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Abstract
Exemplar-free class incremental learning (EF-CIL)
is a nontrivial task that requires continuously en-
riching model capability with new classes while
maintaining previously learned knowledge without
storing and replaying any old class exemplars. An
emerging theory-guided framework for CIL trains
task-specific models for a shared network, shifting
the pressure of forgetting to task-id prediction. In
EF-CIL, task-id prediction is more challenging due
to the lack of inter-task interaction (e.g., replays
of exemplars). To address this issue, we conduct
a theoretical analysis of the importance and fea-
sibility of preserving a discriminative and consis-
tent feature space, upon which we propose a novel
method termed DCNet. Concretely, it progres-
sively maps class representations into a hyperspher-
ical space, in which different classes are orthogo-
nally distributed to achieve ample inter-class sepa-
ration. Meanwhile, it also introduces compensatory
training to adaptively adjust supervision intensity,
thereby aligning the degree of intra-class aggrega-
tion. Extensive experiments and theoretical analy-
sis verified the superiority of DCNet. Code is avail-
able at https://github.com/Tianqi-Wang1/DCNet.

1 Introduction
Deep neural networks have achieved state-of-the-art perfor-
mance in various tasks, yet they often struggle with Class In-
cremental Learning (CIL). In CIL, the model is constrained to
learn new classes on non-stationary data distributions. This
scenario can result in Catastrophic Forgetting (CF) [Mc-
Closkey and Cohen, 1989], as new parameters overwrite
those learned for previous tasks. Meanwhile, CIL focuses on
not relying on privileged information such as task-ids during
inference [Wang et al., 2023].

Exemplar-based methods, which preserve a portion of the
samples from previous tasks for replay, have demonstrated
strong performance in CIL. However, in the era of connectiv-
ity, data privacy has become increasingly crucial. The rising
concern over data privacy conflicts with the exemplar-based

∗Corresponding author: Jingcai Guo.

approach [Zhuang et al., 2022], thereby constraining its ap-
plicability. Recently, EF-CIL has attracted considerable at-
tention because it entirely eliminates the need for replay sam-
ples, making it suitable for deployment in scenarios where
privacy preservation and storage limitation are critical. De-
spite this advantage, existing EF-CIL methods are prone to
more severe CF because training on a new task overwrites the
parameter space learned for previous tasks. Classic strategies
reduce the alteration of important weight by imposing con-
straints such as regularization using the Fisher information
matrix [Kirkpatrick et al., 2017]. More recent method lever-
ages the Hilbert-Schmidt independence criterion for more
stringent constraints [Li et al., 2024b]. Rather than directly
focusing on the weight, alternative approaches aim to main-
tain the semantic consistency of the prior feature space, typ-
ically through the use of class prototypes [Zhu et al., 2021;
Toldo and Ozay, 2022; Magistri et al., 2024].

Parallel to these approaches, theoretical research suggests
that a proficient CIL model can be broken down into a
task-incremental learning (TIL) + out-of-distribution (OOD)
task [Kim et al., 2022c]. TIL typically involves training a
separate model for each individual task and selecting appro-
priate inference paths or output heads through known task-
ids. Based on this, the TIL+OOD architecture entails train-
ing a TIL-like model that constructs a new OOD classifier
when faced with a new task. Consequently, an independent
OOD classifier for each task would concurrently handle in-
distribution (IND) classification, which is within-task predic-
tion, and OOD detection to ensure accurate task-id prediction.
During inference, for each test sample, the framework evalu-
ates the probabilities of both to make a decision. This archi-
tecture facilitates the sharing of inter-task generalized knowl-
edge while preserving intra-task specific knowledge, thereby
demonstrating superior performance on CIL tasks. However,
the TIL+OOD architecture results in task isolation during
training, as it prevents access to the embedded representa-
tions and output magnitudes of previous tasks while learning
the current task. Paradoxically, effective decision-making re-
quires comparing outputs across the incremental sequence.
This contradiction ultimately leads to a performance bottle-
neck in task-id prediction that requires inter-task interaction.
Previous researches [Kim et al., 2022b; Kim et al., 2023;
Lin et al., 2024] have primarily focused on using replay sam-
ples to facilitate interaction, but this invades data privacy. Our
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work emphasizes the implementation of inter-task interac-
tions for the TIL+OOD framework in the context of EF-CIL.

From this perspective, we argue that preserving the dis-
criminative and consistent feature space is crucial for en-
abling effective task interaction. (i) Enhancing discriminabil-
ity for a single task. The feature space generated by gen-
eral embedding methods, although effective for within-task
prediction, frequently falls short in supporting OOD detec-
tion [Deng and Xiang, 2024; Ming et al., 2023]. This lim-
itation arises because OOD detection necessitates more dis-
criminative features. (ii) Ensuring consistency across incre-
mental tasks. Even with perfect OOD detection for each task,
the isolation between tasks can lead to varying output magni-
tudes [Kim et al., 2022b; Kim et al., 2022c]. Our theoretical
analysis indicates that maintaining discriminative and consis-
tent feature space can be achieved by enhancing inter-class
separation and aligning intra-class aggregation.

In this paper, we introduce a novel method to EF-CIL
named Discriminative and Consistent Network (DCNet).
This multi-head model leverages HAT [Serrà et al., 2018] to
learn task-specific masks for protecting the knowledge and
makes decisions by comparing a sequence of OOD classi-
fier outputs. To fully exploit the information in incremen-
tal tasks for interaction, DCNet comprises two key compo-
nents: (1) Incremental Orthogonal Embedding (IOE), where
we sequentially generate basis vectors that are orthogonally
distributed on the unit hypersphere. The model then embeds
the corresponding category features as closely as possible to
these predefined vectors. This guarantees that the embedding
of each category remains orthogonal to those of prior and
future categories, thereby enhancing and aligning intra-task
separation. (2) Dynamic Aggregation Compensation (DAC),
which addresses the issue due to decreasing model plastic-
ity by adaptively compensating for the reduced feature aggre-
gation of subsequent tasks. DAC brings incremental feature
embedding with more even intra-class aggregation. Benefit-
ing from the synergy of these two components, DCNet effec-
tively preserves the discriminative and consistent characteris-
tics of the features, and does not rely on replaying samples or
pre-trained models. Our main contributions are threefold:

• Theoretical analyses are provided to demonstrate the
feasibility of leveraging information in incremental se-
quences to preserve discriminative and consistent fea-
tures for the framework of TIL+ODD. To the best of our
knowledge, we are the first to formally discuss how to
optimize TIL+OOD model in the context of EF-CIL.

• DCNet not only incrementally embeds category features
on the unit hypersphere but also maintains inter-class or-
thogonality. Furthermore, additional adaptive compen-
sation helps balance the degree of intra-class aggrega-
tion across all tasks.

• Experiments conducted across multiple benchmark
datasets consistently demonstrate that our method
achieves highly competitive EF-CIL performance, with
an average improvement of 8.33% over the latest state-
of-the-art method on ImageNet-Subset task.

2 Related Work
Class-Incremental Learning. CIL necessitates that the
model incrementally learn new classes without forgetting
previously acquired knowledge. Classical CIL methods of-
ten maintain a certain number of exemplars from previous
classes, which are replayed upon the arrival of a new task [Re-
buffi et al., 2017; Buzzega et al., 2020; Yan et al., 2021;
Wang et al., 2022; Wang et al., 2023]. Replay strategy ef-
fectively reduces CF; however, concerns over privacy and
memory limitation restrict its practicality. Exemplar-free
approaches have focused on mitigating CF without relying
on replay samples [Zhu et al., 2023; Rypeść et al., 2023;
Gomez-Villa et al., 2025]. EWC [Kirkpatrick et al., 2017]
employs the Fisher information matrix to constrain significant
alterations in the weight space. LwF [Li and Hoiem, 2017]
ensures that the output of the current model remains close
to that of the previous model. PASS [Zhu et al., 2021] lever-
ages self-supervised learning to train a backbone network and
maintains the consistency of class prototypes. FeTrIL [Petit et
al., 2023] transforms old prototype features based on the dif-
ferences between old and new prototypes. ADC [Goswami
et al., 2024] uses adversarial samples against old task cate-
gories to estimate feature drift. EFC [Magistri et al., 2024]
identifies critical directions in the feature space for the previ-
ous task. However, some EF-CIL methods depend on a large
initial task to train the backbone network and subsequently
freeze it during increments. More recently, some studies have
also explored utilizing pre-trained diffusion model or saliency
detection network to mitigate forgetting [Meng et al., 2025;
Liu et al., 2024]. Our end-to-end approach explores the appli-
cation of TIL+OOD framework to EF-CIL without depending
on a large initial task or a pre-trained model.

Task-id Predictor. One special approach to addressing the
CIL problem involves utilizing multi-head models with task-
id prediction. Specifically, CCG [Abati et al., 2020] builds
a separate network to predict task-id, while iTAML [Ra-
jasegaran et al., 2020] necessitates batched samples for task-
id prediction during inference. HyperNet [Von Oswald et
al., 2019] and PR-Ent [Henning et al., 2021] employ en-
tropy for task-id prediction. Prior research has highlighted
that the performance bottleneck of these systems stems from
failing to realize the relationship between task-id prediction
and OOD detection [Kim et al., 2022c]. OOD detection
requires models not only to accurately identify data from
known distributions (i.e., categories learned during training),
but also to detect samples outside these distributions (i.e., un-
known categories) [Morteza and Li, 2022; Ming et al., 2023;
Lu et al., 2024]. Kim et al. [2022c] conducted a theoretical
analysis of the TIL+OOD architecture, demonstrating its ap-
plicability to CIL tasks. Building on this, MORE [Kim et al.,
2022b] and ROW [Kim et al., 2023] adopt the same structure
using pre-trained models and replay samples. The latest work
TPL [Lin et al., 2024], leverages replay samples to construct
likelihood ratios, thereby enhancing task-id prediction. Our
proposed method also falls under the TIL+OOD framework.
However, unlike previous methods, DCNet focuses on effi-
ciently utilizing information from incremental sequences to
accomplish inter-task interaction without replay samples.
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3 Theoretical Analysis
3.1 Class-Incremental Learning Setup
Class-Incremental Learning (CIL) aims to address a se-
quence of tasks 1, . . . , T . Each task t consists of an input
space X (t), a label space Y(t), and a training set D(t) =

{(x(t)
j , y

(t)
j )}N(t)

j=1 , where N (t) is the number of samples.
The label spaces of different tasks have no overlap, i.e.,
Y(i) ∩ Y(k) = ∅, ∀i ̸= k. The objective of CIL is to train a
progressively updated model that can effectively map the en-
tire input space

⋃T
t=1 X (t) to the corresponding label space⋃T

t=1 Y(t). Kim et al. [2022c] proposed a novel theory for
solving the CIL problem. They decomposed the probability
of a sample x belonging to class y(t)j of task t as follows:

P (y
(t)
j | x) = P (y

(t)
j | x, t) · P (t | x). (1)

The formulation can be decoupled into two components:
within-task prediction and task-id prediction. In CIL, data
from different tasks can be considered as OOD samples to
each other. However, only relying on traditional OOD detec-
tion methods to build separate model results in task isolation.
We highlight that interaction between tasks can be achieved
by preserving the discriminative and consistent feature space.
In the subsequent sections, we analyze how these proper-
ties can be implemented theoretically. Subsection 3.2 under-
scores the importance of inter-class separation and intra-class
aggregation through a theorem. Subsection 3.3 elaborates on
how both concepts facilitate information interaction.

3.2 OOD Detection Capabilities
We now discuss how inter-class separation and intra-class ag-
gregation affect the performance of OOD detection in the
context of EF-CIL. The theory proposed by Morteza and
Li [2022] demonstrates that the effectiveness of pure OOD
detection is closely tied to the distance between the IND and
OOD data. We generalize this theory to incremental learning
tasks.

Let {µin,i}ki=1 be the mean vectors of k Gaussian com-
ponents representing the IND (a task contain k distinct cate-
gories). Consider a sequence of OOD Gaussian mean vectors
{µout,t}Tt=1, describing a uniformly weighted Gaussian mix-
ture model for OOD data (an incremental sequence contain
T tasks), and let Σ be the positive definite shared covariance
matrix. IND and OOD exhibit distinct and significant differ-
ences. Define a scoring function ES(x) that is proportional
to the data density, and a measure D of the expectation dif-
ference in ES(x) between IND and OOD samples:

ES(x) =
k∑

i=1

exp
(
− 1

2 (x− µi)
⊤ Σ−1 (x− µi)

)
, (2)

D = Ex∼P in
χ

[
ES(x)

]
− Ex∼P out

χ

[
ES(x)

]
. (3)

Recall the Mahalanobis distance: dM (u, v) =√
(u− v)⊤ Σ−1 (u− v) . Our objective is to investi-

gate the factors influencing D, a metric that quantifies the
performance of OOD detection in incremental sequences.
We investigate the upper bound of D, which is derived using

the Total Variation and the Pinsker’s inequality (see Lemma
3 and 5).
Lemma 1. Let αi,t := 1

2 dM
(
µin,i, µout,t

)
, i =

1, . . . , k, t = 1, . . . , T , then we have the following estimate:

Ex∼P in
χ
(ES(x))− Ex∼P out

χ
(ES(x)) ≤ 1

T

T∑
t=1

k∑
i=1

αi,t. (4)

Details of the proof are provided in Appendix A.

Lemma 1 demonstrates that as µin,i and µout,t become
more distant, the overall OOD detection performance im-
proves. However, within the context of EF-CIL, the OOD
data is unavailable, making it challenging to explicitly in-
crease the divergence. Consequently, the subsequent deriva-
tion aims to further relax the upper bound while introducing
inter-class separation, which can be estimated in EF-CIL.

For any µout,t, we can always find a nearest µin,i0 that sat-
isfies the triangle inequality, denoted as:

dM (µin,i, µout,t) ≤ dM (µout,t, µin,i0) + dM (µin,i0 , µin,i).
(5)

We end up with the following theorem.
Theorem 1. Consider a sequential OOD detection task in the
context of CIL, we have the following bounds:

Ex∼P in
χ

[
ES(x)

]
− Ex∼P out

χ

[
ES(x)

]
≤ k

2T

T∑
t=1

dM
(
µout,t, µin,i0

)
+

1

2

k∑
i=1

dM
(
µin,i0 , µin,i

)
.

(6)

Theorem 1 handles incremental task arrivals and introduces
inter-class separation dM (µin,i0 , µin,i). It can be found that
the performance of TIL+OOD approaches can be improved
by increasing the inter-class difference of IND prototypes. In
essence, if the IND data are well-separated, more space exists
in the feature space for OOD samples to be embedded.

Finally, we examine how intra-class aggregation influences
detection performance through the shared covariance matrix
Σ. If Σ becomes “smaller” in the positive-definite ordering
(i.e., Σa ⪯ Σb implies Σb − Σa is positive semidefinite),
then Σ−1

a is “larger” compared to Σ−1
b . Consequently, the

same Euclidean displacement leads to a larger Mahalanobis
distance under a smaller covariance. For any fixed vector (u−
v), if Σa ⪯ Σb, then:

(u− v)⊤ Σ−1
a (u− v) ≥ (u− v)⊤ Σ−1

b (u− v). (7)

Therefore, when the IND data exhibits a higher degree
of intra-class aggregation, OOD samples are pushed farther
away in the Mahalanobis distance sense.
Interpretation. Our analysis highlights two crucial factors.
Inter-class separation: A larger separation between IND
prototypes offers a better theoretical margin, especially when
the OOD dynamics changes and cannot be estimated. Intra-
class aggregation: A smaller covariance matrix Σ indicates
that the IND data are more tightly clustered around the class
prototype, thereby amplifying Mahalanobis distances to po-
tential OOD samples.
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embed

Encoder

Projection
Head

Penultimate Layer

compensate

Encoder

Projection
Head

Penultimate Layer

Encoder

..
.

OOD Classifiers

MLP
0

MLP
t-1

(0)P(y )

(t-1)P(y )Encoder

.
.
.

Argmax 
Prediction

OOD Classifiers

MLP
0

MLP
t-1

(0)P(y )

(t-1)P(y ) MLP
t

( t )P(y )

Hyperspherical Embedding

Inter-class 
Separation

Intra-class
Aggregation

New Class
Embedding

Training Backbone

via IOE+DAC

Task t: Classifier and Prediction
Mask t-1 Mask t

Task t: BackboneTask t-1: Prediction

Figure 1: Overview of DCNet. Upon the arrival of task t, DCNet optimizes the learnable part of the backbone and creates a new OOD
classifier. Through IOE, DCNet incrementally embeds new features in directions that remain orthogonal to previous categories. Subsequently,
the DAC module dynamically compensates for any insufficient aggregation by referencing the degree of aggregation from the previous tasks.

3.3 Task Information Interaction
In this subsection, we will discuss the feasibility of em-
ploying inter-class separation and intra-class aggregation to
preserve discriminative and consistent feature spaces. The
TIL+OOD approach consists of a backbone network trained
using TIL-like methods and multiple OOD classifiers. During
the inference, the final decision ŷ is determined by selecting
the highest output among the T OOD classifiers:

ŷ = arg max
1≤t≤T

⊕P (y(t) | x, t), (8)

where ⊕ denotes the concatenation over the output space. We
select the class with the highest softmax probability over each
task among all the learned classes. However, even if each in-
dividual OOD decision is perfect, Eq. (8) may still lead to
incorrect CIL predictions due to varying magnitudes of out-
puts across different tasks. Breaking the isolation of tasks
during the training is essential for achieving comparable out-
puts. Previous studies [Kim et al., 2022b; Kim et al., 2023;
Lin et al., 2024] have facilitated direct information interac-
tion via replay samples; however, these approachs are con-
strained in the context of EF-CIL. As analyzed in Subsec-
tion 3.2, inter-class separation and intra-class aggregation are
critical for maintaining the validity and integrity of the feature
space without violating the privacy. Specifically, inter-class
separation preserves the discrimination of the feature space,
while intra-class aggregation ensures the consistency, thereby
enabling effective task information interaction.

4 Methodology
4.1 Overview
DCNet comprises two essential components: Incremental Or-
thogonal Embedding (IOE) and Dynamic Aggregation Com-
pensation (DAC), which operate synergistically (see Fig-
ure 1). Consistent with previous works, our approach em-
ploys the mask-based method HAT [Serrà et al., 2018] to shift

CF. Specifically, as each task is learned, the model generates a
set of masks for important neurons, ensuring that these masks
are as compact as possible. Formally, we introduce a loss
term LHAT . During the learning of a new task, the masks
from the previous model inhibit backpropagation from up-
dating the masked neurons. Since all neurons remain acces-
sible during the forward propagation, inter-task generalized
knowledge can be leveraged across all tasks. As the mask is
progressively learned, the available weights for updating by
subsequent tasks become increasingly sparse, leading to a de-
crease in model plasticity. This results in the degradation of
the feature space for subsequent tasks, where later tasks often
exhibit poorer performance compared to earlier tasks in terms
of inter-class separation and intra-class aggregation. Through
IOE and DAC components, DCNet preserves a discriminative
and consistent feature space by facilitating inter-task informa-
tion interaction.

4.2 Incremental Orthogonal Embedding (IOE)
The core principle of IOE lies in explicitly associating each
category with incrementally generated basis vectors that
maintain orthogonality, thereby ensuring superior inter-class
separation. For an incremental task t with data x(t), the
framework consists of two mappings: An encoder f : X →
Rf , which maps the input x(t) to a feature f (t) = f(x(t)).
A projection head h : Rf → Rz , which further maps f (t)

to a embedding z̃(t) = h(f (t)). The output embeddings are
normalized as z(t) = z̃(t)/∥z̃(t)∥2 to reside on a unit hyper-
sphere.

We aim to more uniformly distribute the unit hypersphere
and constrain individual category features within their respec-
tive spaces to minimize overlap between categories [Deng
and Xiang, 2024]. The approach to updating class proto-
types is data-driven, which cannot control the location of
class prototypes [Ming et al., 2023]. Based on this, we ar-
gue that binding category features to corresponding basis vec-
tors to enforce orthogonality is essential for maintaining dis-
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tinct boundaries and minimizing interference between differ-
ent classes. By ensuring 90◦ angular separation between ba-
sis vectors, each category can occupy a unique region in the
feature space. Furthermore, this component explicitly defines
the placement of new class embeddings, thereby preventing
potential reductions in inter-class separation that could result
from diminished model plasticity.

We design an incremental generator that produces pre-
defined, mutually orthogonal basis vectors through a data-
independent process. Let {µold

c }Cold

c=1 be the existing set of
Cold basis vectors, each normalized to unit length and mu-
tually orthogonal. When new classes C(t) of task t ar-
rive, each new generated vector {µ(t)

k }C(t)

k=1 is also normal-
ized and required to be orthogonal to both existing and newly
added vectors. To approximately satisfy these constraints, let
M∗ = {µold

c , µ
(t)
k } represent all basis vectors after incremen-

tally adding new classes, and define the following objective:

M∗ = argmin
M

[
C(t)∑
i,j=1

|µ(t)
i

⊤
µ
(t)
j |+

C(t)∑
k=1

Cold∑
c=1

|µ(t)
k

⊤
µold
c |

]
,

(9)
where each pairwise inner product deviating from zero is pe-
nalized. During the generation of new basis vectors, the pre-
vious basis vectors are kept unchanged. Subsequently, by em-
ploying Eq. (9) as the optimization objective, the new basis
vectors are updated through gradient descent to enforce mu-
tual orthogonality.

Having obtained the necessary vectors, we should now
concentrate on embedding features in proximity to these basis
vectors. Since these basis vectors are distributed on the unit
hypersphere, we can model the embedding effectively using
the von Mises-Fisher (vMF) distribution [Mardia and Jupp,
2009]. The vMF distribution serves as a spherical counterpart
to Gaussian distributions, designed for unit norm embeddings
z where ∥z∥2 = 1. The probability density function of a unit
vector z ∈ Rd belonging to class k in task t is defined as:

pd(z
(t);µ

(t)
k , κ) = Zd(κ) exp

(
κz(t)µ

(t)
k

)
, (10)

where µ
(t)
k is the generated basis vector for class k in M∗,

κ ≥ 0 represents the concentration parameter controlling the
distribution tightness, and Zd(κ) is the normalization factor.
The optimized normalized probability of assigning an embed-
ding z

(t)
i to category c(i) is given as follows:

LIOE = − 1

N (t)

N(t)∑
i=1

log
exp

(
z
(t)
i µ

(t)
c(i)/τIOE

)
∑C(t)

j=1 exp
(
z
(t)
i µ

(t)
j /τIOE

) , (11)

where c(i) denotes the class index of a sample xi in task
t, τIOE is the fixed temperature. Combining Eqs. (9) and
(11), IOE successfully embeds categories orthogonally on
the unit hypersphere. Following previous researches [Zhu
et al., 2021; Kim et al., 2022a; Magistri et al., 2024], we
also employed self-rotation augmentation. It is crucial to
highlight that IOE communicates an important information
to each task: to precisely delineate inter-class separation and
minimize overlap. This information interaction facilitates su-
perior feature discrimination.

4.3 Dynamic Aggregation Compensation (DAC)
DAC focuses on the degree of intra-class aggregation. Specif-
ically, as model plasticity decreases, the embeddings for sub-
sequent tasks tend to become increasingly diffuse. To coun-
teract this, DAC employs the aggregation patterns from pre-
vious tasks as a template, dynamically adjusting pressure to
maintain consistent aggregation. We introduce and minimize
an adaptive supervised contrastive loss to compensate for in-
adequate aggregation after the IOE has undergone a prede-
fined number of training iterations:

LDAC =− 1

N (t)

N(t)∑
i=1

1

|P (i)(t)|
×

∑
p∈P (i)(t)

log
exp(z

(t)
i · z(t)p /τ (t))∑N

j=1,j ̸=i exp(z
(t)
i · z(t)j /τ (t))

, (12)

where P (i)(t) is the set of positive samples for sample xi,
z
(t)
i and z

(t)
p are the embedding representations of sample

xi and its positive sample xp, τ (t) is an adaptive temper-
ature that controls the compensation intensity. Adjusting
temperature to optimize training for a single task is com-
mon; however, DAC aims to leverage information from in-
cremental tasks to select the optimal τ (t) for precise compen-
sation. Indeed, employing fixed hyperparameters in CIL is
suboptimal, as appropriate adjustments are necessary based
on factors such as task complexity [Semola et al., 2024;
Li et al., 2024a].

Naturally, we can estimate the concentration parameter κ
based on the distributional form of Eq. (10), and subsequently
employ this estimate as a degree of aggregation. However,
due to the presence of the Bessel function, an analytic so-
lution for κ is not feasible. In DAC, we adopt a more in-
tuitive approach by calculating the average cosine similarity
between samples and basis vector to quantify the degree of
aggregation ω(t), corresponding to the exponential term in
the vMF distribution. This measure is then used to dynami-
cally adjust the temperature relative to the historical average
degree of aggregation ωavg:

ω(t) =
1

N (t)

N(t)∑
i=1

z
(t)
i · µ(t)

c(i)
, τ (t) = τ (0) · ω

(t)

ωavg . (13)

DAC calculates the aggregation degree ω(t) via Eq. (13)
over a specified epoch and subsequently updates the tempera-
ture τ (t) for Eq. (12). If the aggregation degree of the current
task is insufficient, DAC applies a lower temperature to en-
hance the embedding intensity; conversely, if the aggregation
degree is adequate, the constraint is relaxed appropriately.
This balancing mechanism uses the degree of intra-class ag-
gregation as information to flow between tasks, thereby en-
suring that each class maintains a consistent and compact em-
bedding throughout the incremental learning process.

In summary, IOE and DAC enhance the inter-class sep-
aration and align the intra-class aggregation, constructing a
discriminative and consistent feature space through the inter-
action between tasks. The final optimization objective com-
prises three components:
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Method
CIFAR-100 Tiny-ImageNet ImageNet-Subset

Split-10 Split-20 Split-10 Split-20 Split-10 Split-20

Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast

EWC 49.14 31.17 31.02 17.37 24.01 8.00 15.70 5.16 39.40 24.59 26.95 12.78
LwF 53.91 32.80 38.39 17.44 45.14 26.09 32.94 15.02 56.41 37.71 40.23 18.64
PASS 47.86 30.45 32.86 17.44 39.25 24.11 32.01 18.73 45.74 26.40 31.65 14.38
FeTrIL 51.20 34.94 38.48 23.28 45.60 30.97 39.54 25.70 52.63 36.17 42.43 26.63
SSRE 47.26 30.40 32.45 17.52 38.82 22.93 30.62 17.34 43.76 25.42 31.15 16.25
EFC 58.58 43.62 47.36 32.15 47.95 34.10 42.07 28.69 59.94 47.38 49.92 35.75
LDC 59.50 45.40 - - 46.80 34.20 - - 69.40 51.40 - -
ADC 61.35 46.48 - - 43.04 32.32 - - 67.07 46.58 - -
SEED 62.04 51.42 57.42 42.87 - - - - 67.55 55.17 62.26 45.77

DCNet 75.84 65.40 71.52 58.43 57.00 48.37 50.05 36.75 76.82 67.82 69.12 50.31
±0.52 ±0.26 ±0.42 ±0.36 ±0.22 ±0.33 ±0.10 ±0.29 ±0.25 ±0.22 ±0.43 ±0.53

Table 1: Comparison with baselines on Split CIFAR-100, Tiny-ImageNet, and ImageNet-Subset. All methods are trained from scratch without
using replay samples. Our method is evaluated over five runs, with the mean performance and standard deviation reported. We emphasize the
optimal results in bold and denote the sub-optimal results in italics.

LTotal = LIOE + λ · LDAC + λHAT · LHAT, (14)

where λ and λHAT are hyper-parameters used to balance the
total loss. The algorithm for HAT and the procedure for DC-
Net are provided in Appendix B. We also discuss the connec-
tion between the algorithm and the theoretical analysis.

5 Experiment
5.1 Experiment Setting
Datasets. For a fair comparison with baselines, we uti-
lize three widely adopted datasets in CIL. The CIFAR-
100 [Krizhevsky et al., 2009] comprises 50k training images
and 10k test images, each sized 32×32 pixels, spanning 100
categories. The Tiny-ImageNet [Le and Yang, 2015], a subset
of ImageNet, includes 100k training images and 10k test im-
ages, each sized 64×64 pixels, covering 200 categories. The
ImageNet-Subset is a subset of the ImageNet (ILSVRC 2012)
[Russakovsky et al., 2015] with 100 categories, containing
approximately 130k training images, each sized 224×224 pix-
els. We split these datasets equally into 10-task and 20-task
sequences. This experimental setup is more challenging and
realistic because it does not rely on a large initial task.

Baselines. Since our focus is on the EF-CIL scenario,
we conduct comprehensive comparisons with both classi-
cal and state-of-the-art EF-CIL methods: EWC [Kirkpatrick
et al., 2017], LwF [Li and Hoiem, 2017], PASS [Zhu et
al., 2021], FeTrIL [Petit et al., 2023], SSRE [Zhu et al.,
2023], EFC [Magistri et al., 2024], LDC [Gomez-Villa et
al., 2025], ADC [Goswami et al., 2024], SEED [Rypeść
et al., 2023]. Furthermore, to substantiate the effectiveness
of our approach, we also compare it with several exemplar-
based methods, particularly various TIL+OOD approaches,
including: iCaRL [Rebuffi et al., 2017], DER++ [Buzzega
et al., 2020], DER [Yan et al., 2021], FOSTER [Wang et
al., 2022], BEEF [Wang et al., 2023], MORE [Kim et al.,
2022b], ROW [Kim et al., 2023], TPL [Lin et al., 2024].

Training. We employ a ResNet-18 model [He et al., 2016]
trained from scratch for all experiments. For comparison

baselines, we either reproduce the results using the hyper-
parameters specified in their source code repositories or di-
rectly adopt the existing results in state-of-the-art baselines.
To ensure a fair comparison, we also allow the baselines
to utilize self-rotation augmentation [Magistri et al., 2024].
For CIFAR-100 and Tiny-ImageNet, consistent with prior
work [Kim et al., 2022a], we utilize LARS [You et al., 2017]
training for 700 epochs with an initial learning rate of 0.1, in-
troducing the DAC component at epoch 400. For ImageNet-
Subset, we train for 100 epochs, incorporating DAC at epoch
50. In all the experiments, we set the τIOE = 0.05, τ (0) = 0.2
and configure the dimension of basis vector be 256.

Evaluation. We report two key metrics: Alast(%), which
represents the average accuracy after the last task; Ainc(%),
which denotes the average incremental accuracy across all
tasks. For further details on training and metric calculations,
please refer to Appendix C.

5.2 Main Comparison Results
Comparison with EF-CIL Approaches. Table 1 offers a
comprehensive comparison of various baselines across three
standard benchmark datasets. All methods were trained from
scratch without utilizing any replay samples. Our method
demonstrates significant performance among all baselines
with non-marginal improvements. Specifically, compared to
the second-best method, DCNet achieves improvements of
11.01% and 11.68% in average and final accuracy metrics, re-
spectively. This underscores the superior competitiveness of
DCNet within EF-CIL. This outstanding performance can be
attributed to our improvement of the TIL+OOD framework,
which fundamentally differs from the traditional EF-CIL ap-
proach and effectively overcomes the isolation between tasks.

Comparison with Exemplar-based Approaches. Table 2
presents a comparative analysis of our approach against sev-
eral state-of-the-art exemplar-based methods. All baselines
train from scratch while maintaining a buffer M of 2000 sam-
ples. DCNet achieves a performance improvement of 0.9%
and 5.5% over these advanced methods on two 10 tasks se-
quences. In the ImageNet-Subset-split10 task, our method
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Method M CIFAR100 Tiny-ImageNet ImageNet-Subset

iCaRL 51.4 28.3 50.98
DER++ 53.7 30.5 -
DER 64.5 38.3 66.85
FOSTER 62.5 36.4 67.68
BEEF 2k 60.9 37.9 68.78
MORE† 57.5 35.4 -
ROW† 58.2 38.2 -
TPL† 62.2 42.9 -

DCNet 0 65.4 48.4 67.82

Table 2: Comparison with exemplar-based baselines, where we re-
port the average accuracy denoted as Alast. †: These methods also
adopt the same TIL+OOD framework.

Component λ CIFAR100-10 ImageNet100-10
Ainc Alast Ainc Alast

HAT+CSI - 73.30 63.32 70.80 63.94
IOE - 73.85 63.80 73.55 64.86
IOE+DAC† 1.0 74.04 64.40 75.09 65.80
IOE+DAC†† 0.5 75.49 65.27 76.19 66.68
IOE+DAC†† 1.0 75.84 65.40 76.82 67.82
IOE+DAC†† 2.0 75.58 64.92 75.64 65.92

Table 3: Effectiveness of the core designs in our DCNet. HAT+CSI
serves as the foundation for our approach. †: DAC component with
fixed temperature; ††: DAC component with dynamic temperature.

slightly underperforms the state-of-the-art baseline. It is im-
portant to note that maintaining a large buffer is an effective
strategy for complex tasks. Specifically, buffering 297 sam-
ples from ImageNet consumes memory equivalent to that of
a ResNet-18 backbone network. Therefore, a fair compari-
son should account for these resource requirements [Zhou et
al., 2023]. Furthermore, we highlight that MORE, ROW, and
TPL are also TIL+OOD methods that explicitly use replay
samples to break task isolation. In contrast, our approach
constructs the interaction of information among tasks without
replay samples, and achieves performance that is competitive
with exemplar-based methods.

5.3 Algorithm Analysis
We evaluate the empirical effectiveness of DCNet. Table 3
presents the results of the ablation study and parametric anal-
ysis. HAT+CSI, a pioneering approach for TIL+OOD, is
introduced by Kim et al. [2022c] to demonstrate the fea-
sibility of the TIL+OOD framework; however, it does not
consider the information interaction between tasks. Conse-
quently, HAT+CSI can be considered a precursor to DCNet.

Building on this, Table 3 provides results for three config-
urations: IOE, using only the IOE component; IOE+DAC†,
combining the fixed DAC component with IOE; IOE+DAC††,
combining the dynamic DAC component with IOE using dif-
ferent λ for Eqs. (14). The results indicate that our methods
are interdependent and achieve superior performance by fully
utilizing available information. It is noteworthy that the per-
formance gains of DCNet are particularly pronounced in the
more complex ImageNet-Subset task.

Figure 2 visualizes the feature space of a single task, where
(a) (b) present the results of HAT+CSI and (c) (d) repre-

(a) (b)

(c) (d)

Figure 2: t-SNE visualization of the embedding space, where a color
represents a category. (a) (b) illustrate the embedding results for
HAT+CSI; and (c) (d) present results for our method.
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Figure 4: Average Mahalanobis
distance between classes.

sent our method. Each group visualizes three distinct classes
in a three-dimensional space and an entire task in a two-
dimensional space. Attribute to the superior inter-class sepa-
ration by IOE, the feature space of DCNet is more discrimi-
native. Figure 3 illustrates the decreasing trend of intra-class
aggregation ω(t) as tasks progress, due to diminished model
plasticity. To counteract this effect, the DAC component dy-
namically adjusts the compensation intensity based on the
degree of aggregation from previous tasks, thereby stabiliz-
ing the change curve of intra-class aggregation. Finally, Fig-
ure 4 presents the average inter-class Mahalanobis distance
across the incremental sequence. By leveraging the two com-
ponents, DCNet constructs a feature space that is both dis-
criminative and consistent.

6 Conclusion
We introduce a novel approach of TIL+OOD framework in
the context of EF-CIL, leveraging information from incre-
mental sequence to overcome task isolation. Theoretical anal-
ysis reveals that inter-class separation and intra-class aggre-
gation are crucial for effective OOD detection in an incre-
mental sequence. Our proposed DCNet, informed by these
insights, preserves the discriminability and consistency of the
feature space via its IOE and DAC components. Extensive ex-
periments validate the competitiveness of our method. Future
research could explore scenarios with blurry task boundaries.
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Valeriya Khan, Tomasz Trzcinski, Bartosz Michał
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