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Abstract
We study fair division of indivisible goods under
the maximin share (MMS) fairness criterion in set-
tings where agents are grouped into a small num-
ber of types, with agents within each type having
identical valuations. For the special case of a sin-
gle type, an exact MMS allocation is always guar-
anteed to exist. However, for two or more distinct
agent types, exact MMS allocations do not always
exist, shifting the focus to establishing the exis-
tence of approximate-MMS allocations. A series
of works over the last decade has resulted in the
best-known approximation guarantee of 3

4 + 3
3836 .

In this paper, we improve the approximation guar-
antees for settings where agents are grouped into
two or three types, a scenario that arises in many
practical settings. Specifically, we present novel
algorithms that guarantee a 4

5 -MMS allocation for
two agent types and a 16

21 -MMS allocation for three
agent types. Our approach leverages the MMS par-
tition of the majority type and adapts it to provide
improved fairness guarantees for all types.

1 Introduction
Fair division of resources is a fundamental problem in vari-
ous multi-agent settings. In this work, we focus on the dis-
crete setting, where a set of indivisible goods needs to be par-
titioned among agents with additive preferences. The max-
imin share (MMS) is a widely studied fairness notion in this
context. An allocation is said to satisfy MMS fairness if ev-
ery agent receives a bundle of goods that they value at least
their MMS value. The MMS value for an agent represents
the maximum value they can guaranteee for themselves by
partitioning all goods into n bundles (one for each agent) and
receiving the least-valued bundle, where n is the total num-
ber of agents. Agents with identical valuation functions are
considered the same type.

While MMS allocations provide a strong fairness guaran-
tee for all agents, they are not guaranteed to exist for all
instances [Procaccia and Wang, 2014]. Notably, when all
agents have identical valuation functions—i.e., they belong
to a single type—an MMS allocation is trivially guaranteed.

However, in settings with three or more agents and just two
distinct types, MMS allocations may not always exist [Feige
et al., 2021].

These non-existence results have shifted the focus toward
approximate MMS guarantees. In this framework, an alloca-
tion is called α-MMS if every agent receives a bundle they
value at least α times their MMS value. Over the last decade,
extensive research has established the existence of allocations
with an approximation guarantee of 3

4 + 3
3836 -MMS; see,

e.g., [Barman and Krishnamurthy, 2020; Ghodsi et al., 2018;
Garg et al., 2019; Amanatidis et al., 2017a; Kurokawa et al.,
2018; Garg and Taki, 2021; Akrami and Garg, 2024]. This re-
mains the best-known guarantee, even in settings with agents
grouped into two distinct types.

Improving MMS approximations has proven to be a signifi-
cant challenge, with progress being relatively slow. It remains
unclear how to substantially improve the approximation ratio
beyond 3

4 for all instances. The existence of 3
4 -MMS was first

established in [Ghodsi et al., 2018], and despite extensive ef-
forts by multiple researchers, the ratio has only been slightly
improved over the past eight years. This naturally leads to
the question: Can we achieve better approximation ratios for
intermediate cases where the number of agent types lies be-
tween 1 and n?

In this paper, we address this question affirmatively by pro-
viding novel algorithms that achieve a 4

5 -MMS allocation for
two agent types, and a 16

21 -MMS allocation for three agent
types. Beyond their theoretical significance, these results
hold practical importance, as many real-world resource al-
location scenarios involve agents grouped into a few distinct
categories based on shared preferences or needs. For exam-
ple, co-working spaces may group users as freelancers, star-
tups, or larger companies, while land allocation might involve
agricultural, residential, or commercial priorities. These
cases often involve just two or three types of agents, mak-
ing it crucial to design allocation mechanisms that exploit this
structure for better outcomes. These special cases have also
been explored in several prior works, often motivated by ad-
ditional intriguing applications; see, e.g., [Garg et al., 2023;
Garg et al., 2024; Ghosal et al., 2025].

A key innovation in our work lies in leveraging the 1-
MMS partition for valuation function of the majority type,
the type with the largest number of agents. We adapt this
partition to achieve better approximations. This departs sig-
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nificantly from traditional methods that typically begin with
variations of bag-filling algorithms. Similar to [Akrami and
Garg, 2024], we aim to ensure that each allocated bag con-
tains exactly one high-valued item, enabling tighter bounds
for subsequent bag-filling steps. However, rather than con-
structing these bags from scratch, we modify the initial MMS
partition of the majority type.

Specifically, if some bags contain multiple high-valued
items while others have none, we swap items to ensure that
every bag contains exactly one high-valued item. The details
of this process are provided in Section 3. While this process
may compromise the 1-MMS property for the majority type,
we ensure that the value of each modified bag remains at least
4
5 times the MMS for the majority type. Therefore, any of
these bags can be allocated to the agents from majority type,
but the other types will determine which bags. Essentially,
we prioritize assigning bags that are considered low-valued
by the other types to the majority type, thereby maximizing
the remaining value for the non-majority types.

When there are three types of agents, the allocation prob-
lem becomes more complicated, as the two non-majority
types might disagree on which bags should be allocated to
the majority type. In such cases, we categorize the bags into
four classes based on their value to the non-majority types:
valuable to both, valuable to one but not the other, valuable
to neither. By comparing the number of bags in these cate-
gories with the number of agents in each type, we develop
tailored solutions for all possible cases. The most challeng-
ing scenario arises when many bags are low-valued for both
non-majority types, leaving them undesired by either. In such
instances, we aggregate all items from these bags and employ
a sophisticated bag-filling algorithm to ensure that all agents
receive allocations that meet their MMS requirements. The
algorithms that achieve improved approximation guarantees
for scenarios with two or three agent types are detailed in
Section 4.

While our approach is effective for instances with two
and three types, it faces scalability challenges as the num-
ber of types increases. Specifically, the number of bag cate-
gories grows significantly, and the resulting case analysis be-
comes increasingly intricate. Therefore, this paper focuses
exclusively on scenarios involving two or three agent types.
Notably, barring the MMS value computation for each type
through a PTAS [Woeginger, 1997], all our algorithms run in
polynomial time in n and m.

In Section 2, we give formal definitions, notations, and pre-
liminaries. Proofs for all claims, lemmas, propositions, and
theorems marked with a † can be found in the supplementary
material.

1.1 Additional Related Work
Given the intense study of the MMS fairness notion and
its special cases and variants, we focus here on closely re-
lated work. Computing the MMS value of an agent is NP-
hard. However, a Polynomial Time Approximation Scheme
(PTAS) exists for this computation [Woeginger, 1997]. As
noted earlier, MMS allocations are not guaranteed to exist
for more than two agents with two distinct types [Procaccia
and Wang, 2014; Feige et al., 2021]. This non-existence has

motivated the exploration of approximate MMS allocations
to ensure their existence. A series of works has established
the current best approximation factor of 3

4 + 3
3836 for all in-

stances [Akrami and Garg, 2024].
Several works have examined special cases. For example,

when m ≤ n + 3, where m is the total number of goods,
an MMS allocation always exists [Amanatidis et al., 2017b].
This bound was later improved to m ≤ n + 5 [Feige et al.,
2021]. For n = 2, MMS allocations always exist [Bouveret
and Lemaı̂tre, 2016]. For n = 3, the MMS approxima-
tion was improved from 3

4
[Procaccia and Wang, 2014] to 7

8
[Amanatidis et al., 2017b] to 8

9
[Gourvès and Monnot, 2019],

and then to 11
12

[Feige and Norkin, 2022a]. For n = 4, 4
5 -

MMS allocations exist [Ghodsi et al., 2018]. For n ≥ 5, the
best known factor is the general 3

4 +
3

3836 bound [Akrami and
Garg, 2024]. For the special case of (non-personalized) bi-
valued instances, MMS allocations are known to exist [Feige,
2022]. Finally, given only three agents, an 11

12 -MMS ex-
ists [Feige and Norkin, 2022b], and given two agents, the
cut-and-choose protocol guarantees a 1-MMS allocation.
Chores The MMS notion can naturally be defined for the
fair division of chores, where items provide negative value.
As with goods, MMS allocations for chores do not always
exist [Aziz et al., 2017; Feige et al., 2021]. However, substan-
tial research on approximate MMS allocations for chores has
yielded significant results. Notable works [Aziz et al., 2017;
Barman and Krishnamurthy, 2020; Huang and Lu, 2021;
Huang and Segal-Halevi, 2023] have led to the existence of
13
11 -MMS allocations. For three agents, 19

18 -MMS allocations
exist [Feige and Norkin, 2022a], and for factored instances,
MMS allocations are guaranteed [Garg et al., 2025]. Ad-
ditionally, for the special case of personalized bivalued in-
stances, 15

13 -MMS allocations exist [Garg et al., 2025].

2 Preliminaries
In this paper, we primarily follow the notations used in previ-
ous work [Akrami et al., 2023] to be consistent with the lit-
erature. However, beginning with Definition 6, we introduce
new notations that are specific to our work.

For any positive integer n, let [n] = {1, 2, . . . , n}, and for
two positive integers i, j where i < j, let [i, j] = {i, i +
1, · · · , j}. A fair division instance I = (N,M,V) consists
of a set of agents N = [n], a set of goods M = [m], and
a vector of valuation functions V = (v1, v2, . . . , vn). Each
valuation function vi : 2

M → R≥0 represents agent i’s pref-
erence over subsets of goods. We assume additive valuations,
so for all S ⊆ M , vi(S) =

∑
g∈S vi({g}). For ease of nota-

tion, for all g ∈ M , we use vi(g) or vi,g instead of vi({g}).
Likewise, throughout this paper, we use the notation vi(g, g

′)
as a shorthand for vi({g, g′}).

For a set S of goods and a positive integer d, let Πd(S)
be the set of all partitions of S into d bundles. The maximin
share (MMS) value for a valuation v is defined as:

MMSdv(S) = max
P∈Πd(S)

d
min
j=1

v(Pj).

When the instance I = (N,M,V) is clear from the con-
text, we use the notation MMSnvi

(M) as MMSi(I) or MMSi.
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For agent i, an MMS partition P i = (P i
1, P

i
2, . . . , P

i
n) satis-

fies MMSi = minj∈[n] vi(P
i
j ). An allocation X is MMS

if vi(Xi) ≥ MMSi for all i ∈ N . More generally, for
0 < α ≤ 1, an allocation X is α-MMS if vi(Xi) ≥ α ·MMSi
for all i ∈ N .

For a list of items H , let |H| denote the number of items in
the list. Given positive integers i ∈ [|H|] and j ∈ [|H|] with
i < j, let H[i : j] denote the subset of items in H from the
i-th to the j-th position, inclusive. Also, let H[−1] represent
the last item in the list.

Definition 1 (Ordered instance). An instance I = (N,M,V)
is ordered if there exists a permutation of the goods
(g1, g2, . . . , gm) such that for all agents i ∈ N , vi(g1) ≥
vi(g2) ≥ . . . ≥ vi(gm). For any fair division instance
I = ([n], [m],V), the transformation order(I) produces an
ordered instance I ′ = ([n], [m],V ′), where for each i ∈ [n]
and j ∈ [m], v′i(j) is the jth largest value in the multiset
{vi(g) | g ∈ [m]}.

Theorem 1 (Theorem 2 in [Barman and Krishnamurthy,
2020]). Given an instance I and an α-MMS allocation of
order(I), one can compute an α-MMS allocation of I in
polynomial time.

Theorem 1 implies the transformation order is α-MMS-
preserving. For ordered instances I, we assume without loss
of generality that vi(1) ≥ vi(2) ≥ . . . ≥ vi(m) for all
i ∈ [n].

Definition 2 (Normalized instance). An instance I =
(N,M,V) is normalized if for all agents i ∈ N and all bun-
dles P i

j in an MMS partition of i, vi(P i
j ) = 1. For any fair

division instance I, the transformation normalize(I) com-
putes a normalized instance I ′ = (N,M,V ′) by determining
the MMS partition P i for each agent i ∈ N and rescaling val-
uations: for all j ∈ [n] and g ∈ P i

j , set v′i,g = vi,g/vi(P
i
j ).

Lemma 1 (Lemma 4 in [Akrami et al., 2023]). Let I ′ =
([n], [m],V ′) = normalize(I = ([n], [m],V)). Then for
any allocation A, vi(Ai) ≥ v′i(Ai) ·MMSnvi

for all i ∈ N .

Note that in a normalized instance, the MMS value for
every agent is 1. Consequently, Lemma 1 establishes that
normalize is α-MMS-preserving. This means that if an allo-
cation A is an α-MMS allocation for the normalized instance
I ′, then A is also an α-MMS allocation for the original in-
stance I. Note that in a normalized instance, the total value
of all items satisfies v′i([m]) =

∑
j∈[n] v

′
i(P

i
j ) = n for ev-

ery agent i ∈ [n]. Also, for each agent i and for every MMS
partition Q of agent i, we have v′i(Qj) = 1 ∀j ∈ [n].

Given an instance I, a reduction rule R(I) allocates a sub-
set S ⊆M of goods to an agent i and produces a new instance
I ′ = (N \ {i},M \ S,V).

Definition 3 (Valid reductions). A reduction rule R is a valid
α-reduction if, for R(I) = (N ′,M ′,V), where {i} = N \N ′

and S = M \M ′:

1. vi(S) ≥ α ·MMS|N |
vi

(M), and

2. MMS|N |−1
vj

(M ′) ≥ MMS|N |
vj

(M) for all j ∈ N ′.

If R is a valid α-reduction and an α-MMS allocation A
exists for R(I), then an α-MMS allocation for I can be con-
structed by allocating S to i and distributing the remaining
goods as in A. We now describe three standard transforma-
tions, known as reduction rules, and demonstrate their valid-
ity.

Definition 4 (Reduction rules). Consider an ordered fair di-
vision instance (N,M, v), where M := {g1, . . . , g|M |} and
vi,g1 ≥ . . . ≥ vi,g|M| for every agent i. Define

1. S1 := {g1}.
2. S2 := {g|N |, g|N |+1} if |M | ≥ |N |+ 1, else S2 := ∅.
3. S3 := {g2|N |−1, g2|N |, g2|N |+1} if |M | ≥ 2|N |+1, else

S3 := ∅.
Reduction rule Rk(α): If vi(Sk) ≥ α · MMSi for some
agent i, then give Sk to i. A fair division instance is called
Rk(α)-irreducible if Rk(α) cannot be applied, i.e., vi(Sk) <
α ·MMSi for every agent i. An instance is called totally-α-
irreducible if it is Rk(α)-irreducible for all k ∈ [3].

Definition 5. The reduceα operation takes an ordered fair
division instance as input and iteratively applies the reduc-
tion rules R1(α), R2(α), and R3(α) in any order until the
instance becomes totally-α-irreducible.

Lemma 2 (Lemma 3.1 in [Garg and Taki, 2021]). For an
ordered instance and for 0 ≤ α ≤ 1, R1(α), R2(α), and
R3(α) are valid α-reductions.

Lemma 3 (Lemmas 2 and 3 in [Akrami et al., 2023]). Let
I := ([n], [m],V) be an ordered instance where vi,1 ≥ . . . ≥
vi,m for each agent i. If I is totally-α-irreducable, then m ≥
2n, and for each agent i and every good j > (k − 1)n, we
have vi,j < α ·MMSi/k.

Lemma 4 (Lemma 6 in [Akrami et al., 2023]). Let
([n], [m],V) be an ordered and normalized fair division in-
stance. For all k ∈ [n] and agent i ∈ [n], if vi(k) + vi(2n−
k + 1) > 1, then vi(2n− k + 1) ≤ 1/3 and vi(k) > 2/3.

Definition 6. For a fair division instance I, define Îα :=
order(normalize(reduceα(order(I)))) as the ordered,
normalized, totally-α-irreducible (ONIα) instance of I.

Lemma 5. † Let I be a fair division instance, and Îα be the
ONIα instance of I. Îα is ordered, normalized, and totally-
α-irreducible. Furthermore, the transformation of I to Îα is
α-MMS-preserving, i.e., a α-MMS allocation of Îα can be
used to obtain a α-MMS allocation of I.

Definition 7. Let Îα := ([n], [m],V) be an ONIα instance,
where vi,1 ≥ vi,2 ≥ . . . ≥ vi,m for all i ∈ [n]. The items are
categorized into high-valued, middle-valued, and low-valued
items as follows:

1. High-valued (HV) items: HV = [n].
2. Middle-valued (MV) items: MV = [n+ 1, 2n].
3. Low-valued (LV) items: If m = 2n1, then LV = ∅;

otherwise, LV = [2n+ 1,m].

1By Lemma 3, m ≥ 2n.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Corollary 1 (of Lemma 3). In an ONIα instance Îα, for each
agent i and every good j: if j ∈ HV , then vi(j) < α; if j ∈
MV , then vi(j) < α/2; and if j ∈ LV , then vi(j) < α/3.

Definition 8 (Single-High-Valued (SHV) Partition). Given
an ONIα instance Îα := ([n], [m],V), a partition of [m],
A = {A1, A2, . . . , An} is a Single-High-Valued (SHV) par-
tition if each bundle in A contains exactly one HV item.

Definition 9 (SHV α-MMS Partition). Given an ONIα in-
stance Îα := ([n], [m],V), a partition of [m], A =
{A1, A2, . . . , An} is an SHV α-MMS partition if A is an
SHV partition and satisfies vi(Ai) ≥ α for all i ∈ [n].

Definition 10. Agents are classified into types based on their
valuation functions. All agents sharing the same valuation
function v : 2m → R≥0 are of the same type.

Definition 11. A k-type instance I = ([n], [m],V) is a fair
division instance involving k distinct agent types, character-
ized by the set of valuation functions V = {v1, v2, . . . , vk}.
Each agent’s valuation function belongs to this set, i.e., Vi ∈
V for all i ∈ [n]. For each j ∈ [k], type j agents are defined
as those whose valuation function is vj .

Remark 1. A k-type instance can be fully described
by I := ([n], [m], {T1, . . . , Tk}, {v1, . . . , vk}), where
{v1, v2, . . . , vk} represents the set of valuation functions for
the k types, and Tj denotes the number of type j agents for
any j ∈ [k]. Since each agent belongs to exactly one of the k
types,

∑
j∈[k] Tj = n. We also assume that the type sizes are

ordered as T1 ≥ T2 ≥ · · · ≥ Tk.

Claim 1. Let I be a k-type instance. The ONIα instance of
I, Îα is a k′-type instance where k′ ≤ k.

Proof. In the instance I, agents of the same type share
the same valuation function. Consequently, they experi-
ence the same transformations under the operations order,
normalize, and reduceα, and retain the same valuation
function in Îα. However, agents from different types may
converge to the same valuation function; for instance, if the
valuations of some types are permutations of the same set
of m numbers, they become identical after the order trans-
formation. Consequently, the number of types can only de-
crease, and Îα becomes a k′-type instance where k′ ≤ k.

Definition 12. In an α-MMS problem, given a k-type ONIα
instance, a type i agent is said to claim a bundle of items B
if vi(B) ≥ α. Furthermore, a type i is considered to claim a
bundle if any type i agent claims the bundle.

In Sections 3 and 4.1, where we study the 4
5 -MMS prob-

lem, type i claims a bundle B if vi(B) ≥ 4
5 . In Section

4.2, as we consider the 16
21 -MMS problem, type i claims B if

vi(B) ≥ 16
21 .

3 SHV 4
5
-MMS Partition of Same-type Agents

Given a 1-type ONIα instance, where v represents the com-
mon valuation function shared by all agents, the objective is
to find an SHV 4

5 -MMS partition. Since all agents belong to
the same type, the MMS value is identical for each agent, i.e.,

MMSi = MMSnv for all i ∈ [n]. Moreover, having identi-
cal valuations implies an MMS partition for any single agent
serves as the MMS partition for the entire instance.

The PTAS described in [Woeginger, 1997] for computing
the MMS partition of a single agent can be utilized to obtain
a (1 − ϵ)-MMS partition in poly( 1ϵ ) time. By choosing ϵ =

min(0.04, 1
5n ), we can compute a (1 − ϵ)-MMS partition in

polynomial time. However, such a partition may include bags
with multiple HV items, which violates the current problem’s
constraints. To address this, we design Algorithm 1 to modify
the initial partition, ensuring an SHV 4

5 -MMS solution for
same-type agents.

Main ideas of Algorithm 1: At a high level, A represents
the set of flawed bags, while A′ consists of correct bags. A
bag B is deemed correct if it contains exactly one HV item
and v(B) ≥ 4

5 ; otherwise, it is considered flawed. As long
as there exists at least one flawed bag, we iteratively select a
subset of flawed bags and ensure that at least one of them is
corrected in each iteration.

Algorithm 1 SHV 4
5 -MMS of same-type agents

1: Input: A 1-type ONIα instance I = ([n], [m], {n}, {v}),
α = 4

5

2: Output: SHV 4
5 −MMS.

3: ϵ← min(0.04, 1
5n ).

4: A0 ← (1− ϵ)−MMS partition of an agent.
5: A′ ← bags in A0 with one HV item.
6: A← A0 \A′.
7: while |A′| < n do
8: Let a ∈ A be an arbitrary bag with k > 1 HV items
9: Let H = [h1, · · · , hk] be the list of HV items in a

sorted in an ascending order of valuation.
10: Let B = {b1, · · · , bk−1} ⊂ A be k − 1 bags without

any HV items.
11: A← A \ {a ∪B}.
12: Let G = {g1, · · · , gk−1} be k − 1 highest valued

items in ∪b∈Bb.
13: Swap each HV item in H[1 : k − 1] with a unique

item in G.
14: Denote updated bags as ā, b̄1, · · · , b̄k−1.
15: if v(ā) < 4

5 then
16: P ← items in ∪k−1

j=1 b̄j excluding HV items H[1 :

k − 1].
17: Construct k − 1 new empty bags B′ =
{b′1, · · · , b′k−1}

18: Put one HV item from H[1 : k − 1] in each bag
of B′.

19: From P fill each bag in ā∪B′ until it is claimed.
20: Add ā and all bags of B′ to A′.
21: else
22: Add ā and any bag in {b̄1, · · · , b̄k−1} containing

one HV to A′, and the rest to A.
return A′

Claim 2. † At any point in the algorithm, the following in-
variants hold:

1. The total number of bags satisfies |A|+ |A′| = n.
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2. For any a ∈ A, a does not contain exactly one HV item
and v(a) ≥ 1− ϵ.

3. For any a ∈ A′, a contains exactly one HV item and
v(a) ≥ 4

5 .
4. If there exists a bag a ∈ A that contains k HV items,

then there must be at least k − 1 bags in A that do not
contain any HV items.

Lemma 6. † If in some iteration of the while loop, after the
swapping step, v(ā) < 4

5 , the algorithm never runs out of
items while performing bag-filling in line 19.

Combining these results, we arrive at the following theorem.

Theorem 2. Given a 1-type ONIα instance, Algorithm 1 re-
turns an SHV 4

5 -MMS partition.

4 Improved MMS Approximations
This section presents the main results, including Theorems 4
and 5. Together with Lemma 5 and Claim 1, these results lead
to the following general theorem:

Theorem 3. For a k-type fair division instance I, the ONIα
instance of I results in a k′-type instance with k′ ≤ k, then:

• If k′ = 2, a 4
5 -MMS allocation exists.

• If k′ = 3, a 16
21 -MMS allocation exists.

Corollary 2. For any 2-type fair division instance, a 4
5 -MMS

allocation exists.

Corollary 3. For any 3-type fair division instance, a 16
21 -MMS

allocation exists.

4.1 4
5 -MMS for 2-type ONIα Instance

Given a 2-type ONIα instance, Algorithm 2 first constructs
a 1-type ONIα instance Î based on the valuation function of
the majority type. It computes the SHV 4

5 -MMS partition of
Î and sorts the n bags in ascending order according to the
minority type’s valuation. The first T1 bags are assigned to
type 1 agents. The remaining T2 bags are assigned to type 2
agents if all these bags are claimed by type 2 agents. If any
bag is left unclaimed, the items from all T2 bags are pooled
together. From this pool, each of the T2 HV items is placed
into a new empty bag, and the bags are filled until each of
them is claimed by type 2 agents. This process is called bag-
filling.

Theorem 4. Given a 2-type ONIα instance, Algorithm 2 re-
turns a 4

5 -MMS.

Proof. Note that α = 4
5 . In Algorithm 2, first we obtain A,

an SHV 4
5 -MMS partition of Î. Note that type 1 agents claim

all bags in A. Then type 2 sorts all the n bags of A in an
ascending order of valuation, therefore v2(Aj) ≤ v2(Aj+1)

for j ∈ [n − 1]. Let F = {Aj}T1
j=1 be the collection of the

first T1 bags. Each bag in F is assigned to a unique type 1
agent. If v2(AT+1) ≥ α, since bags are sorted in ascend-
ing order, v2(Aj) ≥ α for all j ∈ [T1 + 1, n]. Therefore,
all the remained bags are claimed by type 2, and we’ll assign
them to the remained agents. In this case the assignment is

Algorithm 2 4
5 -MMS for 2 types

1: Input: 2-type ONIα instance I =
([n], [m], {T1, T2}, {v1, v2}), α = 4

5 .
2: Output: 4

5−MMS.
3: Define a 1-type ONIα instance Î = ([n], [m], {n}, {v1})
4: Let A be the SHV 4

5−MMS partition after running Algo-
rithm 1 on Î.

5: Sort bags of A by type 2 in an ascending order of valua-
tion.

6: Assign the first T1 bags to type 1 agents.
7: if type 2 agents claim all remaining bags then
8: Assign all the remained bags to type 2 agents.
9: else

10: P ← items from all remained bags.
11: Put each HV item of P in a new bag.
12: From the remaining items in P , fill each new bag un-

til a type 2 agent claims it, then assign it to her.

a 4
5−MMS as all the assigned bags are claimed by the corre-

sponding agents.
On the other hand if v2(AT+1) < α, items in the remained

bags are pooled in P , and since valuations are in an ascending
order, v2(Aj) < α for all j ∈ [T1]. Therefore∑

a∈F

v2(a) < T1α. (1)

Note that since each bag in A has exactly one HV item, we
have exactly n − T1 HV items in P , and as T2 = n − T1,
the number of remained HV items is exactly the same as the
number of type 2 agents. We construct T2 new empty bags,
and by putting each HV item in a separate bag, the remained
pool of items will not have any HV item any more. By Corol-
lary 1 the value of each remained item in the pool is at most
α
2 . When filling a bag until type 2 claims it, its value for
type 2 cannot exceed 3α

2 for the following reason; before the
last item was added, the bag’s value was less than α, and the
last item contributes at most α

2 . Let Anew be the set of bags
created during the bag filling phase. We have that∑

a∈Anew

v2(a) ≤ T2
3α

2
. (2)

Set of bags assigned to all agents is {Aj}T1
j=1∪Anew. Putting

Eq. (1) and Eq. (2) together we obtain∑
a∈{Aj}

T1
j=1∪Anew

v2(a) < T1α+ T2
3α

2

≤ n

2
α+

n

2
· 3α
2

= n

(3)

where we used α = 4
5 , T1 + T2 = n and T1 ≥ n

2 since
type 1 agents are the majority by assumption. The total value
of the assigned bags is upper bounded by n, the total avail-
able value in a normalized instance. Therefore, we never
run out of goods while bag filling or, equivalently, all type
2 agents receive a claimed bag. Therefore, this assignment is
a 4

5−MMS.
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4.2 16
21−MMS for 3-type ONIα Instance

Given a 3-type ONIα instance, Algorithm 3 first constructs
a 1-type ONIα instance Î based on the valuation function of
the majority type, and computes the SHV 4

5 -MMS partition
of Î, A. For any choice of α, each bag in A is either liked
by more than α by both types 2 and 3, or just one of them, or
none. Based on the valuations of types 2 and 3, we partition
the n bags in A into four classes C1, C2, C3 and C4 using
Algorithm 4. By choosing α = 16

21 , type 2 agents claim all
the bags in C2 and C4, type 3 agents claim all the bags in C3

and C4, and type 1 agents claim all the bags in A =
⋃4

i=1 Ci.
Finally, by comparing the number of bags in these classes

with the number of agents of each type, we identify four
cases. The specific approach for handling each case to
achieve a 16

21 -MMS is detailed in Algorithm 3. Notably, the
last case addressed in this algorithm presents the greatest
challenge and depends on executing Algorithm 5. We ana-
lyze each case of the algorithm separately and show that, in
all four cases, Algorithm 3 guarantees a 16

21 -MMS allocation.
Consequently, we derive the following theorem.

Theorem 5. Given a 3-type ONIα instance, Algorithm 3 re-
turns a 16

21 -MMS.

Case 1: If |C2| > T2 and |C3| > T3

After allocating T2 bags from C2 to all type 2 agents and T3

bags from C3 to all type 3 agents, the remaining bags are
assigned to all type 1 agents. Since all bags in A are claimed
by type 1 agents, all bags in C2 by type 2 agents, and all bags
in C3 by type 3 agents, this allocation achieves a 16

21 -MMS
guarantee.

Case 2: If ∃i, i′ ∈ {2, 3} s.t. i ̸= i′, |Ci| > Ti and
|Ci′ | ≤ Ti′

Let A′ denote the set of Ti arbitrary bags allocated to type i
agents from Ci. After this allocation, only two types of agents
remain. Type 1 agents will receive T1 bags from A \ A′. As
each of the bags in A has a value of at least 4

5 for type 1
agents, all of them are claimed by these agents. Since all the
bags in A′ are valued at less than α by type i′ agents, the loss
incurred by type i′ is minimal. Essentially, this scenario is
equivalent to considering type i′ agents forfeiting these bags
to type 1 agents in a two type setting where the number of
type 1 agents is T1 + Ti.

Lemma 7. † If ∃i, i′ ∈ {2, 3} s.t. i ̸= i′, |Ci| > Ti and
|Ci′ | ≤ Ti′ , Algorithm 3 returns a 16

21 -MMS.

Case 3: If |C2| ≤ T2, and |C3| ≤ T3, |C1| ≤ T1

After assigning all bags in C1, C2, C3 to some agents of types
1, 2, 3 respectively, we are remained with bags in C4 that are
claimed by all types. Hence we can assign them to any re-
maining agents, and obtain a 16

21 -MMS assignment.

Case 4: If |C2| ≤ T2, and |C3| ≤ T3, |C1| > T1

Definition 13. A type is considered saturated if every agent
of that type has received a claimed bag in the assignment;
otherwise, it is unsaturated.

Definition 14. A bag B is safe for type i agents if vi(B) ≤ 1.

Algorithm 3 16
21 -MMS for 3 types

1: Input: A 3-type ONIα instance I =
([n], [m], {T1, T2, T3}, {v1, v2, v3}), α = 16

21 .
2: Output: 16

21−MMS.
3: Define a 1-type ONIα instance Î = ([n], [m], {n}, {v1})
4: Let A be the SHV 4

5−MMS partition after running Algo-
rithm 1 on Î.

5: Using Algorithm 4, partition bags of A into
C1, C2, C3, C4.

6: if |C2| > T2, |C3| > T3 then // Case 1
7: Assign T2 bags from C2 to all type 2 agents.
8: Assign T3 bags from C3 to all type 3 agents.
9: Assign the remained bags to all type 1 agents.

10: if ∃i, i′ ∈ {2, 3}s.t.i ̸= i′, |Ci| > Ti, |Ci′ | ≤ Ti′ : then
// Case 2

11: Assign Ti bags of Ci to all type i agents.
12: Type i′ sorts all remained bags in an ascending order

of valuation.
13: Assign the first T1 bags to type 1 agents.
14: if all remained bags are claimed by type i′ then
15: Assign all the remained bags to type i′ agents.
16: else
17: P ← items from all remained bags.
18: Put each HV item of P in a new bag.
19: Fill each new bag with remaining items from P

until a type i′ agent claims it, then assign it to her.
20: else
21: if |C1| ≤ T1 then // Case 3
22: Assign all bags in C1 to some type 1 agents.
23: Assign all bags in C2 to some type 2 agents.
24: Assign all bags in C3 to some type 3 agents.
25: Assign all remaining bags in C4 to any remaining

agents.
26: if |C1| > T1 then // Case 4
27: Assign T1 bags in C1 to all agents of type 1.
28: P ← items from all remained bags.
29: Let H = HV ∩P , M = MV ∩P , L = LV ∩P .
30: Run Algorithm 5 with α = 16

21 .

After assigning T1 bags in C1 to all agents of type 1, type 1
is saturated. Let H , M , and L denote the lists of high-valued,
middle-valued, and low-valued items, respectively, that
remain in the remaining n − T1 bags. Each list is ordered
in descending order of valuation. Since each assigned bag
to type 1 had exactly one HV item, |H| = n − T1. On the
other hand, since any number of middle-valued items might
remain after the assignment of bags to the majority type,
0 ≤ |M | ≤ n. Finally, Algorithm 5 is invoked.

Main Ideas of Algorithm 5 The algorithm consists of two
parts. Initially, both type 2 and type 3 are active and unsatu-
rated. A type remains active until it meets one of the condi-
tions specified in lines 13 or 16, or until it becomes saturated
in the first part of the algorithm (by line 21). Once a type be-
comes inactive, it stays inactive; if none of these conditions
are met, it may never become inactive.
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Algorithm 4 Clustering bags of A

1: Input: A = {A1, · · · , An}, α = 16
21 .

2: Output: A partition of bags in A into 4 classes
C1, C2, C3, C4.

3: for i ∈ {1, 2, 3, 4} do Ci ← ∅
4: for a ∈ A do
5: if v2(a) < α, v3(a) < α then C1 ← C1 ∪ {a}.
6: if v2(a) ≥ α, v3(a) < α then C2 ← C2 ∪ {a}.
7: if v2(a) < α, v3(a) ≥ α then C3 ← C3 ∪ {a} .
8: if v2(a) ≥ α, v3(a) ≥ α then C4 ← C4 ∪ {a} .

As the algorithm proceeds, items are grouped into bundles
that are either immediately assigned to agents or saved for
future assignment. In either case, the bundled items become
unavailable and are removed from H , M , and L, thereby re-
ducing the number of available items. Consequently, at any
given stage, H , M , and L represent the currently available
high-valued, middle-valued, and low-valued items. The algo-
rithm operates in two parts, as described below.

1. First Part: As long as there is an active type and re-
maining high-valued and middle-valued items, the algo-
rithm constructs certain bundles that are safe for all ac-
tive types. Each bundle contains one HV item and one
MV item. The bags are either:

• Assigned to an agent from an unsaturated type that
claims the bag, or

• Saved in F for the second part if no unsaturated
type claims the bag.

This process continues until no high-valued or middle-
valued items remain, or no active types remain. Given
a set of available high-valued and middle-valued items
H and M , where H ̸= ∅ and M ̸= ∅, type i becomes
inactive (i.e., is no longer active) if it becomes saturated
(by line 21), or if vi(M [1], H[−1]) > 1 and there exists
no j such that α ≤ vi(M [j], H[−1]) ≤ 1, by lines 13 or
16. Recall that H[−1] is the least valued available HV
item.

2. Second Part: When both types are inactive or either
M = ∅ or H = ∅, the second part begins. The collection
of bags F inherited from the first part consists of bags,
each containing one HV and one MV item, with a total
value of less than α for any unsaturated type. If H ̸= ∅,
each remaining item in H is placed in a separate new
bag and the bag is added to F .
The algorithm then picks an arbitrary bag from F and
fills it with remaining items until an unsaturated type
claims it. The bag is then assigned to an arbitrary agent
belonging to an unsaturated type that claimed it. This
bag-filling procedure repeats until all types are saturated.

Proposition 1. † Throughout the first part of the algorithm,
as long as a type remains active, all saved and assigned bags
are guaranteed to be safe for that type.

Lemma 8. In Algorithm 5, both types 2 and 3 get saturated.

Algorithm 5 Algorithm for Case 4

1: Let F ← ∅, active ← {2, 3}, unsaturated ←
{2, 3}. // Part 1 begins

2: while H ̸= ∅ and M ̸= ∅ and active ̸= ∅ do
3: B ← {M [1], H[−1]}.
4: Let X = {i ∈ active | vi(B) > 1}.
5: if |X| = 0 then
6: if ∃j ∈ unsaturated, vj(B) ≥ α then
7: Assign B to a type j agent.
8: else, F ← F ∪B.
9: if |X| = 1 then

10: Let i be the unique element of X .
11: if ∃j s.t. α ≤ vi(M [j], H[−1]) ≤ 1 then
12: Assign B′ = {M [j], H[−1]} to a type i

agent.
13: else, active← active \ {i}.
14: if |X| = 2 then
15: if ∃i ∈ X | ∄j : α ≤ vi(M [j], H[−1]) ≤ 1 then
16: active← active \ {i}.
17: else
18: Let j be the largest index where for some i ∈

X , α ≤ vi(M [j], H[−1]) ≤ 1.
19: Assign B′ = {M [j], H[−1]} to type i.
20: If a bag is saved or assigned, remove its items from

M and H .
21: If a type is saturated, remove it from active and

unsaturated. // Part 2 begins

22: Place all the remaining items of H in a separate new bag
and add the bag to F .

23: Let R = M ∪ L be the pool of remained items.
24: while unsaturated ̸= ∅ do
25: Choose a bag B from F , fill it with available

items from R, and assign it to any agent of type in
unsaturated upon claim.

26: Update F , R, and unsaturated.

By combining Lemma 8 with the fact that all bags assigned
to type 1 agents have a value of at least 4

5 , it follows that
Algorithm 3 obtains a 16

21 -MMS allocation in the fourth case.

5 Conclusion
In the fair division of indivisible goods, the maximin share
is one of the most extensively studied fairness notions. De-
termining tight lower and upper bounds on the maximum
α for which α-MMS allocations are guaranteed to exist re-
mains a fundamental open problem. Since MMS allocations
do not always exist even for instances with two agent types,
our improved bounds represent a significant step forward in
this area. To gain deeper insights into this problem, we fo-
cused on the special cases of two and three agent types. A
compelling open question is whether uniform improvements
can be achieved for any k < n types, with guarantees that
decreases as k increases, surpassing the current best-known
approximation of 3

4 + 3
3836 .
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