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Abstract
Pansharpening combines panchromatic and low-
resolution multispectral images to generate high-
resolution multispectral images. Previous studies
have explored the connection between pansharpen-
ing and the frequency domain, but mostly in the
real-valued domain, leaving the complex domain
relatively unexplored. To redefine the pansharp-
ening task, we propose a complex-valued spatial-
frequency dual-domain framework, PanComplex.
To achieve this, we first establish complex rep-
resentations and introduce basic complex opera-
tors tailored to pansharpening, enabling the trans-
formation of multispectral real-valued signals into
the complex domain for learning. We then model
both spatial and frequency branches to capture
global frequency features and local spatial features
comprehensively. Finally, we employ a complex-
based interaction module to fuse the spatial and fre-
quency features, achieving complementary infor-
mation across both domains. By using the repre-
sentation power of the complex domain, PanCom-
plex effectively extracts complementary features
from PAN and MS images, thereby enhancing pan-
sharpening performance. Experiments on multiple
datasets demonstrate that our method achieves op-
timal performance with the fewest parameters and
exhibits strong generalization ability to other tasks.
The source code for this work is publicly available
at https://github.com/lch-ustc/PanComplex.

1 Introduction
Multispectral (MS) images contain richer spectral informa-
tion and have been widely applied in various fields, such
as environmental monitoring, agriculture, and mapping ser-
vices. However, the physical limitations of satellites hin-
der the direct acquisition of high-resolution multispectral
(HRMS) images through sensors. As an alternative, only
high-resolution panchromatic (PAN) images and correspond-
ing low-resolution multispectral (LRMS) images can be ob-

∗Corresponding author.

Figure 1: Comparison of our method with previous methods. (a) In
the spatial domain, previous methods concatenate the feature maps
of the two modalities along the channel dimension and then apply
convolution. In contrast, our method combines the two feature maps
into a complex-valued representation and processes them with com-
plex convolution. (b) In the frequency domain, previous methods
split the complex-valued feature map into real-valued feature maps
for convolution. Our approach, however, directly applies complex
convolution to the complex-valued feature map.

tained. Pansharpening involves merging LRMS and PAN im-
ages to generate high-resolution multispectral images. In re-
cent years, with the rapid development of deep learning, neu-
ral network-based methods have made significant progress
in pansharpening. Many methods achieve promising results
by designing adaptive network architectures to capture spa-
tial and spectral correlations between panchromatic and mul-
tispectral images [Zhou et al., 2022d; Zhou et al., 2022a;
Yang et al., 2017; Masi et al., 2016]. However, most exist-
ing works are limited to operations in the real-valued domain.
While some studies have explored the relationship between
pansharpening and the frequency domain [Zhou et al., 2022c;
Tan et al., 2024], exploration of the complex domain remains
limited, though it naturally aligns with frequency analysis.

Complex-valued neural networks (CNNs) have gained
widespread attention in recent years due to their performance
in signal processing and computer vision tasks [Trabelsi et
al., 2017; Quan et al., 2021a; Nguyen et al., 2022]. Com-
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pared to traditional real-valued neural networks, complex-
valued networks can effectively leverage the structural in-
formation inherent in the complex domain, providing richer
representation capabilities that are applicable in both the
frequency and spatial domains. In the frequency domain,
Fourier transforms are widely used in pansharpening [Zhou
et al., 2022b; He et al., 2023], converting images into the
frequency domain and representing them in complex form.
Previous methods, limited by real-valued networks, cannot
directly process the Fourier spectra and instead decompose
them into real and imaginary parts for separate processing. In
contrast, complex operators, such as complex convolutions,
can operate directly on the Fourier spectra, yielding more
continuous and richer frequency representations, as shown
in Figure 1. In the spatial domain, complex representations
allow PAN and MS images to interact as a whole, facilitat-
ing more enriched fusion representations. As shown in Fig-
ure 1, complex-based spatial fusion preserves more texture
details. Furthermore, Complex-valued neural networks of-
fer compact representations and strong generalization capa-
bilities [Quan et al., 2021b], rendering them well-suited for
the lightweight design of pansharpening methods and for en-
hancing their generalization ability. Based on this, we aim
to reconstruct the pansharpening task using complex-valued
neural networks to explore the potential of this powerful rep-
resentation method in pansharpening.

In this work, we establish complex representations for the
pansharpening task and introduce basic complex operators.
Based on this, we design a spatial-frequency dual-domain
pansharpening framework, PanComplex. Given that the fre-
quency domain provides powerful tools for analyzing pan-
sharpening degradation and that the Fourier spectra in the
frequency domain align naturally with the complex domain,
PanComplex models complex signals in both the spatial and
frequency branches to extract complementary features from
PAN and MS. The frequency-domain branch directly oper-
ates on the Fourier spectra of PAN and MS images in the
complex space, yielding more continuous and richer repre-
sentations. The spatial-domain branch, based on the com-
plex representation of MS and PAN, uses complex convolu-
tions to further facilitate their fusion. In addition, we intro-
duce a complex-based complementary learning mechanism
to promote spatial-frequency interaction between PAN and
MS. Through these methods, our approach leverages the rep-
resentational power of the complex domain to enhance the
interaction between PAN and MS, improving the comple-
mentary representation of both spatial and frequency infor-
mation, thus significantly improving pansharpening perfor-
mance. Our contributions are as follows:
• We propose the PanComplex framework based on complex-
valued neural networks, the first work to explore complex-
valued pansharpening.
• We design a complex-based spatial-frequency dual-domain
structure that efficiently integrates spatial and spectral infor-
mation from PAN and MS images.
• We validate the superiority of the proposed method on mul-
tiple datasets, demonstrating strong generalization ability and
low computational cost.

Our experimental results show that PanComplex out-

performs existing methods on several benchmark datasets,
achieving optimal performance with the fewest parameters,
and generalizes well to other fusion tasks, such as infrared-
RGB fusion.

2 Related Work
2.1 Pansharpening
The pansharpening task aims to fuse low-resolution multi-
spectral images with panchromatic images to obtain high-
resolution multispectral images. Traditional pansharpening
methods are generally classified into three categories: Com-
ponent Substitution (CS), Multi-resolution Analysis (MRA),
and Variational Optimization (VO). CS methods are simple
and feasible but prone to spectral distortion. MRA methods
are generally simple and effective, providing good spectral
information fusion; however, they lack modeling of the bene-
ficial prior knowledge embedded in the data’s spatial dimen-
sions, often leading to spatial distortion. VO methods heav-
ily rely on manually designed prior structural knowledge and
often fail to sufficiently model the complex structural priors
inherent in the data.

With the success of deep learning methods in various com-
puter vision tasks, deep learning has also been applied to
pansharpening, leading to significant improvements. PNN
[Masi et al., 2016] first uses a three-layer convolutional
neural network to learn the relationship between panchro-
matic images, low-resolution multispectral images, and high-
resolution multispectral images. Subsequently, PANNet
[Yang et al., 2017] adopts the residual learning mechanism
from ResNet. MSDCNN [Yuan et al., 2018] adds a multi-
scale module on top of the residual connections. GPPNN
[Xu et al., 2021] improves interpretability using a deep un-
folding approach. INNformer [Zhou et al., 2022a] introduces
the Transformer architecture to the field, effectively model-
ing long-range dependencies and feature fusion. FAME-Net
[He et al., 2024] combines MOE and frequency domain in-
formation, enabling the network to dynamically learn high-
frequency information in remote sensing images. HFIN [Tan
et al., 2024] combines local Fourier and global Fourier infor-
mation for image fusion.

2.2 Complex-Valued Learning
Complex-valued neural networks are a type of neural net-
work that processes information using complex-valued pa-
rameters and variables [Hirose, 1994]. Biological researchers
have discovered that, in addition to firing rates, the relative
timing of neuronal spikes may also carry information about
sensory inputs and dynamic networks [Geman, 2006]. The
amplitude and phase of the complex-valued units in complex-
valued neural networks, which are similar to biological neu-
rons, have sparked interest among researchers. There have
been efforts to extend real-valued network architectures to
their complex-valued counterparts. For example, Trabelsi et
al. [Trabelsi et al., 2017] designed a complex-valued convolu-
tional neural network, Sun et al. developed a complex-valued
generative adversarial network [Sun et al., 2019]. Based on
these network structures, researchers have investigated the
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Figure 2: (a) The framework of our proposed pan-sharpening network PanComplex. It consists of several Complex Spatial and Frequency
Interaction Blocks (CSFIB). The Complex Spatial and Frequency Interaction Block is shown in Figure 3. (b) The operation process of
complex convolution and real-valued convolution.

applications of complex-valued neural networks across var-
ious tasks. Alan et al. [Oppenheim and Lim, 1981] demon-
strated the importance of phase information in speech sig-
nals and images. Nguyen et al. [Nguyen et al., 2022] applied
complex-valued convolutional neural networks to iris recog-
nition. Yadav et al. [Yadav and Jerripothula, 2023] designed a
novel projection method from real-valued to complex-valued
space for RGB images. Quan et al. [Quan et al., 2021a]
achieved state-of-the-art performance in image denoising us-
ing complex-valued convolutional neural networks. In recent
years, remote sensing science and technology have seen sig-
nificant advances [Tian et al., 2024; Deng et al., 2024]. Con-
currently, complex-valued neural networks have also been
applied to the research of Polarimetric Synthetic Aperture
Radar images [Zhang et al., 2017] and Interferometric Syn-
thetic Aperture Radar images [Sunaga et al., 2019]. In image
classification, complex-valued convolutional neural networks
have shown performance comparable to, or even exceeding,
real-valued convolutional neural networks [Yadav and Jer-
ripothula, 2023; Zhang et al., 2017]. In the theoretical do-
main, studies have also confirmed the viability and potential
benefits of complex-valued neural networks [Wu et al., 2023;
Zhang et al., 2022]. Our research leverages complex-valued
convolutional neural networks for the pansharpening task of
remote sensing hyperspectral images.

3 Methodology
3.1 Motivation
In the pansharpening task, the benefit of spatial-frequency in-
teraction has been demonstrated [Zhou et al., 2022c]. Specif-
ically, convolutions are used in the spatial domain to extract
local information from both PAN and MS, and in the fre-
quency domain, the Fourier spectrum is decomposed into real
and imaginary parts (or amplitude and phase spectra), which
are processed separately to extract global frequency informa-
tion. After performing a 2D Fourier transform, the signal

is complex-valued, and existing methods are limited by real-
valued neural networks, which can only process the real and
imaginary parts separately. While this approach has achieved
some success, the internal correlations within the Fourier
spectrum may be disrupted, potentially leading to a loss in
the generalization ability of the features. In contrast, com-
plex networks, such as those using complex convolution, can
directly process signals in the frequency domain, resulting in
a more continuous and richer representation space [Nguyen
et al., 2022]. As shown in Figure 1, by using complex convo-
lution to process the Fourier spectrum of the image, we ob-
tain better feature interaction effects compared to processing
the real and imaginary parts (or amplitude and phase spectra)
separately with two convolutions.

Recent studies on pansharping have focused on extract-
ing local features in the spatial domain through convolution
blocks. The challenge lies in extracting richer features from
the two-modal images. In our work, we replace the convo-
lution blocks in a relatively simple GPPNN model that in-
teract with features from different modalities with complex
convolutions, and study the feature maps obtained from both
approaches. As shown in Figure 1, we find that the feature
maps extracted using complex convolution capture more di-
verse features from the different modalities. At the same time,
we conducted a quantitative analysis of the experiment and
present the results in the supplementary materials. Further-
more, complex convolution offers significant advantages in
weight compactness. As shown in Figure 2, The response of
complex convolution includes two feature maps, which are
treated as a single channel. Therefore, using complex con-
volution networks can halve the model parameters, which
is crucial for lightweight panchromatic sharpening. Addi-
tionally, biological neurons, apart from their firing rate, en-
code important information in the relative timing of neural
pulses [Geman, 2006]. The complex values in complex neu-
ral networks better simulate the output of biological neurons,
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Figure 3: The detailed flowchart of the proposed core building module Complex Spatial and Frequency Interaction Block (CSFIB), consisting
of three components: Complex Frequency Feature Extractor (CFFE), Complex Spatial Feature Extractor (CSFE) and Complex Spatial-
Frequency Interaction (CSFI).

offering interpretability in the context of biological models
[Reichert and Serre, 2013]. Complex neural networks also
exhibit strong generalization abilities [Hirose and Yoshida,
2012], which is why our network performs exceptionally well
in generalizing to two other image fusion tasks, achieving op-
timal results in each case.

3.2 Preliminary
Complex-valued convolution. For complex-valued im-
ages, each pixel value is represented as a complex
number. A complex number z , defined as follows:
z = a + ib ∈ C , a ∈ R, b ∈ R,where

√
−1 = i ,a is a real

component and b is an imaginary component. The Complex
number can also represented by a magnitude ,r ∈ R, and a
phase, θ ∈ R, as z = reiθ. In real-valued convolution, the
convolution operation between a feature map Z and a kernel
K is expressed as Z ∗K , where ∗ denotes the convolution
operation. For complex-valued feature maps Z = A+ iB
and complex-valued kernels K = X + iY , the convolution
operation is denoted as

Z ∗K = (A+ iB) ∗ (X + iY )

= (A ∗X −B ∗ Y ) + i (A ∗ Y +B ∗X) ,
(1)

which is expanded as shown in Figure 2. The complex con-
volution operation is represented as C− Conv (.)

Fourier transformation of Images. The Discrete Fourier
Transform (DFT) has long been used in image processing
for analyzing the frequency content of images. The DFT can
be represented in the following form: x ∈ RH×W×C is the
given image, and F (X ) is the resulting complex-valued com-
ponent, which is expressed as:

F (x ) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v).

(2)

The DFT is performed separately on each channel of the im-
age. The magnitude and phase can be expressed through the
following formulas:

A (x ) (u, v) =
√

[R2 (x ) (u, v) + I 2 (x ) (u, v)], (3)

P (x ) (u, v) = arctan

[
I (x ) (u, v)

R (x ) (u, v)

]
, (4)

where R (x )and I (x ) represent the real and imaginary parts
of F (x ) , respectively.The DFT operation is represented as
F (.), and the IDFT operation is represented as F−1 (.).

3.3 Overview
We propose a novel pansharpening network PanComplex
based on complex convolution, as shown in Figure 2. Given
the panchromatic image (PAN) and the low-resolution multi-
spectral image (LRMS), the LRMS is first upsampled using
bicubic interpolation. Then, convolutional layers are applied
to project both the panchromatic image and the upsampled
multispectral image into feature maps of the same dimension-
ality. The PAN image is then passed through a series of cas-
caded convolutions to extract a sequence of informative fea-
tures. Next, the obtained multimodal perceptual feature maps
of both the multispectral and panchromatic images are jointly
processed through N cascaded key modules, denoted as Com-
plex Spatial and Frequency Interaction Block (CSFIB), for
feature extraction and information integration. Finally, the
complex feature maps obtained from the N modules are con-
verted back to the image space through a 1×1 convolution,
and then the residual of the upsampled LRMS is added to ob-
tain the output image.In our training process, we employ the
L1 loss to optimize the network.

3.4 Complex Feature Extractor
As shown in Figure 3, the complex information extraction
module consists of both a Complex Frequency Feature Ex-
tractor (CFFE) and a Complex Spatial Feature Extractor
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WorldView II WorldView III GaoFen2Methods Params (K) PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
IHS - 35.2962 0.9027 0.0461 2.0278 22.5579 0.5354 0.1266 8.3616 38.1754 0.9100 0.0243 1.5336
GS - 35.6376 0.9176 0.0423 1.8774 22.5608 0.5470 0.1217 8.2433 37.2260 0.9034 0.0309 1.6736

PNN 68.9 40.7550 0.9624 0.0259 1.0646 29.9418 0.9121 0.0824 3.3206 43.1208 0.9704 0.0172 0.8528
GPPNN 119.8 41.1622 0.9684 0.0244 1.0315 30.1785 0.9175 0.0776 3.2593 44.2145 0.9815 0.0137 0.7361
MutNet 71.4 41.6773 0.9705 0.0224 0.9519 30.4907 0.9223 0.0749 3.1125 47.3042 0.9892 0.0102 0.5481

INNformer 70.6 41.6903 0.9704 0.0227 0.9514 30.5365 0.9225 0.0747 3.0997 47.3528 0.9893 0.0102 0.5479
HFIN 77.2 42.2319 0.9714 0.0215 0.8807 30.6147 0.9203 0.0742 3.0786 48.8783 0.9898 0.0093 0.4591

FAME-Net 140.8 42.0262 0.9723 0.0215 0.9172 30.9903 0.9287 0.0697 2.9531 47.6721 0.9898 0.0098 0.5242
Ours 54.2 42.3058 0.9726 0.0210 0.8637 31.0463 0.9267 0.0686 2.9239 48.8937 0.9898 0.0092 0.4607

Table 1: Experimental results of all the competing methods on the three benchmark datasets. The best and the second best values are
highlighted in bold and underline, respectively.

(CSFE). The two branches extract effective information rep-
resentations from the image’s frequency domain and spatial
domain through complex convolution, enabling dual-domain
information fusion.

Complex Frequency Feature Extractor. As shown in Fig-
ure 3, we first apply the discrete Fourier transform (DFT) to
convert the panchromatic and multispectral images into the
complex domain. Let the input features of the multispectral
and panchromatic images be Ip and Ims, respectively, with
the corresponding Fourier transforms denoted as

R(Ip), I (Ip) = F (Ip) , (5)

R(Ims), I (Ims) = F (Ims) , (6)

where R(.) and I (.) represent the real and imaginary parts.
Then, we pass these through a two-layer complex-valued
1x1 convolutional neural network with complex ReLU acti-
vations. The resulting complex feature maps from the two im-
ages are concatenated and reduced in dimensionality through
a complex-valued 1x1 convolution. Finally, we apply the in-
verse discrete Fourier transform (IDFT) to convert the ob-
tained complex feature map back to the spatial domain to
produce the frequency-domain feature map Ff . The entire
process is formulated as follows:

Ff = F−1 (Cat (C− Conv (F (Ip)) ,C− Conv (F (Ims)))).
(7)

Complex Spatial Feature Extractor. As shown in Figure
3, we combine the Ip and Ims into a complex-valued represen-
tation, which results in better performance compared to work-
ing in the real domain. Based on this, we design a spatial-
domain information interaction branch, Complex Spatial Fea-
ture Extractor (CSFE), which conducts deep feature interac-
tion through complex convolution in the spatial domain be-
tween the PAN and LRMS features. Specifically, we treat the
multispectral feature Ims as the real part and the panchromatic
feature Ip as the imaginary part, forming a complex feature
map Z,which is formulated as: Z = Ims + iIp . We then pass
the complex feature map through several residual blocks with
a 3×3 complex convolution layer for information interaction
between the multispectral and panchromatic features, eventu-
ally obtaining the spatial-domain information Fs.

3.5 Complex Spatial-Frequency Interaction
Spatial-frequency interaction is critical for pansharpening
[Zhou et al., 2022c]. Since the powerful capabilities of com-
plex convolutions have been demonstrated in Section 3.1,
we have designed a Complex Spatial-Frequency Interaction
(CSFI) that leverages complex convolutions to perform com-
plementary learning of spatial and frequency domain infor-
mation, facilitating the deep fusion of panchromatic and mul-
tispectral image data. Specifically, we first combine the
frequency-domain and spatial-domain features Ff and Fs into
a complex-valued feature Fc. Then, we use complex convo-
lution to fully exploit the complementary information from
both domains, outputting a set of complex-valued attention
maps Amap, which are weighted by the corresponding real
and imaginary parts. To facilitate further interaction of com-
plementary information, we add the weighted real part of
the feature map to the imaginary part of the input, and the
weighted imaginary part of the feature map to the real part of
the input, resulting in a complex-valued feature map Fca with
stronger cross-domain interaction, which can be expressed as

R(Fca) = R (Amap)⊙ R(Fc) + I(Fc), (8)
I (Fca) = I (Amap)⊙ I (Fc) + R(Fc). (9)

Since the target image to be reconstructed is real-valued, we
finally convert the complex-valued feature map back to the
real domain and obtain the real-valued feature map Fa. As
the feature map from the spatial domain branch is closer to
the HRMS that needs to be restored, we perform residual con-
nection with Fa and Fs and pass the resulting feature map
through a 1x1 convolution block to obtain the final output
feature map Ffuse.

Ffuse = Ims +Conv1×1 (Cat (Fs,Fa)). (10)

4 Experiments
4.1 Dataset and Benchmarks
To evaluate the effectiveness of our network, we conduct ex-
periments on three satellite datasets: WorldView-II (WV2),
Gaofen2 (GF2) and WorldView-III (WV3). Each dataset
contains a large number of paired low-resolution multispec-
tral images and panchromatic images, which are divided into
training, validation, and test sets. The dataset construction
follows the methodology of previous studies, using the Wald
protocol [Wald et al., 1997] tool to generate training and
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Figure 4: The visual comparisons between other methods and our method on WorldView-II satellite

testing data. To evaluate the effectiveness of our approach,
we compare it against several state-of-the-art pansharpening
methods, including PNN [Masi et al., 2016], GPPNN [Xu et
al., 2021], MutNet [Zhou et al., 2022d], INNformer [Zhou
et al., 2022a], HFIN [Tan et al., 2024], and FAME-Net [He
et al., 2024], as well as traditional pansharpening techniques
such as GS [Laben and Brower, 2000], and IHS [Haydn,
1982].

4.2 Implementation Details
In our experiments, all deep learning models are implemented
using PyTorch and trained on an NVIDIA GeForce GTX
3090 GPU. For each dataset, the multispectral (MS) images
are cropped into patches of size 32×32, while the correspond-
ing panchromatic (PAN) images are resized to 128×128. Dur-
ing the training phase, the networks are optimized using the
Adam optimizer with an initial learning rate of 1×10−4 . Af-
ter 200 epochs, the learning rate is reduced by half. We adopt
standard evaluation metrics, including PSNR, SSIM, SAM,
and ERGAS. Furthermore, three widely-used no-reference
image quality assessment metrics, namely Dλ, DS and QNR
[Vivone et al., 2020], are employed to evaluate real-world
full-resolution scenes.

4.3 Comparison With State-of-the-Art Methods
Evaluation on reduced-resolution scenes. The compari-
son results across the three datasets are presented in Table 1,
where the best results for each metric are highlighted in red,
and the second-best results are indicated in blue. The results
demonstrate that our method outperforms state-of-the-art ap-
proaches on the majority of metrics, with the only two excep-
tions being metrics where our method ranks second. Overall,
our approach achieves the best performance across all three
datasets. In particular, with respect to the Peak Signal-to-
Noise Ratio (PSNR), our method surpasses all other methods,
indicating the high consistency between the images processed

PNN GPPNN INNformer MutNet HFIN FAME-Net Ours
Dλ ↓ 0.0746 0.0782 0.0697 0.0694 0.0710 0.0674 0.06622
Ds ↓ 0.1164 0.1253 0.1128 0.1118 0.1098 0.1121 0.1040

QNR ↑ 0.8191 0.8073 0.8253 0.8247 0.8261 0.8291 0.8375

Table 2: Non-reference metrics on full-resolution dataset.

by our approach and the real high-resolution images. We
also conducted qualitative experiments, and Figure 4 shows
samples from the WV2 dataset. The first two rows compare
the experimental results, while the last row displays the mean
squared error (MSE) between the results of each network and
the ground truth. It is evident that our results are closest to
the ground truth, with minimal differences.

Evaluation on full-resolution scenes. We also conduct a
full-resolution analysis in real-world scenarios to further val-
idate the generalization capability of our method. Experi-
ments are carried out on an additional 200 sets from the GF2
dataset. Since high-resolution multispectral images are un-
available for real-world scenarios, we utilize three commonly
employed no-reference metrics, namely Dλ, DS , and QNR,
for evaluation. The experimental results, presented in Table 2,
show that our method achieves superior performance across
all three metrics.

Evaluation on other fusion tasks. To further assess the
generalization capability of our proposed method, we apply
it to two additional tasks: depth image super-resolution using
the NYU v2 dataset and infrared-RGB fusion on the Road-
Scene dataset. As for depth image super-resolution, we com-
pare our proposed method with nine state-of-the-art deep im-
age super-resolution methods: GF [He et al., 2012], DMSG
[Hui et al., 2016], DJFR [Li et al., 2019], DSRNet [Guo et
al., 2018], PacNet [Su et al., 2019] and HFIN [Tan et al.,
2024]. As for infrared-RGB fusion, we compared our pro-
posed method with ten state-of-the-art visible and infrared
image fusion methods: DDcGAN [Ma et al., 2020], DIDFuse
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Figure 5: The visual comparisons between other infrared-RGB fusion methods and our method on RoadScene dataset

[Zhao et al., 2020], ReCoNet [Huang et al., 2022], SDNet
[Zhang and Ma, 2021], U2Fusion [Xu et al., 2020], UMFu-
sion [Wang et al., 2022] and HFIN [Tan et al., 2024]. For
the infrared-RGB fusion task, we evaluate the quality of the
generated images using three metrics: MI, VIF, and FMI. For
the depth image super-resolution task, we use RMSE as the
metric to assess the quality of the generated images. The ex-
perimental results, shown in Table 3, highlight the best results
in red and the second-best in blue. These results demonstrate
that our method outperforms competing approaches in the
depth image super-resolution task. This further supports the
robustness and versatility of our approach, suggesting that our
network can be effectively extended to other fusion tasks as
well. We also conduct a qualitative analysis on the infrared-
visible image fusion task. Figure 5 presents samples from the
RoadScene dataset, showing the results of other state-of-the-
art methods alongside those of our approach. It is evident
that the images generated by our method exhibit no distortion
relative to the visible light image, while also capturing the
texture details of the infrared image.

Methods RoadScene
MI↑ VIF↑ FMI↑

DDcGAN 2.6177 0.5945 0.859
DIDFuse 3.1840 0.8274 0.853
ReCoNet 3.1594 0.7955 0.858
SDNet 3.4225 0.8207 0.863
U2Fusion 2.8109 0.7401 0.861
UMFusion 3.2018 0.7912 0.866
HFIN 4.8114 0.8670 0.878
Ours 4.9121 0.8754 0.881

(a) Results of the infrared-visible
image fusion task.

Method NYU v2
×4 ×8 ×16

Bicubic 4.71 8.29 13.17
GF 5.84 7.86 12.41
DMSG 3.02 5.38 9.17
DJFR 2.38 4.94 9.18
DSRNet 3.00 5.16 8.41
PacNet 1.89 3.33 6.78
HFIN 1.53 3.19 6.44
Ours 1.51 3.09 6.25

(b) Results of the depth image
super-resolution task.

Table 3: Quantitative comparisons with other fusion methods

4.4 Ablation Experiments
We conducted an ablation study using the WorldView-
II dataset to further demonstrate the effectiveness of our
method. CFFE and CSFE are the core components of the
proposed method, and thus, ablation studies were performed
for each of them. Additionally, we also conducted an ablation
study on the CSFI of the spatial-frequency fusion.

To validate the effectiveness of the complex-based spatial-
frequency branches, we replaced the complex representa-
tions and operations with their real-valued counterparts, as
shown in Table 4. The results in Table 4 indicate that the
removal of either of the complex-based components leads to

a performance degradation, thereby confirming the powerful
representational ability of complex numbers in the spatial-
frequency dual domain for pansharpening.

Configuration CFFE CSFE PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
I # ! 41.9394 0.9701 0.0219 0.9145
II ! # 42.1111 0.9710 0.0217 0.8945

Ours ! ! 42.3058 0.9726 0.0210 0.8637

Table 4: Ablation experiment results for CFFE and CSFE on the
WorldViewII are presented, with the best values highlighted in bold.

We further conducted an ablation study on the complex
operations used in the spatial-frequency interaction module
to evaluate the impact of complex operations on spatial-
frequency interaction. Specifically, we replaced the CSFI
with two alternatives: a convolution block with residual con-
nections, and a convolution block with residual connections
following the spatial attention mechanism (SA), and com-
pared the results with our method. The results, as shown
in Table 5, indicate that switching to complex operations en-
hances the performance of spatial-frequency collaboration.

Configuration PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
Conv 41.9394 0.9701 0.0219 0.9145

SA + Conv 42.2142 0.9712 0.0215 0.8830
CSFI 42.3058 0.9726 0.0210 0.8637

Table 5: Ablation experiment results for CSFI on the WorldViewII
are presented, with the best values highlighted in bold.

5 Conclusion
In conclusion, we present PanComplex, a novel complex-
valued neural network framework for pansharpening, mark-
ing the first attempt to leverage the rich potential of the com-
plex domain for this task. By introducing a dual-domain
spatial-frequency structure, we effectively capture and fuse
both spatial and spectral features from panchromatic and mul-
tispectral images. This framework not only exploits the natu-
ral alignment between the complex domain and the frequency
domain but also introduces complex convolutions and com-
plementary learning mechanisms to enhance the fusion pro-
cess. Our experimental results demonstrate that PanComplex
achieves superior performance with fewer parameters com-
pared to existing methods, while also exhibiting strong gen-
eralization capabilities for other fusion tasks.
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