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Abstract
Present Advanced Driving Assistance System
(ADAS) responds to the dangerous crossing of
pedestrians after the occurrence of the incident,
occasionally causing severe accidents due to the
stringent response window. Inference of pedes-
trian crossing intention may help vehicles oper-
ate in advance and enhance the safety of the ve-
hicle by predicting the crossing probability. Re-
cent studies usually ignore the demand of real-time
forecast that required in the realistic driving sce-
nario, and mainly focus on improving the model
representation capacity on public datasets by in-
creasing modality and observation time. Conse-
quently, a new framework named EfficientPIE is
proposed to predict the pedestrian crossing inten-
tion in real time with sole observation of the inci-
dent. To achieve reliable predictions, we propose
incremental learning based on intention domain to
relieve forgetting and promote performance with a
progressive perturbation method. Our EfficientPIE
outperforms all the SOTA models on two datasets
PIE and JAAD, running nearly 7.4x faster than the
previously fastest model. Our code is available at
https://github.com/heinideyibadiaole/EfficientPIE.

1 Introduction
Traditional vehicle offers quite limited assistance for drivers
to avoid accidents and requires driver’s experiences and at-
tention to prevent potential risks, which promotes the devel-
opment of Advanced Driver Assistance System (ADAS). The
enhanced perception ability of ADAS benefits from the re-
cent evolution of AI technology, which are widely deployed
in almost all the aspects of autonomous driving [Fabbri et al.,
2021; Phong et al., 2023]. In order to avoid severe accidents
involving pedestrians, many of recent works focus on the pre-
diction of pedestrian crossing intention[Rasouli et al., 2020;
Kotseruba et al., 2020].

Many traffic accidents happen when the crossing intention
is neglected, such as pedestrians crossing from inconspicuous

∗Corresponding author.
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Figure 1: PIE top-1 Accuracy vs. Inference Time. Our proposed
EfficientPIE achieves SOTA performance and runs 7.4x faster than
the second best Pedestrian Graph +.

corners, revealing the importance of predicting the crossing
behavior in advance. Even though the Autonomous Emer-
gency Braking (AEB) may help ease this problem, it has
drawbacks like that actions are taken only if the danger has
already happened, which occasionally fails to prevent the ac-
cidents due to the quite stringent response window. Actually,
crossing behavior can be successfully foreseen if the cross-
ing intention of pedestrian and the risk of the crossing are
estimated ahead, sparing more time to respond timely for the
vehicles to avoid accidents. In this research scope, the dataset
JAAD [Rasouli et al., 2017] was first proposed to provide a
benchmark for pedestrian crossing prediction. Afterwards,
PIE [Rasouli et al., 2019] was proposed to supplement the
intention label for pedestrian crossing intention estimation.

For common methods of PIE studies, crossing intention
prediction consists of receiving related information, observ-
ing one specific pedestrian before the crossing event and pre-
dicting whether pedestrian has the intention to cross the road
or not. For the purpose of improving the accuracy of cross-
ing intention prediction, more input information is usually fed
into model by providing more images and modalities, which
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also brings many drawbacks and prevents it from real deploy-
ment. For example, the base model proposed in PIE needs 15
consecutive frames as an input, which corresponds to cold-
start time lasting for 0.5 sec. A recent framework obtained
the superior performance at the expense of adding modalities
including semantic segmentation map[Rasouli et al., 2021],
which could be limited in the realistic driving scenario, es-
pecially in face of emergencies[Li et al., 2023]. Moreover,
more complicated input means heavier computational cost,
preventing the algorithms from being implemented in vehi-
cles due to the limited resources and considerable latency.

In order to realize PIE in realistic autonomous driving, it
is necessary to simplify the input, reduce the computational
cost and shorten the latency. Though fewer images contain
less information, [Cadena et al., 2022] explores the influence
of the number of input frames on the accuracy of two datasets
PIE and JAAD, concluding that the accuracy does not attain
significant reduction if the observation window is narrowed
down. Inspired by this, we utilize the effectiveness of sole ob-
servation and presume that the feature of one frame could be
sufficient to infer the crossing intention of pedestrians. Espe-
cially, it needs to be verified that, the trained model can obtain
adequate representation capacity by observing the pedestrian
just once, and extra images are redundant in this case if we in-
tend to achieve the balance between accuracy and efficiency.

Motivated by this, we propose a new architecture named
EfficientPIE to predict crossing intention of pedestrians in
real time in this paper. Specifically, EfficientPIE focuses on
exploiting implicit feature of pedestrians and local context ef-
fectively, excluding extra modalities and images. In addition,
even though the standard convolution operation module helps
obtain acceptable performance on accuracy, it could be more
efficient if it is replaced by the depthwise separable convolu-
tion. For the purpose of solving catastrophic forgetting and
getting a stable prediction, we are the first to apply incre-
mental learning to crossing intention estimation. Inspired by
progressive learning, progressive perturbation is proposed to
enhance performance and generalization ability. Attributed
to the above, we validate in the following sections that Effi-
cientPIE achieves state-of-the-art accuracy of 92% with the
shortest inference time 0.21ms on PIE as shown in Figure 1.
Our contributions are mainly three-fold:

• We propose a real-time neural network architecture
called EfficientPIE. To the best of our knowledge,
EfficientPIE is the first framework to predict pedes-
trian crossing intention effectively using just one im-
age, rather than a series of continuous images. Com-
bined with object detection, the crossing intentions of
all pedestrians in an image can be inferred.

• We propose incremental learning in the intention do-
main. Combined with a progressive perturbation
method, EfficientPIE can exploit the feature of pedes-
trians more effectively to achieve stable performance.

• We conduct sufficient experiments on PIE and JAAD.
The results demonstrate that EfficientPIE outperforms
state-of-the-art models and strikes a good trade-off be-
tween efficiency and accuracy, which is crucial in realis-
tic autonomous driving system.

2 Related Work
Pedestrian intention prediction is similar to pedestrian behav-
ior prediction, but the application scenarios are different. In
[Rasouli et al., 2017], the authors realize that the danger can
be prevented if the crossing event can be predicted and pro-
pose a public dataset JAAD, focusing on the crossing predic-
tion. But JAAD has unbalanced distribution of samples where
negative samples are obviously more than the positive. Due
to the drawback of JAAD, PIE is proposed to provide a more
balanced benchmark [Rasouli et al., 2019] and officially de-
fines the intention, which is the potential goal of pedestrians.

A recent study has established a human reference of in-
tention estimation, proving that mankind is capable of un-
derstanding and predicting intention [Kotseruba et al., 2020].
Based on the intuition that the crossing intention comes from
the previous behaviors, base model is proposed by using RNN
and the variants [Rasouli et al., 2019], which is similar to
video prediction. Furthermore, the study investigates the in-
fluence of the context information, demonstrating the neces-
sity of surroundings.

However, the base model from PIE inputs the feature of
next time step into fully connected (FC) layer to obtain the
classification, which exploits the temporal feature of image
sequences ineffectively. Meanwhile, just simply connect-
ing multiple modalities does not contribute to the prediction
[Rasouli et al., 2020], so that attention mechanism is added
to capture the feature in connected input [Kotseruba et al.,
2021]. Due to the insufficient temporal feature extraction in
base model, temporal attention mechanism and 3D convolu-
tion are also added to exploit the implicit temporal relation-
ships. Moreover, BiPed [Rasouli et al., 2021] investigates
the representation ability of multi-modal feature and achieves
state-of-the-art accuracy. Despite the accuracy has been im-
proved, the model has higher computational cost. A recent
study intends to design a fast framework based on GCN to
predict the intention in a fast speed [Cadena et al., 2022], but
the input includes human key points which are generated in
advance. Even if the generation of human key points is in-
cluded, the whole inference speed does not gain significant
promotion according to their experiments.

Overall, the previous works have not explored an efficient
framework for the pedestrian intention prediction tasks since
the feature extraction of the continuous images has heavy
computational cost. Therefore, the computation can be ac-
celerated from fewer input images and modalities, and less
utilization of RNN, leading to the research of our Efficient-
PIE.

3 Methodology
3.1 Problem Formulation
We formulate the pedestrian crossing intention prediction
as an image classification process in which the objective is
to classify whether the concerned pedestrian is crossing or
not. Given the video containing sequential image samples
and the corresponding bounding boxes [Rasouli et al., 2017;
Rasouli et al., 2019] which can be expressed as Xt =
{x1t, x2t, . . . , xit} and Bt = {b1t, b2t, . . . , bit}, the predic-
tions and labels can be formulated as Ŷt and Yt. Note that,
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(a) Negative (b) Positive

Figure 2: An image from the PIE dataset (cropped for better visibil-
ity). Green bounding box represents the absence of crossing inten-
tion, while the red one represents the presence of crossing intention.

PIE JAAD

Accuracy AUC Accuracy AUC

Single 0.873 0.869 0.844 0.818
Multiple 0.871 0.872 0.845 0.822

Table 1: The difference of single image and multiple images.

each input focuses on one pedestrian, and our input only
needs one image. So we choose a key image xit before the
happening of the crossing event to predict, where the value of
i means the i-th crossing event and the value of t represents
the time step which varies from 0 to 14.

3.2 Effectiveness of Methods
In previous work, history images are fed into a model com-
posed of RNN and FC layers to achieve higher performance
[Rasouli et al., 2020; Rasouli et al., 2021]. The intuition of
the methods is that only if enough observed images can be
used to infer the intention.

However, we found that the crossing intention may be pre-
dicted through analyzing just one image. Intuitively, the up-
coming behavior could be speculated from local context in
conjunction with pedestrian motion. Furthermore, when a
snapshot is taken in the realistic driving scenario, the previous
states are related to the current frame, thus can be inferred by
the actions of the pedestrians. Therefore, the information of
one frame is sufficient to derive the prediction. For example,
as shown in Figure 2(a), the pedestrian labelled by a green
bounding box is highly likely to keep sitting, which results in
the lack of crossing intention. Vice versa, While owing to the
standing pose of the pedestrian labelled by red bounding box
and the presence of crossroad, the crossing intention is more
obvious to predict in Figure 2(b).

As shown in Table 1, the accuracy of different input types
is nearly consistent, indicating the redundancy of multiple
images and the reliability of the proposed method. Due
to the similarity of sequential images in realistic scenarios,
the predictions of different input frames (i.e. indexed with
0, 2, 4, . . . , 14) show little difference, which is shown in Ta-
ble 2. A possible explanation of this observation may be that
the movement of most pedestrians is modest and continuous,
thus any frame making no huge difference in indicating the
crossing intention within the time window of 15 consecutive
frames lasting for just 0.5 seconds.

Accuracy

0 2 4 6 8 10 12 14

PIE 0.869 0.870 0.868 0.869 0.872 0.873 0.871 0.873
JAAD 0.835 0.836 0.841 0.838 0.837 0.843 0.844 0.844

Table 2: The difference of key image.

3.3 Architecture
Owing to the effectiveness demonstrated previously, Effi-
cientPIE does not include any RNN, which is the largest dif-
ference compared with other models used for PIE tasks. In
contrast, to exploit the image feature, EfficientPIE is only
composed of convolution operation modules. The Mobile in-
verted bottleneck MBConv, which is optimized with squeeze-
and-excitation mechanism [Hu et al., 2018], shows excellent
performance in image classification [Tan and Le, 2019]. Fur-
thermore, the utilization of Fused-MBConv improves the effi-
ciency and accuracy in [Tan and Le, 2021]. For rapider com-
putation, the squeeze and excitation mechanism is removed
from Fused-MBConv. Built upon the two types of convo-
lution operation modules, EfficientPIE consists of six blocks.
As shown in Figure 3, the input of EfficientPIE is a 300×300
pixels cropped figures, and the output is the predicted cross-
ing intention of pedestrians within the figure. In between, it
contains two Common-Conv, two Fused-MBConv, and two
MBConv blocks.

Depthwise Separable Convolutions
In order to compute the prediction in a faster inference
speed, it is important to use more efficient operation mod-
ules. The standard convolution, which is often used in
CNNs, filters and combines inputs into a new set of out-
puts in one step. However, compared to depthwise separa-
ble convolution [Zhang et al., 2018; Howard et al., 2017;
Chollet, 2017], it has been proved being inefficient owing to
the redundant computation.

Formally, suppose DK ×DK is the size of the convolution
kernel, M is the number of input channels, N is the num-
ber of output channels and DF × DF is the spatial dimen-
sion of the output feature map. Thus, for the output feature
map, number of parameters and computational cost of stan-
dard convolution layer are as follows respectively:

DK ·DK ·M ·N, (1)

DK ·DK ·M ·N ·DF ·DF . (2)
The operation can change both channel dimension and spatial
dimension. However, depthwise separable convolution splits
the filtering and combination steps into two steps, consisting
of depthwise convolution and pointwise convolution. Depth-
wise convolution applies a single filter to each input channel
in order to change spatial dimension and maintain channel di-
mension. It has the number of parameters and computational
cost of:

DK ·DK ·M, (3)
DK ·DK ·M ·DF ·DF . (4)

Then, pointwise convolution, which is a simple 1× 1 convo-
lution, is used to combine the output of the depthwise convo-
lution to derive the new feature map. The parameters and the
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Figure 3: Overview of architecture.(a) Architecture of EfficientPIE; (b) Fused MBConv module; (c) MBConv module.

computational cost of it can be expressed respectively as:

M ·N, (5)

M ·N ·DF ·DF . (6)
Thus, the depthwise separable convolution, which is made up
of depthwise convolution and pointwise convolution, has the
number of parameters and the computational cost of:

DK ·DK ·M +M ·N (7)

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF (8)
Therefore, if standard convolution is replaced with depth-
wise separable convolution, the number of parameters and the
computational cost could be reduced as follows:

DK ·DK ·M +M ·N
DK ·DK ·M ·N

=
1

N
+

1

DK ·DK
(9)

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

DK ·DK

(10)

Usually, DK is set to 3 and N is much larger than DK . There-
fore, the cost of depthwise separable convolution is nearly
1/9 of the cost of standard convolution theoretically. Due to
its excellent efficiency, the depthwise separable convolution
serves as an important computational component of Effcient-
PIE.

3.4 Intention Domain Incremental Learning
EfficientPIE only needs 1/15 of all samples in our case to
finish each training procedure, giving the possibility to en-
hance the performance by learning with the remaining 14/15

of whole datasets. However, although simply fine-tuning by
training all samples is an acceptable method to obtain higher
accuracy, the predictions of old tasks come with catastrophic
forgetting, which contributes to unstable and unreliable out-
puts. For the sake of outputting reliable intentions, we pro-
pose an intention domain incremental learning approach and
this is the first time that incremental learning is applied in
crossing intention prediction.

Inspired by [Mishkin and Matas, 2015], the model is pre-
trained on Imagenet [Deng et al., 2009] and trained on the
first 1/15 of the two datasets as the starting step. Then the
process of the incremental learning can be denoted as:

Ŷt−1 = EfficientPIE(Xt, θs, θt−1) (11)

Ŷt = EfficientPIE(Xt, θs, θt) (12)
θ∗s , θ

∗
t−1, θ

∗
t = argmin(La) (13)

La =


λt−1Lt−1(Yt−1, Ŷt−1)

+Lt(Yt, Ŷt), if Lt > Lt−1,

Lt(Yt, Ŷt), otherwise,
(14)

where θs is the parameter of the feature extraction layers of
EfficientPIE, which is shared by the two models. θt−1 and θt
are the parameters of the classifier layer of the old model and
the new model respectively. But unlike [Li and Hoiem, 2017],
the parameters of all layers are optimized by an adaptive loss
function, which varies during the training procedure to pre-
vent the loss from getting stuck in the local optimal solution
of the task of the previous time step.

3.5 Progressive Perturbation
The crossing intention of a pedestrian may also change during
the crossing event, resulting in dynamic probability of cross-
ing, which can be recognized as the uncertainty of intention.
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Figure 4: Detection results on several typical samples. “P” (i.e. “Positive”) represents crossing, and “N” (i.e. “Negative”) represents not
crossing. The numbers below the characters P or N represent the probability of the corresponding class.

Since the crossing intention is used as the label, the perfor-
mance could improve if the uncertainty of intention is utilized
effectively. To validate the observation, a robust perturbation
method is proposed to capture the implicit uncertainty before
computing the loss. Inspired by [Tan and Le, 2021], a noise
which is generated progressively is utilized to modify the pre-
diction module before back propagation as follows:

Ẑ = Ŷ + δ⃗, (15)

where Ŷ and δ⃗ denote the predictions and the noises respec-
tively. Ẑ is the modified prediction after perturbation. It is
composed of two elements generated randomly:

δ⃗ = [pj − pj ], (16)

pj = rand(−mj

E
,
mj

E
), j ∈ [0, E] , j ∈ N, (17)

where pj represents the seed of noise. m is the adjustable
perturbation level. j and E denote the current epoch and to-
tal number of epochs respectively. As summarized in algo-
rithm 1, the neural network is trained with weak perturbation
to learn primary representations in the early training epochs
and the perturbation will be enhanced gradually to promote
the performance. Meanwhile, since the accuracy is possible
to decrease if the image size is changed dynamically [Hoffer
et al., 2019], our algorithm maintain the image size to apply
stronger performance to the network.

4 Experiments
4.1 Datasets
To validate our method, we use the Pedestrian Intention Es-
timation (PIE) and Joint Attention in Autonomous Driv-
ing (JAAD) as the main dataset for experiment.

JAAD is a large dataset for pedestrian crossing predic-
tion, which is composed of recorded video clips. It has 3955

Algorithm 1 Progressive Perturbation

1: Input: Initialize the perturbation level m, the image X
and label Y , number of total training epochs E

2: Output: Parameters of trained model
3: for j = 0 to E − 1 do
4: Train the model and compute prediction Ŷ

5: Compute the perturbation δ⃗ using Eqns. 16 and 17
6: Alter the prediction to obtain Ẑ using Eq. 15
7: Compute the loss L based on the altered Ẑ and Y
8: Back propagation and update the network parameters
9: end for

training sequences while the insufficient positive samples pre-
vents models from learning representation of crossing inten-
tion. Attributed by the weakness, PIE is proposed to pro-
vide more positive samples, having 3980 training sequences
and 995 of them are crossing events, which is made up of 6
hours video footage of pedestrians in Toronto, Canada. Com-
pared to JAAD, PIE are generated from longer and contin-
uous videos and focus more on the pedestrian samples that
are likely to cross the road. Specifically, the positive sam-
ples of PIE are more sufficient than JAAD, which is benefi-
cial to the model to capture the semantic pattern of crossing
event. Moreover, PIE provides the pedestrian intention label
while JAAD uses the crossing action label as the substitute.
Both datasets provide bounding box annotations for each con-
cerned pedestrian.

The pedestrian tracks generated in the same way as [Ra-
souli et al., 2019] and the tracks are clipped with an overlap
ratio of 0.5. After the clipping, JAAD has 40046 samples
and PIE has 19086 samples, which are all taken before the
happening of crossing event. To compute the intention more
efficiently, we choose the last frame of samples and crop the
image to 300× 300 around the labelled pedestrian as input.
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PIE JAAD
Method Infer-time(ms) Accuracy AUC F1 Precision Accuracy AUC F1 Precision
ATGC 2.19 0.59 0.55 0.36 0.35 0.64 0.60 0.53 0.50

Pedestrian Graph 9.07 0.76 0.69 0.48 0.62 0.80 0.84 0.55 0.46
C3D 10.32 0.77 0.67 0.52 0.63 0.84 0.81 0.65 0.57
I3D 10.64 0.79 0.75 0.64 0.61 0.82 0.75 0.55 0.49

SingleRNN - 0.81 0.75 0.64 0.67 0.78 0.75 0.54 0.44
StackedRNN - 0.82 0.78 0.67 0.67 0.79 0.79 0.58 0.46
MultiRNN - 0.83 0.80 0.71 0.69 0.79 0.79 0.58 0.45
MM-LSTM - 0.84 0.84 0.75 0.68 0.80 0.77 0.58 0.51

SF-GRU 2.65 0.86 0.83 0.75 0.73 0.83 0.77 0.58 0.51
PCPA 11.89 0.86 0.84 0.76 0.73 0.83 0.77 0.57 0.50

MMHA - 0.89 0.88 0.81 0.77 0.84 0.80 0.62 0.54
Pedestrian Graph + 1.56 0.89 0.90 0.81 0.83 0.86 0.88 0.65 0.58

BiPed - 0.90 0.90 0.84 0.80 0.83 0.79 0.60 0.52
DPCIAN 5.86 0.91 0.88 0.83 0.83 0.89 0.77 0.59 0.61

PIT 4.80 0.91 0.90 0.82 0.85 0.87 0.87 0.66 0.54
EfficientPIE 0.21 0.92 0.92 0.95 0.96 0.89 0.86 0.62 0.63

Table 3: Performance of EffcientPIE and the previous models tested on PIE and JAAD datasets.

PIE JAAD
IDIL Perturbation Accuracy Accuracy
× × 0.87 0.84
× ✓ 0.88 0.85
✓ × 0.91 0.88
✓ ✓ 0.92 0.89

Table 4: The impact of different variations on EfficientPIE.

4.2 Setup
EfficientPIE is trained and evaluated with an NVIDIA RTX
3090 GPU. Before the input is computed, the image is ap-
plied a random horizontal flip and a color transformation to
augment multiplicity of samples. RMSProp optimizer is used
with weight decay 1e− 4, set learning rate to 1e− 5 and ap-
ply cosine annealing algorithm to decrease the learning rate,
which are possible to contribute to the performance [He et al.,
2019]. The model is trained for 50 epochs and batch size is
set to be 32. The training setting for two datasets is absolutely
identical.

To demonstrate the efficiency of EfficientPIE, except eval-
uating the common metrics including accuracy, precision, F1
and Area Under Curve (AUC), the inference time is also a
necessary metric and should be tested strictly. Before mea-
suring inference time, the GPU is warmed up to utilize the
computational resource by loading several random samples.
Then, the total inference time is recorded in the procedure
of computing the prediction of 128 random selected samples.
This procedure is repeated 100 times and the final inference
time is calculated by the average of the total inference time
during the whole procedure.

4.3 Results
Table 3 summarizes the quantitative results of experiments on
PIE and JAAD. We conduct sufficient experiments by testing

ATGC [Rasouli et al., 2017], Pedestrian Graph [Cadena et
al., 2019], C3D [Tran et al., 2015], I3D [Carreira and Zis-
serman, 2017], SingleRNN [Kotseruba et al., 2020], Stacke-
dRNN [Yue-Hei Ng et al., 2015], MultiRNN [Bhattacharyya
et al., 2018], MM-LSTM [Aliakbarian et al., 2018], SF-GRU
[Rasouli et al., 2020], PCPA [Kotseruba et al., 2021], MMHA
[Rasouli et al., 2022], Pedestrian Graph + [Cadena et al.,
2022], BiPed [Rasouli et al., 2021], DPCIAN [Yang et al.,
2023], PIT [Zhou et al., 2023] and EfficientPIE.

ATGC is the first model to predict pedestrian crossing in-
tentions, but it does not solve the problem effectively and
only achieves an accuracy of 0.59 on PIE. I3D and C3D
are 3D convolution neural networks for action recognition
but show evidently higher latency than most models, since
their input are videos. SingleRNN, StackedRNN, MultiRNN,
MM-LSTM and SF-GRU are all based on common RNN op-
eration modules and express insignificantly different perfor-
mance due to the similar feature extraction procedures. Being
aware of the positive contribution of different input modali-
ties, PCPA, MMHA, BiPed, DPCIAN promote their accuracy
by using multi-modality, and DPCIAN achieves the accuracy
of 0.91. However, the increase in accuracy actually comes at
the expense of inference speed, contributing the longest infer-
ence time of 38 ms for PCPA. Therefore, Pedestrian Graph +
tries to predict the intention more quickly and achieves the in-
ference time of 1.56 ms. However, the speed does not include
the time it takes to generate the input data such as gesture key
points.

In summary, our model outperforms all the existing mod-
els, achieving state-of-the-art performance on both PIE and
JAAD. Due to the architecture, EfficientPIE only needs
0.21ms to compute the prediction, running nearly 7.4x faster
than the previous fastest model. Moreover, compared with
prior models, the performance of EfficientPIE demonstrates
that only sole observation is enough to apply superior perfor-
mance to models by convolution operation modules.
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Figure 5: Risk analyses on cases, where the value represents the risk degree. The heat maps are generated from the second and the third
figures on the first row of Figure 4 respectively.

4.4 Ablation Study
We conduct experiments to test the proposed methods and
follow the same training setup. As shown in Table 4, accord-
ing to the accuracy of 0.87 on PIE and 0.84 on JAAD, our
base model already has an acceptable performance to predict
the intention. Meanwhile, optimizing the parameters through
the adaptive loss function, EfficientPIE is more capable of
capturing higher semantic patterns and derives the improve-
ment of 4.6% on PIE. The proposed perturbation method con-
tributes less than the incremental learning in the intention
domain, since perturbation denotes the variance of intention
while continual learning captures more natural features. By
applying both transfer learning and perturbation, EfficientPIE
improves the accuracy by 5.7% and 6.0% on PIE and JAAD
respectively.

4.5 Detection
The crossing intention prediction need the bounding box to
locate the concerned pedestrian to forecast the crossing in-
tention. Although the previous model can use object detec-
tion to generate the boxes, the stringent observation windows
prevents those models from implementing the prediction suc-
cessfully in autonomous driving. However, on account of the
advantage of sole observation, EfficientPIE is qualified to im-
plement real-time inference of all pedestrians’ crossing inten-
tion in an image with the help of YOLO. Since each training
sample only focuses on one pedestrian, most of the pedestri-
ans in images are not considered in the training procedure.
But as shown in Figure 4, the intention of most pedestrians
from the cases is predicted accurately, showing sufficient gen-
eralization ability of EfficientPIE. According to the results,
we draw two conclusions as follows.

First, intention is influenced by the combination of the
pedestrian and the position. In the first figure of Figure 4 ,
the pedestrians near the bus stop are predicted “not crossing”
due to the pose and the position. Especially, the male standing
with his back to the driver has the highest probability of “not
crossing”, which is consistent with human driver’s intuition.
In the second figure, the persons who appear at crosswalk
tend to have the crossing intention, meaning that the classifi-
cation of them is mainly based on the zebra crossing.

Second, the intention has the infectivity. The pedestrians
tend to have the same intention as the nearby pedestrians if

they express the apparent intention, which can be demon-
strated in the third and the fourth figure. There is a blind man
in the third figure whose intention is predicted to be positive.
Despite it is easy to understand that he does not plan to cross
the road, the intention prediction is affected by the infectivity
of intention of his nearby pedestrians.

4.6 Risk Analyses
In the realistic driving scenario, the attention of drivers tends
to be paid to the implicit risk rather than a certain pedestrian
among the crowd, accounting for their defensive driving style.
This means the risk degree of an area may be more important
than the crossing intention of a specific pedestrian from their
perspective.

Consequently, we visualize the detection results by using
the heat map in Figure 5 and further show the risk generated
from the crossing intention of the second and the third case
of Figure 4. Apparently, comparing the two heat maps, the
left scene is more dangerous than the right owing to the in-
tenser crossing intention, with brighter color and denser cir-
cles on the map. Note that, given that the pedestrians having
no crossing intention still contribute to the implicit risk, the
probabilities of negative are converted to positive by replace
them with the absolute value of the difference from 1. In other
words, the streets which exist pedestrians are more dangerous
than those without pedestrians, explaining the existence of the
tiny red dots in the heat map.

5 Conclusion
In this paper, we introduce a new efficient framework named
EfficientPIE for pedestrian intention prediction. According
to the experiments on public benchmarks PIE and JAAD, our
model achieves state-of-the-art performance and runs nearly
7.4x faster than prior fastest model owing to the sole obser-
vation and the efficient architecture design. Combined with
pedestrian detection, experiments illustrate that all the cross-
ing intention of pedestrians in an image can be inferred thor-
oughly, which also reveal that intention has infectivity and
depends on the pedestrians’ position. In future work, we are
interested in incorporating scene classification to further en-
hance the model generalization ability.
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