, the server computes the first
quartile Ql(d) and third quartile Qg(d) over all k data points
and derives the interquartile range: IQR(d) = Qg(d) -1 (),
Based on this, the lower and upper bounds of normal values
in dimension d are calculated as:

lower - Ql — B X IQR(d)7 (5)

(I)upper = Qéd) + X IQR(d)a (6)
where the parameter p controls the sensitivity of anomaly de-
tection by adjusting the width of the normal range. A smaller
W results in a narrower range, causing more data points to be
identified as anomalies, whereas a larger ;1 expands the range,
thereby classifying more points as normal.

For any dimension d of a data point z; 4(i = 1,2, 3, ..., k),

if the value x; 4 falls outside the interval [@f:vaer, D] com-

puted for that dimension, a flipping operation is applied to
adjust it. The adjustment procedure for the value x; 4 in each
dimension is defined as follows:

. d d
Tig= {mi,d if mi,d € [q)l(ov?/era q)l(lpl))er]a (7)
’ —x;q else

Pardoning Updates from the Untrusted Group

After applying the IQR module, the adjusted updates G* =
{91,95,93, -, gy, } from the trusted group are aggregated
using FedAvg [McMahan et al., 2017] to produce the refer-
ence update ¢:
k1 *
_ 2im1Mig;

S @®)

where n; denotes the data size of the i-th client in the trusted
group, and g; is the corresponding adjusted update.

The server computes the cosine similarity scores cs;(i =
1,2,3, ..., ka) between the reference update ¢ and each ad-
Justed update G ={91", 95,95 .-, 9}, } from the un-
trusted group. This step enables the server to evaluate how
closely each untrusted update aligns with the reference, pro-
viding a more informed basis for assessing their trustworthi-
ness.

P 91 9)

CS; =
C g
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where /" denotes the adjusted update of the i-th client in the
untrusted group.

Given the set S = {cs1, ¢sa, ¢ss, .. ., ¢Sk, } of cosine simi-
larity scores between the reference update and each update in
the untrusted group, the server proceeds as follows:

e Filter the scores: Retain only the cosine similarity scores
greater than O from the set S, resulting in the subset
St ={cs; €S |es; >0}

e Select the Top — n scores: From the subset ST, select
the top n highest cosine similarity scores to form a new
set S = {cs; € St | ¢s; € Top,,(ST)}.

1 * .
The server aggregates the updates g;  corresponding to the
scores cs; € S to obtain the pardoned update ¢:
*
chi es’ Csig;
chi es’ CSi

Aggregating the Pardoned Update with the Reference

¢= (10)

We assign the number of clients in the trusted group as the
weight for the reference update, denoted by wy (w1 = kq).
Since the number of pardoned clients in the untrusted group
may vary across training rounds, the weight w. for the par-
doned update is computed as follows:

s +
w2={5 | if |ST| < mn, an
n else

Here,
The server performs a weighted aggregation of the refer-
ence update ¢ and the pardoned update ¢ to produce the final
aggregated global update w:
w1 wa

w= o+ o 12)

w1 + wa w1 + we

Ultimately, the server updates the global model at round ¢
using the final aggregated global update w.

5 Experimental Evaluation

5.1 Experimental Setup

Training Setup. We deploy experiments using the PyTorch
framework [Paszke er al., 2019], employing the SGD opti-
mizer with a learning rate of 0.01. The FL system consists of
50 clients, with 20% of them assumed to be malicious by de-
fault. These malicious clients select samples with a ground-
truth label of ‘0’ and modify their labels to the target class ‘5’
to carry out attacks. In each training round, the server ran-
domly selects 50% of the clients to participate, and the global
learning rate is set to 1.

Attack Setup. We implement several attack methods, includ-
ing CBA [Bagdasaryan et al., 2020], DBA [Xie et al., 20191,
and SPA [Wang et al., 2020], to evaluate the robustness of our
defense mechanism against diverse adversarial threats.

¢ Centralized Backdoor Attack (CBA). Each malicious
client has full access to the trigger, meaning they possess
the entire trigger pattern utilized for backdoor attacks. In
CBA, a square trigger is embedded in the bottom-right
corner of the attacked samples.

¢ Distributed Backdoor Attack (DBA). The DBA de-
composes the complete trigger into multiple parts, with
each malicious client using a local trigger in their attack
samples. This attack enhances stealthiness while reduc-
ing the risk of detection. In DBA, we employ a cross-
shaped trigger, with each malicious client holding one
quarter of the full trigger.

¢ Single-shot combined with PGD Attack (SPA). The
Single-shot attack, essentially a model replacement at-
tack, has the malicious client replace the global model
with its local model during aggregation. The Projected
Gradient Descent (PGD) attack limits the norm of mali-
cious updates to evade the server’s Euclidean distance-
based anomaly detection. Both methods are combined
to enhance the attack’s effectiveness and stealth.

Datasets. We conduct experiments using four widely-used
benchmark datasets: MNIST [Deng, 2012], FashionMNIST
[Xiao et al., 2017], SVHN [Netzer et al., 2011], and CIFAR-
10 [Krizhevsky et al., 20091, which are well recognized in the
machine learning community for their diverse characteristics
and challenges.

Models. We utilize a Convolutional Neural Network (CNN)
architecture for both MNIST and FashionMNIST, each com-
prising 5 convolutional layers. The MNIST model includes
2 fully connected layers, whereas the FashionMNIST model
incorporates 4 fully connected layers. For SVHN and CIFAR-
10, we employ the VGG-9 architecture for training.

Baselines. We conduct a comprehensive comparison of our
proposed method, FedDLAD, against several baseline de-
fense algorithms: FedAvg [McMahan et al., 2017], Krum
[Blanchard et al., 2017], Median [Yin et al., 2018], RLR
[Ozdayi er al., 2021], FLTrust [Cao et al., 2020], FoolsGold
[Fung et al., 20201, FLAME [Nguyen et al., 2022], MultiMet-
rics [Huang et al., 2023], and SnowBall [Qin et al., 2024].
FedAvg serves as the primary baseline with its standard ag-
gregation rule, providing a foundational reference for evalu-
ating the performance of other defense methods.

Evaluation Metrics. We employ the following 3 metrics to
evaluate the performance of various defense algorithms.

* Attack Success Rate (ASR). ASR measures the propor-
tion of trigger samples that the model classifies as the
target class. This metric reflects the effectiveness of the
backdoor attack by indicating how successfully the at-
tack manipulates the model to produce the desired out-
put for malicious inputs.

* Natural Accuracy (ACC). ACC quantifies the model’s
performance on clean data, reflecting its effectiveness in
standard classification tasks. This metric indicates how
well the model generalizes to benign inputs.

* Overall Performance Score (OPS). Following [Huang
et al., 2023], we use the OPS metric to evaluate the per-
formance improvements of different defense methods
in terms of ACC and ASR relative to the baseline Fe-
dAvg. The OPS is calculated as OPS = 2acc—Bacc _

Bacc
M where Dacc and Dasr denote the ACC
and ASR of the evaluated defense method, respectively;
Bacc and Bagg correspond to the baseline values.
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Dicichi et MNIST | FashionMNIST | SVHN | CIFAR-10
irichlet(c) M€ [UASRL ACCT OPSt | ASRl ACCT OPST | ASRL ACCT OPST | ASR| ACCT OPSt
FedAvg I 0993 0 0954 0913 0 0810 0918 0 0854 0778 0
Krum 0.009 0974 +0.972 0.009 0.782 +0.847 0.615 0209 -0.532 0.021 0456 +0.562
Median | 0998 0.993 +0.002 0.624 0883 +0313 0832 0916 -0.029 0816 0771 +0.035
RLR 0.002 0990 +0.995 0.003 0.862 +0.941 0.772 0.838 -0.040 0.739 0.715 +0.054
o0 FLTrust | 0.005 0993 +0.995 0006 0.802 +0.872 0.062 0.884 +0.886 0.507 0.775 +0.402
: FoolsGold | 0.993 0.992 +0.006 0.896 0.898 +0.044 0836 0923 -0.027 0836 0.781 +0.025
FLAME | 0226 0992 +0.773 0442 0.883 +0504 0751 0.875 +0.026 0783 0.728 +0.019
MultiMetrics | 0.009 0.989 +0.987 0.009 0.882 +0.957 0.662 0.812 +0.067 0.786 0.721 +0.006
SnowBall | 0.007 0980 +0.980 0017 0.870 +0.935 0.817 0.844 -0.089 0722 0.723 +0.084
| FedDLAD | 0.003 0992 +0.996 0007 0.888 +0.965 0.044 0895 +0.921 0025 0746 +0.930
FedAvg 1 0990 0 0967 0913 0 0843 0924 0 0846 078 0
Krum 0967 0958 +0.001 0.009 0.793 +0.859 0.870 0.797 -0.169 0.006 0.449 +0.566
Median | 0997 0991 +0.004 0923 0896 +0.027 0.846 0920 -0.008 0.764 0.767 +0.076
RLR 0.002 0989 +0.997 0.003 0.876 +0.956 0.768 0.874 +0.035 0.046 0.714 +0.858
I FLTrust | 0.012 0988 +0.986 0006 0.810 +0.881 0091 0.868 +0.831 0022 0.731 +0.908
FoolsGold | 0.917 0.988 +0.081 0921 0907 +0.041 0837 0929 +0.013 0822 0.785 +0.031
FLAME | 0992 0984 +0.002 0944 0.889 -0.003 0773 0.882 +0.038 0.160 0.724 +0.736
MultiMetrics | 0.032 0992 +0.970 0.018 0.824 +0.884 0.861 0.872 -0.078 0296 0.751 +0.609
SnowBall | 0.001 0990 +0.999 0025 0762 +0.809 0.503 0.837 +0.449 0546 0.757 +0.321
| FedDLAD | 0.004 0.993 +0.999 0007 0.882 +0.959 0.003 0904 +0.975 0038 0751 +0.914

Table 1: Performance under non-IID data. 1 means higher is better, | means lower is better. Bold numbers indicate the best results.

| CBA | DBA | SPA |
Defense OPS?T
|ASR||ACCT|ASR||ACCT|ASR||ACCT]
FedAvg |0.866 0.802 0.860 0.800 0.764 0.801 0
Krum 0.011 0.695 0.006 0.655 0.016 0.679 +0.831
Median | 0.851 0.801 0.819 0.794 0.005 0.791 +0.346
RLR 0.274 0.738 0.023 0.739 0.003 0.792 +0.829
FLTrust [0.803 0.780 0.543 0.760 0.001 0.784 +0.447
FoolsGold |0.852 0.797 0.796 0.788 0.801 0.790 +0.002
FLAME |0.009 0.772 0.002 0.782 0.004 0.788 +0.969
MultiMetrics | 0.050 0.788 0.233 0.775 0.002 0.795 +0.871
SnowBall |0.317 0.796 0.249 0.795 0.013 0.802 +0.772
FedDLAD |0.033 0.793 0.002 0.791 0.002 0.795 +0.976

Table 2: Performance under different attack settings with IID data.

5.2 Analysis of the Experimental Results

Performance under Different Data Distributions

Defenses under non-IID. We simulate real-world FL data
distributions by partitioning the MNIST, FashionMNIST,
SVHN, and CIFAR-10 datasets with the Dirichlet distribu-
tion Dirichlet(«) [Li e al., 2022], setting  to 0.5 and 1 to
control data heterogeneity.

As shown in Table 1, the defense effectiveness of Median
and FoolsGold is limited. The Median algorithm, which ag-
gregates updates by taking the median, is vulnerable to mali-
cious updates in non-IID environments, thereby weakening
its defense capability. FoolsGold assumes high similarity
among malicious client updates, which does not always hold
under diverse data distributions. Krum provides moderate de-
fense on MNIST and FashionMNIST but performs poorly on

SVHN and CIFAR-10. RLR reduces ASR to 0.2% and 0.3%
on MNIST and FashionMNIST, respectively, with minimal
drops in ACC, but struggles on SVHN and CIFAR-10 due
to the increased complexity of client updates. FLTrust deliv-
ers reasonable performance on MNIST and FashionMNIST;
however, on FashionMNIST, the ASR remains at 0.6% with
an 11% drop in ACC. FLAME'’s adaptive noise alleviates
some of the detrimental effects of client misclassification,
but it still undermines benign performance. MultiMetrics and
SnowBall demonstrate relatively effective defense on MNIST
and FashionMNIST, while facing difficulties on SVHN and
CIFAR-10. In contrast, FedDLAD consistently performs well
across all datasets, particularly on SVHN, where it reduces
ASR to 2.4% with only a 2.2% drop in ACC. The OPS metric
further confirms that FedDLAD effectively suppresses ASR
while preserving benign accuracy, outperforming other meth-
ods overall.

Defenses under IID. In the IID scenario, we assess the per-
formance of several defense strategies against CBA, DBA,
and SPA on the CIFAR-10 dataset.

As shown in Table 2, Krum effectively reduces the aver-
age ASR to approximately 1% for all attack types, although
it results in an average ACC drop of 12.5%. Median, Mul-
tiMetrics, and SnowBall demonstrate better defense perfor-
mance under SPA compared to CBA and DBA. Both RLR
and FLTrust exhibit a marked decline in effectiveness against
CBA, with RLR’s ASR reaching 27.4% and FLTrust rising
to 80.3%. By comparison, FLAME and FedDLAD display
greater stability, with FedDLAD maintaining an ASR simi-
lar to FLAME while improving ACC by 1.2%. Moreover,
FedDLAD achieves the highest average OPS across all attack
scenarios, underscoring its superior defense capabilities.
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Figure 3: Performance across various PDRs.

Impact of Different MCR and PDR Settings

Figure 2 and Figure 3 present the effects of varying MCR
(Malicious Client Ratio) and PDR (Poisoned Data Ratio) on
the performance of FedDLAD under IID conditions.

Impact of MCR. As shown in Figure 2, on MNIST,
FedDLAD maintains its effectiveness across different MCRs,
achieving optimal defense at an MCR of 0.1, where the ASR
is 0 and the ACC declines by only 0.4%. As MCR increases,
the ASR rises slightly but remains below 1.5%. On CIFAR-
10, FedDLAD shows greater sensitivity to MCR, with the
ASR increasing to 8.6% and the ACC dropping by 3.6% at
an MCR of 0.5, compared to FedAvg.

Impact of PDR. Figure 3 illustrates that as PDR in-
creases, the ASR of FedAvg rises significantly. FedDLAD
maintains robust defense performance on FashionMNIST and
CIFAR-10, with the ASR remaining close to 0 even at a PDR
of 0.5, while the ACC decreases by no more than 2%.

Various Approaches for Handling IQR Anomalies

We evaluate the performance of various methods in handling
anomalous updates identified by the IQR detector on the
MNIST, FashionMNIST, SVHN, and CIFAR-10 datasets. As
shown in Figure 4, Zeroing and Median replacement methods
perform poorly against attacks on MNIST, FashionMNIST,
and SVHN. Although their performance improves slightly on
CIFAR-10, the ASR remains above 40%. Conversely, the
flip method maintains a low average ASR of just 2.4% across
all datasets, demonstrating significantly greater stability than
both Zeroing and Median replacement.

Ablation Study

We conduct ablation studies under IID and non-IID settings
to assess the contribution of each component of FedDLAD,
which comprises three core modules: (1) the COF module,
(2) the IQR module, and (3) the Pardon module.

] MNISTASR ] FashionMNISTASR ] SVHN ASR | CIFAR-10 ASR
MNISTACC | FashionMNISTACC || SVHNACC || CIFAR-10 ACC
1.0
Q0.8
O
<06
~
=4
204
<0.2
0.0 - - -
FedAvg Zeroing Median Flip

Figure 4: Comparison of various methods for handling outliers.

Daga | Module  [FashionMNIST|  SVHN | CIFAR-10
ata

|COF IQR Pardon| ASR| ACC?T |ASR| ACCT|ASR] ACCYT

v 0.003 0.904 [0.005 0.921]0.004 0.761

I | v v 0.002 0.901 [0.004 0.920|0.007 0.765

v v v 10.003 0907 |0.007 0.931{0.010 0.785

v 0.963 0.870 [0.856 0.886|0.500 0.733

non-IID| v V/ 0.018 0.867 [0.018 0.893|0.082 0.744

v v v 10035 0.877 |0.005 0.904 |0.047 0.762

Table 3: Performance of modules under different data distributions.

Under IID Data. As shown in Table 3, the COF mod-
ule effectively distinguishes between benign and malicious
clients, driving the ASR to nearly 0 while maintaining a high
ACC. In this context, the contribution of the IQR module is
relatively modest. The Pardon module boosts ACC by 1.1%
on SVHN and 2% on CIFAR-10.

Under non-IID Data. The COF algorithm struggles with
non-IID data, leading to an average ASR of 77.3%. How-
ever, incorporating the IQR module significantly reduces the
ASR to below 4%, highlighting its effectiveness in secondary
detection and improving resilience against backdoor attacks.
Additionally, adding the Pardon module boosts the average
ACC across all datasets by 1.3%.

In summary, the COF and IQR modules play distinct roles
depending on the data distribution. Under IID conditions,
the COF module is critical, while in non-IID environments,
the IQR module becomes essential for maintaining robust de-
fense performance as the effectiveness of COF diminishes.

6 Conclusion and Future Work

In this paper, we present FedDLAD, a dual-layer framework
designed to enhance backdoor defense by overcoming the
limitations of single-layer detection methods. The IQR mod-
ule addresses the insider threat posed by malicious clients,
while the Pardon module mitigates benign exclusion by rein-
tegrating misclassified benign clients. Together, these mod-
ules synergistically strengthen the defense’s robustness and
improve overall performance. Considering the challenges
that backdoor attacks pose in FL, future work will aim to fur-
ther improve the framework’s effectiveness, especially in the
presence of non-IID data.
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