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Abstract

Sequential Resource Allocation with situational
constraints presents a significant challenge in real-
world applications, where resource demands and
priorities are context-dependent. This paper intro-
duces a novel framework, SCRL, to address this
problem. We formalize situational constraints as
logic implications and develop a new algorithm
that dynamically penalizes constraint violations. To
handle situational constraints effectively, we pro-
pose a probabilistic selection mechanism to over-
come limitations of traditional constraint reinforce-
ment learning (CRL) approaches. We evaluate
SCRL across two scenarios: medical resource allo-
cation during a pandemic and pesticide distribution
in agriculture. Experiments demonstrate that SCRL
outperforms existing baselines in satisfying con-
straints while maintaining high resource efficiency,
showcasing its potential for real-world, context-
sensitive decision-making tasks.

1 Introduction

Sequential resource allocation (SRA) involves distributing
limited resources across locations over time, where an agent
allocates resources at a sequence of demand nodes while sat-
isfying upper and lower bound constraints. The objective
is to allocate resources efficiently while adhering to these
constraints. SRA arises in critical domains such as health-
care, public safety, energy, and agriculture, where dynamic
demands and societal priorities play a key role. For exam-
ple, healthcare resource distribution during pandemics must
balance immediate needs with future demand [Malenica et
al., 2024], while pesticide distribution must adapt to regional
crop health and sustainability requirements [Qin et al., 2021].

Beyond efficiency, resource allocation algorithms must
consider societal constraints, such as equity [Pu, 2021], sus-
tainability [Heffron and McCauley, 20141, and justice [Zhao
et al., 2020]. Moreover, these constraints often depend on
context, such as prioritizing equity when regions’ demands
conflict. For example, during the COVID-19 pandemic,
New Zealand proposed a Traffic Light system [Taylor et al.,
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(a) Medical Scenario (b) Agricultural Scenario
Figure 1: Left: Simulated medical resource demand in Beijing,
where darker colors represent higher demand levels. The experi-
ment focuses on a district in the southwest. Right: Farmland in
Saskatchewan, Canada, used for pesticide allocation. Numbers indi-
cate regions with varying pesticide requirements.

2023] to adjust policies according to the level of emergency.
E.g. one-meter distancing measures were only enforced when
public medical resources faced high pressure. Similarly, the
U.S. clean-energy supply-chain strategy [Igogo, 2022] high-
lighted adaptive systems to address bottlenecks during dis-
ruptions. They underscore the need for context-aware alloca-
tion strategies.

Traditional solutions to SRA, such as dynamic program-
ming [Lien et al., 2014] and multi-armed bandits [Kaufmann,
2018], are effective for small-scale problems with explicit
models but struggle with scalability. Reinforcement learn-
ing (RL) offers a promising alternative by learning optimal
policies through interaction with the environment, without
requiring prior system knowledge [Bhatia et al., 2019]. RL
has been successfully applied to diverse SRA tasks, such
as pesticide spraying [Qin et al., 2021], healthcare resource
allocation [Li ef al., 2023], and dynamic electricity distri-
bution [Bahrami et al., 2020]. Constrained reinforcement
learning (CRL) extends standard RL by incorporating con-
straints into the learning objective, typically through La-
grangian methods or constrained policy updates. Recent ad-
vancements, such as density-constrained reinforcement learn-
ing (DCRL) [Qin et al., 2021], have extended RL by incor-
porating constraints on state distributions. However, existing
algorithms rely on static constraints, limiting their ability to
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adapt to evolving demands and situational requirements. Ad-
dressing this gap calls for an advanced RL framework capa-
ble of incorporating conditional constraints to enable adaptive
decision-making. This leads to the question: How can we
design a density-constrained RL framework that ensures sit-
uational fairness and adapts to dynamic, context-dependent
constraints in resource allocation? To address this question,
one needs to (1) develop a formal framework for SRA under
such constraints. (2) Propose a new density-constrained RL
algorithm that handles “if-then” logic for such constraints.

In this paper, we initiate the study of situational con-
straints for SRA tasks. We formulate the problem as a
conditional DCRL problem, where the constraints are im-
plications. To address this problem, we propose a new
algorithm, Situational-Constrained Reinforcement Learning
(SCRL). The algorithm extends the conventional CRL frame-
work by introducing a violation degree-based punitive term
function that quantifies the extent of constraint violations
and adjusts policy updates accordingly. Unlike previous ap-
proaches [Tessler et al., 2018; Ray et al., 2019; Qin e al.,
2021], SCRL incorporates an adaptive aggregation mecha-
nism that handles disjunctive constraints by selectively prior-
itizing one constraint within the disjunction. This design al-
lows SCRL to dynamically balance reward optimization with
constraint satisfaction in context-sensitive environments. To
the best of our knowledge, this is the first work to address
situational, disjunctive constraints within the CRL paradigm.

We evaluate SCRL in two real-world-inspired scenarios:
medical resource allocation during the COVID-19 pandemic
in Beijing, China [Hao er al., 2021] and agricultural resource
distribution in Saskatchewan, Canada [Qin et al., 2021]. In
both cases, the constraints are designed to balance equity and
adequacy, such as ensuring fairness when resources are in-
sufficient and maintaining sufficient coverage when resources
are ample. Experimental results demonstrate that SCRL sig-
nificantly improves the satisfaction of situational constraints
compared to baseline methods and effectively adapts resource
distributions to meet context-specific requirements. Addi-
tionally, we present a case study to illustrate how SCRL ad-
justs resource allocation across regions in response to shift-
ing situational demands, further highlighting the algorithm’s
ability to provide adaptive and equitable decision-making in
complex, real-world environments.

The following is a summary of key contributions:

» Formulation of sequential resource allocation with situa-
tional, disjunctive constraints.

* Development of the SCRL algorithm with a violation
degree-based punitive term for dynamic policy updates.

* Introduction of an aggregation mechanism to handle dis-
junctive constraints in context-sensitive environments.

2 Related Work

Sequential Resource Allocation (SRA). SRA focuses on
distributing resources in systems where demands arrive se-
quentially, making it distinct from traditional resource allo-
cation due to its dynamic nature and uncertainty. Its rele-
vance spans socially impactful applications, such as allocat-
ing medical testing resources during pandemics [Malenica et

al., 2024] and optimizing industrial gas deliveries to mini-
mize costs and prevent shortages [Berman and Larson, 2001].
Ethical considerations, such as equity in resource distribution,
have also been explored in government and community plan-
ning [Johnson and Smilowitz, 2007].

Early approaches to SRA used dynamic programming to
optimize costs under uncertainty, including supply chain
management for sequential customers [Bassok and Ernst,
1995]. Bayesian methods were later introduced to handle
stochastic dynamics, with Bayes-UCB demonstrating asymp-
totic optimality [Kaufmann, 2018]. To address fairness,
heuristic algorithms were proposed for equitable and sustain-
able allocation [Lien ef al., 2014]. Reinforcement learning
(RL) has recently become a predominant approach for SRA,
offering scalable solutions for complex environments. Deep
RL has been applied to supply chain management [Peng et
al., 2019] and network slicing [Liu et al., 2021], enabling
efficient resource allocation under constraints. Resource-
constrained RL frameworks have further improved perfor-
mance over conventional policies [Bhatia ef al., 2019].

Despite these advancements, existing methods often focus
on fixed constraints or single-objective optimization, leav-
ing a gap in addressing situational and context-sensitive con-
straints, which are critical for real-world applications.

Constrained reinforcement learning (CRL). CRL ex-
tends traditional RL by incorporating constraints to en-
sure policies satisfy predefined requirements while maxi-
mizing rewards [Gu et al., 2022; Garcia and Ferndndez,
2015]. Rooted in Constrained Markov Decision Processes
(CMDPs)[Altman, 1993], methods like Reward Constrained
Policy Optimization (RCPO)[Tessler et al., 2018] and SAC-
Lag [Ha et al., 2020] use Lagrange multipliers to balance
rewards and constraints. Constrained Policy Optimization
(CPO)[Achiam et al., 2017] introduced trust region methods
for maintaining feasibility during updates, while Projection-
based CPO (PCPO)[Yang et al., 2020] extended it to further
avoid infeasible policy during optimization.

Density-based CRL imposes constraints directly on state
density functions, offering clear physical interpretations suit-
able for resource and safety-critical applications [Rantzer,
2001]. Qin et al.[Qin et al., 2021] applied this approach to
a pesticide spraying scenario by constraining pesticide den-
sity, and Zhang et al.[Zhang er al., 2023] extended it to
multi-agent settings with ethical constraints. These methods
demonstrated the efficacy of density constraints for resource
allocation but do not address situational constraints, which
require dynamic adaptation across scenarios.

Other RL paradigms are less applicable to SRA. Logic-
based RL [Hasanbeig er al., 2018; Hasanbeig et al., 2020]
relies on qualitative specifications, which are unsuitable
for quantitative resource allocation and introduce signifi-
cant computational complexity. Fuzzy-logic-based RL, e.g.,
FQL [Glorennec and Jouffe, 19971, applies fuzzy rules to rep-
resent value functions and actions, and has been used in tasks
like robot navigation [Fathinezhad et al., 2016] and resource
management [Prasath er al., 2024]. However, it typically
yields soft rule satisfaction, which is unsuitable for strict con-
straints like fairness and safety. Shielding [Waga er al., 2022;
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Alshiekh er al., 2017] focuses on safe exploration, which is
unnecessary for SRA with reliable simulations.

Our approach builds on density-based CRL, extending it
to handle situational constraints that cannot be addressed by
traditional Lagrangian methods. We propose a novel algo-
rithm tailored to this problem, ensuring dynamic and context-
sensitive resource allocation.

3 Problem Formulation

3.1 Situational Constraints

We study resource allocation to demand nodes represented
as finite regions within a 2D spatial domain, reflecting appli-
cations where resources are distributed geographically. For-
mally, a supplier agent distributes resources over a bounded
region D C R? with m € N demand nodes, indexed as
M = {1,...,m}. Each demand node ¢ € M covers a sub-
region S; C D, and an allocation function f: M — R maps
each node i to a non-negative amount of resources f(7) > 0.
These sub-regions may overlap. Applications include drones
spraying pesticides [Qin ef al., 2021], mobile immunization
vehicles distributing vaccines, and policing resource alloca-
tion [Maslen and Paine, 2024], as illustrated in Figure 1.

In many situations, resource allocation must satisfy inter-
val and equity constraints. Interval constraints ensure that
each demand node 7 receives resources within a specified
range f(i) € [a;,b;], where 0 < a; < b; < oo [Qin
et al., 2021]. Equity constraints ensure fairness, expressed
as |f(i) — f(4)] < b, where b > 0 [Lien et al, 2014,
Zhang et al., 2023]. These constraints address sufficiency
and fairness but lack flexibility for context-aware allocation.
We therefore introduce situational constraints, which enable
conditional relationships between constraints. For example,
a situational constraint may state: “If the resources allocated
to region A exceed a certain threshold, then region B must

receive a minimum amount.” Let f = [f(1), ..., f(m)] rep-
resent the allocation vector.

Definition 1. An atomic constraint is of the form a - f <b
where vector @ € R™ and b € R are parameters. A situational

— —

constraint is of the form 1(f) — ©2(f), where ¢1(f) and
wa(f) are atomic.

Situational constraints generalize existing formulations.
For example, an interval constraint f(i) € [a;,b;] can be
expressed as T — [—f(i) < —a;] and T — [f(2) < by,
where T denotes an always-true atomic constraint. Simi-
larly, an equity constraint can be rewritten as a conjunction
of two interval constraints. While interval and equity con-
straints have been studied [Qin et al., 2021; Lien et al., 2014;
Zhang et al., 2023], they fail to capture context-sensitive re-
quirements. Situational constraints address this gap by cap-
turing conditional demands.

3.2 SRA with Situational Constraints

Formally, the SRA problem is represented by the MDP M =
<S7 Aa T, P7 s, L>, where:

» S: The state space, which captures the agent’s position in
the 2D region and its movement dynamics, such as velocity.

o A: The action space, which represents the set of actions
available to the agent.

e P: § x A — A(S): The transition function, which de-
fines the probability distribution over next states s’ given
the current state s and action a.

e r: S Xx A — R: The reward function, which quantifies the
efficiency of resource allocation.

* v € (0,1): The discount factor.

* 1 € A(S): The initial state distribution, which specifies the
probability distribution over initial states sy € S.

e L: S — 2M: The labeling function maps s € S to the set
of demand nodes L(s) receiving resources at that state.

To formalize the reward function r, we follow [Qin et al.,
2021] and assume that the agent distributes resources at a
constant rate as it moves through the region. This means
that the amount of resources f (%) allocated to a demand node
1 € M is captured by the time the agent spends within the
corresponding sub-region S;. This simplification links re-
source allocation directly to the agent’s trajectory, allowing
the agent to control resource distribution through its move-
ment across the space. Formally, a trajectory is a potentially
infinite sequence 7 = (so, $1, S2,...) where each s; € S
represents the agent’s state at time ¢. The following defini-
tion follows the definition in [Qin et al., 2021; Rantzer, 2001;
Syed et al., 2008; Chen and Ames, 2019].

Definition 2. Given a trajectory T, the density of resources
allocated to demand node i € M is defined as: p7 (i) =
oo - (s, (i), where 1 is the indicator function.

The density p” (i) quantifies the cumulative, discounted
amount of resources allocated to demand node @ by the agent
while following the trajectory 7. The discount factor ensures
the density function does not diverge under infinite-horizon
settings. A policy m: S — A(A) defines a probability dis-
tribution over the agent’s actions at each state. The sequence
of states 7 = (so, $1,...) conforms to a policy m, written
T ~ m, if: spp1 ~ P(sg,ae), ap ~ w(sy) forallt > 0,
where P(s;, a;) is the transition function.

Definition 3. Given a policy 7: S — A(A), the expected
density of resources allocated to demand node v € M is:

oo
P7(5) = Ernlo” ()] = 37" Prli € L(s1) | m,1),
t=0
where Pr(i € L(s;) | m,n) denotes the probability that de-
mand node 1 is receiving resources at time t, given the policy
m and initial state distribution 7.

The expected density p™ (7) captures the average amount of
resources allocated to demand node ¢ when the agent follows

policy 7. Thus any atomic constraint ¢ f) of the form @ - f <
b can be rephrased as the following constraint over the policy
7 of the agent: a1p™(1) + -+ 4+ amp™(m) < b. We now
formalize our main problem:

Problem 1 (SRA with situational constraints).

arg}rnaxZn(s)Vﬂ(s) s.t.

sES

W(m)
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where V. (s) is the expected cumulative reward under policy
oo

7, defined as: Vi(s) = Ermr soms [2oe0 VT (S0, a1)], and

U(7) is a conjunction of situational constraints over .

4 Method
4.1 Algorithm Overview

To solve Problem 1, we propose a general algorithm frame-
work (Alg. 1) designed for constrained reinforcement learn-
ing (CRL) tasks. The framework dynamically addresses the
dual objectives of maximizing cumulative rewards and sat-
isfying constraints by incorporating a punitive mechanism
through a punitive term function, denoted as (¥, s). This
term penalizes constraint violations directly within the reward
structure, effectively transforming the constrained RL prob-
lem into an unconstrained optimization task. The objective
then becomes maximizing the cumulative punished reward,
allowing the agent to learn constraint satisfaction implicitly
while pursuing reward optimization.

The framework operates iteratively through three core
steps: (1) Trajectory generation: The current policy 7 is
used to generate a collection of trajectories D,. (2) Con-
straint evaluation and punitive term update: Using D,
the violation degree Vio™(¥) is computed to evaluate how
well the policy satisfies the constraints, and o (¥, s) is up-
dated accordingly. (3) Policy optimization: The policy 7
is updated by maximizing the cumulative punished reward.
This iterative process continues until convergence, ensur-
ing that both reward maximization and constraint satisfac-
tion objectives are met. This framework generalizes existing
CRL methods, including RCPO [Tessler et al., 2018], PPO-
Lag [Ray et al., 2019], and DCRL [Qin et al., 20211, which
utilize scalar Lagrangian multipliers as punitive terms.

We extend the punitive mechanism to handle situational
constraints. This involves: 1. Defining the punitive term
o (i, s) for atomic constraints, ensuring it accurately reflects
the violation degree. 2. Extending o to situational con-
straints, such as o (1 — ¢2, 8).

4.2 Punitive Mechanism: Atomic Constraints

For an atomic constraint ¢ of the form @-p* < b, the violation
degree is defined as: Vio™ () := d-p™ —b. This quantifies the
extent to which the constraint ¢ is violated under the current

Algorithm 1 Algorithm Scheme with Punitive Term

1: Input: An MDP M with a constraint ¥
2: Initialize: An initial policy 7; A punitive term o
while Not converged do
Generate trajectories D, < {1, 72, -+ | n, 7, P}
Evaluate violation degree Vio™ (V) using D,
Update punitive term function o (7, s)
for each transition (s, a,r, s") € 7; where 7; € D do
Apply punitive term on reward 1’ + r — o (¥, )
9: end for
10:  Update policy 7 < argmax, Ep_ [>, v'r' (¢, ar)]
11: end while
12: Return 7

AN A

policy . A positive Vio™ () indicates a violation, while a
value of zero or less signifies satisfaction of the constraint.

To design a punitive mechanism for atomic constraints,
we decompose it into two complementary components: the
penalty factor, which measures the overall severity of a con-
straint violation, and the weighting factor, which determines
the state-level impact of the violation. These components col-
lectively define the punitive term o (¢, s).

1. Penalty factor: The penalty factor (i) is updated iter-
atively to reflect the accumulated violation of ¢ over time:

k() = max(0, k() + B - Viio™ (),

where [ is the learning rate. This approach aligns with
existing CRL methods, such as DCRL [Qin et al., 2021],
where the penalty factor is dynamically adjusted to enforce
density constraints. For instance, DCRL enforces an up-
per bound p,,.. on state density p”(s’) by updating  as
k' = max(0,k + B - (p™(8') = pmaz)). Our mechanism
generalizes this idea to arbitrary atomic constraints.

2. Weighting Factor: The weighting factor w(y, s) ac-
counts for the fact that visiting different states may contribute
unequally to the violation of ¢ by setting

Yo ai - L (4)
w(@7 S) = i”n ( )

iz lail

b

where 1 is the indicator function, and L(s) identifies the de-
mand nodes affected by state s. Thus the weighting factor
w(¢p, s) reflects how allocating resources to state s impacts
the violation degree Vio™ ().

3. Punitive term function: The punitive term for an atomic
constraint ¢ is defined as: o(p,s) = w(yp,s) - k(p). The
penalized reward is then computed as:

r'(s,a) =r(s,a) — o(p,s).

This formulation ensures that the agent is guided toward sat-
isfying the constraint by dynamically adjusting the reward
based on the impact of each state on the violation degree.

Example 1. Consider atomic constraint @ that specifies
p™ (i) — p™(j) < 0, which enforces that the resources allo-
cated to demand node i should not exceed those allocated to
demand node j. Suppose that the penalty factor k(p) > 0,
i.e., the constraint is violated under the current m. For
s € S wheni € L(s) and j ¢ L(s), by definition, we
have w(p, s) = 1/2. In this case, o(p,s) = 1/2k(p) > 0.
This leads to a decrease on the reward, which discourages
the agent to allocate resource at s. On the other hand, when
i ¢ L(s)and j € L(s), w(p,s) = —1/2, which means
o(p,s) <0, leading to an increase on the reward, which en-
courages the agent to allocate resources at s. In any other
case, w(yp,s) = 0, which means that any penalty at state s
will not affect the satisfaction of .

With the definition of the punitive term o (¢, s) provided
above, we can directly instantiate Algorithm 1 for addressing
an SRA problem with an atomic constraint .
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Proposition 1. Consider an SRA problem with an atomic
constraint @ of the form a - p™ < b. With a sufficiently small
learning rate (3, the algorithm framework incorporating the
punitive term o (p, s) converges to a feasible solution.

Proof. The proof builds on principles from canonical
Lagrangian-based CRL frameworks, such as [Tessler er al.,
2018]. O

4.3 Punitive Mechanism: Situational Constraints

Situational constraints ¥ = ¢ — o can be reformu-
lated as disjunctive constraints —; V 2. This requires han-
dling disjunctions of atomic constraints ¢; V (2, which pose
unique challenges. Traditional CRL methods work well for
conjunctive constraints as they enable gradient-based opti-
mization within connected feasible regions. However, dis-
junctive constraints create disconnected feasible regions that
make gradient-based methods ineffective.

Conventional approaches usually reformulate disjunc-
tive constraints into mixed-integer linear programming
(MILP) [Trespalacios and Grossmann, 2015; Kronqvist et
al., 2021] and solve them using techniques such as branch-
and-bound [Tiirkay and Grossmann, 1996]. While effec-
tive for problems with explicit system models (e.g., linear
programming), these methods struggle with the complexity
and dynamic nature of realistic tasks like the SRA prob-
lem, where constraints are context-dependent and the envi-
ronment evolves sequentially. Moreover, branch-and-bound
approaches scale poorly in large or high-dimensional prob-
lems due to their exhaustive exploration of disjuncts. Impor-
tantly, recent machine learning methods have tackled disjunc-
tive constraints by interpreting them as a min-operator over
loss functions or as unions of feasible sets [Ren et al., 2020;
Huang et al., 2022; Li and Srikumar, 2019; Nandwani et al.,
2019]. Building on these ideas, our approach extends the use
of min-operators to RL by designing a punitive mechanism
for disjunctive constraints.

To define the punitive term o(3),s) on a state s,
we adopt the principle that prioritizes the “least-
violated” disjunct in the constraint, i.e., ; where
Jj = argmin;{o(p1,5),0(p2,5),...,0(p4,8)}.  The
min operator aligns with the logical semantics of disjunc-
tions and has been applied in prior works [Ren et al., 2020;
Huang ef al., 2022]. This design encourages the policy to
satisfy the most attainable disjunct in a disjunction.

While it is intuitive to select the least-violated atomic con-
straint during the optimization, greedily applying the min-
operator may suffer from sub-optimality in cases where it
focuses on an infeasible disjunct that appears easier to sat-
isfy. Specifically, consider a disjunction ¥ = @1 V @2,
where ¢ is infeasible for the policy set II, meaning Vi &€
IT, Vio™ (1) > 0, while s is feasible. In this scenario, for
a given policy n’ € II at state s, if the punitive term for the
infeasible disjunct 1, o(p1, s), is smaller than that for the
feasible disjunct s, o(p2, s), the algorithm would encour-
age the policy to prioritize ¢;. Consequently, the policy is
misguided to focus on an unattainable constraint.

To address this issue, we propose a probabilistic mecha-
nism for selecting disjuncts within a disjunctive constraint.

Algorithm 2 Situational-Constrained RL

1: Input: An MDP (S, A, P,r,n,v,L), situational con-
straints W = A\;c; V10 @5

2: Initialisation: Let 7 be a random policy, (@) = 0 be
penalty factor for each ¢, 3 be learning rate for x

3: repeat

4:  Generate trajectories D, = {71, 72, | n,7, P}

5. Empirically compute density p™ according to D

6:  for all atomic constraint ¢ do

7: Compute the violation degree Vio™ () for ¢

8: Update penalty factor as:

K(p) < max(0, k() + BVio™ ()

9:  end for
10:  for each 7; € D, each transition (s,a,r, s’) € 7; do
11: Calculate o(, s).
12: Apply punitive term on reward r’ < r — o (¥, s)
13:  end for
14:  Solve 7 that maximizes the expected punished return

based on D,
15: until Convergence
16: Output: A policy 7, with density values p™.

For a disjunction ¢ = \/ jera) Pis where ; are atomic con-
straints, probabilistic mechanism defines a random variable ®
over the set of atomic constraints. The punitive term o (%, )
is then defined as o(®, s), where ® follows a probability dis-
tribution that assigns a probability p; to each ;. These prob-

abilities are defined as p; = En(ﬁ%();)*“ where £ (¢p;)
jeJ j

is the penalty factor associated with ;. This formulation
ensures that constraints closer to satisfaction are prioritized,
while constraints with larger penalty factors are still occasion-
ally explored due to their nonzero probabilities.

Finally, for a conjunction of [ situational constraints, ¥ :=
Nierpi, we define o(W, ) = > ., o (s, 8).

4.4 SCRL Algorithm

Alg.2 presents the Situational-Constrained Reinforcement
Learning (SCRL) algorithm, an instance of the general frame-
work (Alg.1) tailored for Problem 1. SCRL incorporates the
punitive mechanism defined above to handle situational con-
straints. The algorithm initializes the penalty factor () = 0
for each atomic constraint ¢, with a learning rate [ to en-
courage exploration during the early stages of training. Tra-
jectory data is used to empirically estimate the state den-
sity p™(s), leveraging either discrete state counts or kernel-
based methods for continuous spaces [Qin et al., 2021;
Chen, 20171, ensuring computational efficiency for large-
scale problems. The algorithm iteratively alternates between
generating trajectories, updating penalty factors based on
constraint violations, applying punitive terms to the rewards,
and optimizing the policy. This iterative process ensures both
constraint satisfaction and reward maximization.

5 Experiment

We aim to validate SCRL algorithm’s performance through
empirical evaluations over two real-world scenarios.
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Figure 2: The sub-regions in two scenarios. For both scenarios, the
map is divided into 50x 50 grids, and 5 regions (regions with label 0
are ignored in our settings).

5.1 Experiment Scenarios and Tasks

Medical Resource Allocation. This scenario models the
allocation of medical resources in Beijing during the COVID-
19 pandemic using a simulation from [Hao er al., 2021]. The
city is divided into modules, grouped into five sub-regions
based on demand levels (Figure 2a). The challenge is to pri-
oritize high-demand regions during resource shortages while
maintaining fairness, reflecting real-world public health re-
quirements for dynamic, context-sensitive allocation policies.

Agricultural Spraying Drone. [Qin et al, 2021]
This scenario involves pesticide allocation in farmland in
Saskatchewan, Canada, divided into five sub-regions based
on crop types (Figure 2b). The agent must optimize pes-
ticide usage by responding to pest outbreaks while avoid-
ing overuse, balancing sufficiency and fairness across re-
gions. This mirrors real-world agricultural challenges with
economic and environmental implications.

For both scenarios, the agent’s goal is to maximize
resource allocation efficiency while satisfying constraints.
Three tasks of increasing complexity evaluate the agent’s per-
formance: 1. Situational Task: A single situational con-
straint requires, e.g., “If resources allocated to certain regions
exceed a threshold, others must receive a minimum alloca-
tion.” This tests the agent’s ability to adapt dynamically to
conditional requirements. 2. Priority Task: Involves equity
constraints (equal resource allocation across specific regions)
and adequacy constraints (minimum resources for specific re-
gions). The situational requirement states, “If adequacy can-
not be met, ensure equity.” This evaluates the agent’s abil-
ity to prioritize fairness under resource limitations. 3. Joint
Task: Combines adequacy and equity constraints simultane-
ously without prioritization, requiring the agent to balance
potentially conflicting requirements. In some cases, satisfy-
ing both constraints may be infeasible.

5.2 Baselines
We compare our approach against four baseline methods:
1. Deep Deterministic Policy Gradient (DDPG) [Gu et al.,

2017] serves as an unconstrained RL baseline, optimizing
solely for reward without considering constraints.

2. Reward Constrained Policy Optimization
(RCPO) [Tessler et al., 2018] is adapted to our set-
ting by defining cost functions over state-action pairs

Scenario  Task Alg. Cons.Vio Reward
DDPG 4.8440.28 -2.094+0.01
RCPO 5.0740.33 -2.09+0.01
Situational CAL 16.84+13.13 -4.05+2.16
DCRLI1 0.0£0.0 -14.65+1.02
DCRL2 10.1549.17 -11.65+13.94
SCRL 0.0+0.0 -13.124+3.86
DDPG 30.16410.61 -2.744+2.03
RCPO 33.3640.75 -2.140.01
Med. Priority CAL 13.314+7.37 -4.674+1.90
DCRLI1 32.15+4.44 -3.384+4.06
DCRL2 7.95+14.14 -29.774+19.75
SCRL 0.0£0.0 -18.524+13.17
DDPG 54.041+0.23 -2.09+0.01
RCPO 54.0440.22 -2.140.01
Joint CAL 36.18+0.4 -5.0243.02
DCRL 41.03+7.9 -29.974+18.16
SCRL 37.1748.85 -9.624+4.17
DDPG 4.85+0.17 -2.1£0.0
RCPO 11.4941.55 -3.240.3
Situational CAL 6.7143.95 -3.7943.34
DCRL1 3.5244.76 -13.6943.15
DCRL2 4.691+4.93 -19.15+14.76
SCRL 0.01+0.03 -45.374+9.76
DDPG 10.37£0.3 -2.1£0.02
RCPO 1.2640.67 -3.2240.18
Agri. Priorit CAL 7.6442.35 -3.7443.36
¥ DCRLI 0.0+0.0  -31.29416.37
DCRL2 3.88+£4.9 -15.22+19.15
SCRL 0.0£0.0 -9.46+1.20
DDPG 19.5440.15 -2.110.01
RCPO 13.2240.92 -3.0440.21
Joint CAL 18.61£1.23 -2.3940.23
DCRL 20.3£10.66 -24+11.82
SCRL 4.311+2.38 -24.53+5.07

Table 1: Result on two scenarios, each with three tasks. Mean and
Std are collected from 10 independent runs.

instead of using density-based constraints. RCPO cannot
natively support density-based situational constraints,
requiring approximations for implementation.

3. Conservative Augmented Lagrangian (CAL) [Wu et al.,
2024] is a recent primal-dual CRL method. We adapt CAL
to our setting in the same manner as RCPO.

4. Density Constrained Reinforcement Learning
(DCRL) [Qin et al., 2021] is included as a baseline
but lacks native support for situational constraints. To
adapt, we decompose each situational constraint 1 — o
into: (DCRL1): The premise —¢1, treated as an interval
constraint p™(s) € [a,b]. (DCRL2): The conclusion ¢2,
addressed independently as an interval constraint.

5.3 Performance Metrics

The primary evaluation metric, constraint violation
(Cons.Vio.), measures violation of constraints. A lower
Cons.Vio. indicates better compliance with these critical
constraints and is preferred, as we prioritize the safety and
fairness in real-world applications. The density function in
experiments takes an undiscounted sum due to the finite-
horizon setting. The secondary metric, reward, assesses
resource efficiency, with higher rewards indicating less
resource allocation amount. A negative reward is assigned
when one unit of resources is allocated.
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Scenario _ Task Alg. Equity  Adequacy
Situational DDPG 7.0 125.1

Med SCRL 24.8 0.0
Joint DDPG 7.0 30.0

SCRL 9.6 23.1

Situational DPPC 6.9 229

A ituational (o)’ e 29
= Joint DDPG 6.9 359
SCRL 38 0.0

Table 2: Violation of different constraints. Violation of two con-
straints (equity and adequacy) in different tasks are shown. In Med.
scenario, the adequacy requirement for two tasks are different, thus
DDPG has different performances.

i
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Figure 3: SCRL’s resource allocation as heatmap. Higher temprera-
ture indicates more resources allocated. In joint task, agent tries to
satisfy the equity constraint so allocating resources to different re-
gions in different amounts; In situational task, agent prioritizes ade-
quacy constraint so allocating each region with sufficient resources.

5.4 Experiment Result

The result in Table 1 shows that DDPG attains high rewards at
the cost of severe constraint violations. Both RCPO and CAL
rely on a surrogate cost function, so they suffer high viola-
tions (with the lone exception of CAL on the Med. joint task).
Few DCRL instances satisfy constraints due to the separate
implementation. However, DCRL lacks scalability against
situational constraints. SCRL consistently offers near-zero
cost on priority and situational tasks. For joint task, SCRL
also offers low-level costs, demonstrating its advantage in sat-
isfying context-sensitive requirements. Besides, even when a
few DCRL instances satisfy constraints, they perform worse
on rewards (e.g., -31 vs. -9). In contrast, SCRL successfully
guides the agent to higher-reward feasible solutions.

5.5 Case Study: Priority and Joint Tasks

We investigate SCRL agent’s behavior by comparing it with
DDPG agent’s behavior, as an unconstrained baseline.

Constraint Violation. As shown in Table 2, SCRL effec-
tively prioritizes adequacy constraints in priority tasks, sat-
isfying them at the expense of higher equity violations. In
joint tasks, SCRL balances both adequacy and equity con-
straints, minimizing total violation degrees. This demon-
strates SCRL’s adaptability to diverse constraint structures.

Resources Allocation. Figure 3 visualizes SCRL’s alloca-
tion strategies on Agri. scenario, with warmer colors indicat-
ing higher allocations. In joint tasks, SCRL balances equity
constraints, reflecting region size variations. In priority tasks,
it emphasizes adequacy, ensuring critical regions meet mini-

Scenario  Algorithm  Cons.Vio  Reward
DDPG 8.6 2.1

RCPO 10.8 4.2

CAL 10 -2.3

Multi DCRLI1 9.3 2.1
Disjunct  DCRL2 9.4 -14.2
DCRL3 0 -16.7

DCRL4 0 -48.3

SCRL 0 -11.8

Table 3: Case study result on multi-disjunction task, Agri. scenario.
The constraint involves four disjunctions.

Scenario  Alg. Cons.Vio Reward
Med. SCRL-min 07423  -16.0+12.0
SCRL 0.0+0.0 -18.5+13.2
Agri. SCRL-min 0.34+0.8 -13.6+8.2
SCRL 0.0+0.0 -9.5+1.2

Table 4: Ablation study on probabilistic factor. We show the results
on situational tasks in two scenarios. SCRL-min replaces proba-
bilistic factor with min-operator, as defined in Sec. 4.3.

mum demands. These results demonstrate SCRL’s adaptabil-
ity to dynamically meet task-specific constraints.

Resource Efficiency. In the Agri. scenario, DDPG mini-
mizes resource usage, completing its trajectory in 800 time
steps, achieving higher rewards at the cost of constraint vi-
olations. In contrast, SCRL meets adequacy constraints, re-
quiring at least 900 time steps to satisfy minimum demands
across regions, leading to lower rewards. A similar trade-off
is observed in the Med. scenario. This underscores the in-
herent trade-off between reward maximization and constraint
satisfaction, as CRL algorithms prioritize constraint compli-
ance over unconstrained efficiency.

5.6 Case Study: More disjunctions

Case study in Table. 3 shows algorithms performance under
multiple disjunctions. The result is consistent with earlier
analysis: RCPO and CAL fail due to the surrogate constraint;
DCRL occasionally satisfies the constraint with a loss of re-
ward (DCRL 3 and 4); SCRL still shows its advantage in cap-
turing situational constraints.

5.7 Ablation Study: Probabilistic Mechanism

We compare the proposed probabilistic mechanism (SCRL)
with a variant using the min operator (SCRL-min). As shown
in Table 4, SCRL-min performs similarly in reward but incurs
slightly higher constraint violations. This aligns with our ear-
lier claim that the min operator may mislead the agent to sat-
isfy an infeasible constraint with a lower violation.

6 Conclusion and Limitations

This paper tackles sequential resource allocation (SRA) under
situational constraints, formulating the problem as an MDP
with density functions to quantify regional resource alloca-
tion. We propose the SCRL algorithm, which trains agents
under context-sensitive constraints.

Limitations. This study focuses on a single resource al-
locator and single-resource type. Extending the framework
to multi-agent systems and multi-resource scenarios offers
promising directions for future work.
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