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Abstract

Reinforcement Learning (RL) has made significant
strides in various domains, and policy gradient meth-
ods like Proximal Policy Optimization (PPO) have
gained popularity due to their balance in perfor-
mance, training stability, and computational effi-
ciency. These methods directly optimize policies
through gradient-based updates. However, develop-
ing effective control policies for environments with
complex and non-linear dynamics remains a chal-
lenge. High variance in gradient estimates and non-
convex optimization landscapes often lead to unsta-
ble learning trajectories. Koopman Operator Theory
has emerged as a powerful framework for studying
non-linear systems through an infinite-dimensional
linear operator that acts on a higher-dimensional
space of measurement functions. In contrast with
their non-linear counterparts, linear systems are sim-
pler, more predictable, and easier to analyze. In
this paper, we present Koopman-Inspired Proximal
Policy Optimization (KIPPO), which learns an ap-
proximately linear latent-space representation of the
underlying system’s dynamics while retaining es-
sential features for effective policy learning. This
is achieved through a Koopman-approximation aux-
iliary network that can be added to the baseline
policy optimization algorithms without altering the
architecture of the core policy or value function. Ex-
tensive experimental results demonstrate consistent
improvements over the PPO baseline with 6–60%
increased performance while reducing variability by
up to 91% when evaluated on various continuous
control tasks.

1 Introduction
RL provides a powerful framework for sequential decision-
making tasks, enabling agents to learn optimal behaviors
through interaction with their environment [Sutton and Barto,

Extended version with comprehensive appendices containing
ablation studies, hyperparameter analyses, pseudocode, and imple-
mentation details is available at: https://andreicozma.com/KIPPO.

2018]. Policy optimization, a core component of this frame-
work, determines the optimal mapping from states to actions
that maximizes an agent’s cumulative returns. Policy gradient
methods excel in continuous control tasks by directly opti-
mizing policies through gradient-based updates [Sutton et al.,
1999]. However, developing effective control policies for en-
vironments with complex and non-linear dynamics remains
a challenge. This challenge, combined with non-convex opti-
mization landscapes, leads to high-variance gradient estimates
and unstable updates. The optimization process often diverges
or oscillates, impeding convergence to optimal policies.

The field of dynamical systems studies mathematical mod-
els of evolving processes, focusing on patterns, stability, and
long-term behavior [Broer and Takens, 2010; Heij et al., 2021].
Although linear systems are more predictable, many real-world
systems are non-linear, where small changes in initial condi-
tions can lead to drastically different outcomes [Mezic and
Runolfsson, 2004]. Koopman Operator Theory, a powerful
tool for studying non-linear systems, finds a linearized descrip-
tion in a higher-dimensional space of measurement functions,
known as the Koopman observable space [Koopman, 1931;
Brunton et al., 2021]. This process maps original state vari-
ables to observable functions, extracting useful state informa-
tion. The Koopman operator, an infinite-dimensional linear
operator, evolves these observables linearly in time, enabling
linear descriptions of non-linear systems. Data-driven meth-
ods like Dynamic Mode Decomposition (DMD) and deep
learning advances have enabled approximating the Koopman
operator directly from data [Schmid, 2010; Yeung et al., 2017;
Lusch et al., 2018].

Building on these foundations, we propose KIPPO, a
method that uses Koopman-inspired representation learning
to address a key challenge of policy gradient methods like
PPO: high-variance gradient estimates in complex, non-linear
environments. Rather than seeking perfectly linear represen-
tations of non-linear systems, our approach introduces an
inductive bias that encourages approximate linearity along
policy trajectories. This soft constraint simplifies underly-
ing dynamics while preserving essential features for policy
learning. We achieve this through a Koopman-approximation
auxiliary network and targeted constraints that balance the
complexity of latent dynamics. KIPPO’s architecture uses
state encoders/decoders and linear transition matrices to pre-
dict future states over a fixed horizon, imposing structure on
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Figure 1: Visualization of KIPPO[’s] improvements relative to the PPO baseline in terms of average performance (mean, higher is better —
left) and consistency (std., lower is better — right) across four trials per environment.

the latent space while minimizing information loss. By com-
bining advances in deep learning with Koopman theory princi-
ples, this approach simplifies system behavior and improves
policy performance.

Our approach creates a mutually beneficial feedback loop:
policy gradients identify important state space regions through
exploratory rollouts, while our linearization technique reduces
gradient variance specifically in these critical regions. By
focusing linearization efforts locally along policy-explored
trajectories instead of attempting global linearization, this
targeted approach maintains computational efficiency while
delivering benefits precisely where they matter most for the
current policy.

The main contribution of this study is threefold:

1. Koopman-Inspired Policy Optimization. We propose
KIPPO, an on-policy algorithm that incorporates Koop-
man operator principles directly into policy gradient up-
dates. By learning an approximately linear latent-space
representation, KIPPO stabilizes gradient estimates and
enhances control over non-linear dynamics.

2. Decoupled Auxiliary Representation Learning.
KIPPO adds an auxiliary network to policy gradient
baselines like PPO without altering the core policy or
value function architecture. This design allows the policy
to train on a simpler, encoded state space while the
auxiliary network enforces a linear-like structure. As a
result, standard PPO hyperparameters and training loops
remain largely intact.

3. Performance and Stability Improvements. Across Mu-
JoCo and Box2D tasks, KIPPO consistently achieves
6–60% higher mean returns and a 26–91% reduction in
variance compared to baseline PPO, as shown in Fig. 1.
These empirical gains attest to the efficacy of Koopman-
inspired constraints in mitigating high-variance updates
and accelerating convergence.

The remainder of this paper is organized as follows: Sec. 2
presents essential background. Sec. 3 describes the KIPPO
framework in detail. Sec. 4 presents extensive experimental
results across multiple environments. Sec. 5 concludes the
paper by summarizing our findings and outlining promising
directions for future research.

2 Background and Related Works
RL provides a framework for agents to learn optimal behaviors
through interactions with their environment. These interac-
tions are formalized as a Markov Decision Process (MDP),
defined by a tuple (S,A,P, R, γ), where S represents the
state space, A the action space, P : S × A × S → [0, 1] the
transition probability function, R : S × A → R the reward
function, and γ ∈ [0, 1] the discount factor.

This interaction mirrors the feedback loop in control sys-
tems, where the agent acts as the controller and the environ-
ment represents the system being controlled. The environment
in RL can then be modeled as a continuous-time dynamical
system: xt+1 = F(xt, ut), where xt ∈ S and ut ∈ A are the
state and action, respectively, at time t, and F : S × A → S
is the (often non-linear) state transition function.

RL and Policy Gradient Methods. RL algorithms fall
into several categories: value-based methods and policy-based
methods. The latter can be further categorized into on-policy
methods that learn exclusively from current policy experiences
and off-policy methods that can learn from any policy’s expe-
riences. RL algorithms can also be grouped by model-based
versus model-free approaches, distinguished by whether they
explicitly learn environment dynamics.

Generally speaking, policy optimization algorithms learn a
parameterized policy πθ by optimizing parameters θ through
gradient descent with respect to the expected return. While
successful in various tasks, policy gradient methods face
fundamental challenges with complex, non-linear dynamics.
High variance makes gradient estimates less reliable, and non-
convex optimization landscapes often lead to unstable learning
trajectories.

Actor-critic methods, such as Advantage Actor-Critic (A2C)
[Mnih et al., 2016], address these issues by using a value
function (critic) to provide lower-variance targets for policy
(actor) updates. Trust region methods like Trust Region Pol-
icy Optimization (TRPO) [Schulman et al., 2017a] constrain
policy updates using Kullback-Leibler (KL) divergence to
ensure new policies remain within a trusted region. How-
ever, TRPO’s second-order optimization approach increases
computational complexity. PPO [Schulman et al., 2017b]
addresses these limitations with a first-order approach that
avoids Hessian computations while maintaining trust region
properties, becoming a leading algorithm for continuous and
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discrete control tasks. For its policy component, it intro-
duces a clipped surrogate objective function: LCLIP (θ) =

Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
where Êt

denotes the empirical average over timesteps, rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio between policies, Ât is

the estimated advantage, and ϵ is a hyperparameter limiting
policy change (typically 0.2 for continuous domains, 0.1 for
discrete tasks). The algorithm alternates between collecting
experiences and optimizing a combined objective (clipped
policy, value function, and entropy terms) via minibatch gra-
dient ascent. This achieves the same policy constraints as
TRPO without second-order derivatives, improving perfor-
mance while maintaining efficiency.

Recent advances include Stochastic Latent Actor-Critic
(SLAC) [Lee et al., 2020], which integrates policy optimiza-
tion with latent state representation learning using variational
inference for improved sample efficiency; Model-Based Policy
Optimization (MBPO) [Janner et al., 2021], which employs en-
semble dynamics models for synthetic experience generation;
and Robust Policy Optimization (RPO) [Rahman and Xue,
2022], which extends PPO with perturbed action distributions
to maintain policy entropy and enhance robustness. Neverthe-
less, achieving robust generalization and efficient learning in
complex, non-linear systems remains an open challenge.

Koopman Operator Theory provides a mathematical
framework to transform non-linear dynamics into linear op-
erators acting on observable functions [Koopman, 1931;
Mezic, 2005; Rowley et al., 2009]. The key insight is that
while system dynamics may be highly non-linear in state space,
they can be represented linearly in an appropriate space of ob-
servable functions (measurement functions that extract system
information). For systems with control inputs, the Koopman
formulation is:

g(xt+1) = yt+1 = Kyt +Bvt (1)

where yt = g(xt) ∈ Rm are state observables, vt = f(ut) ∈
Rk are control observables, and K ∈ Rm×m and B ∈ Rm×k

are finite-dimensional matrices approximating the infinite-
dimensional Koopman operator. The challenge lies in find-
ing appropriate observable functions that enable effective lin-
earization, which can be learned using deep neural networks
[Lusch et al., 2018; Dey and Davis, 2023].

Research integrating Koopman theory with control and
RL has progressed along two paths: system modeling with
control, and integration with model-free RL algorithms. The
former includes work by [Han et al., 2020] and [Shi and Meng,
2022], who developed frameworks combining Koopman oper-
ators with linear control methods like Linear Quadratic Regu-
lators (LQRs) and Model Predictive Controls (MPCs). [Yin
et al., 2022] combined Koopman theory with LQR to create
differentiable policies embedding optimal control principles.
The latter focuses on model-free RL, including work by [Song
et al., 2021] that introduced Deep Koopman Reinforcement
Learning (DKRL), which uses local Koopman operators to
improve data efficiency. [Weissenbacher et al., 2022] pro-
posed Koopman Forward (Conservative) Q-Learning (KFC),
an offline algorithm that leverages Koopman theory to infer
symmetries in system dynamics.

While model-based methods using Koopman theory with
MPCs have been thoroughly investigated [Korda and Mezić,
2018], they typically incur high computational costs due to
optimization requirements at each timestep. Model-free ap-
proaches avoid this overhead but have received less attention.

KIPPO differs from existing approaches by 1) focusing on
on-policy learning improvement rather than global lineariza-
tion, 2) integrating representation learning directly into policy
optimization, 3) decoupling representation learning from pol-
icy updates, and 4) measuring success through policy perfor-
mance and stability rather than global approximation quality.

3 Methodology
KIPPO introduces a Koopman-inspired representation learn-
ing framework that operates independently alongside the core
policy optimization process. This approach unifies traditional
RL with Koopman operator theory while maintaining practi-
cal implementability. The framework builds on several key
principles:

• Decoupled Optimization: Representation learning and
policy optimization are deliberately separated to prevent
interference between objectives, where the core policy al-
gorithm remains unchanged, operating on encoded states
without modification to its optimization process

• Local Linearization: Rather than attempting global lin-
earization, the framework focuses on simplifying dynam-
ics along policy-explored trajectories

• Balanced Complexity: Loss functions are designed to
balance the competing objectives of simplification and
information preservation

KIPPO’s key innovation is its targeted approach to linear-
ity, expressed as φx(xt+1) ≈ Kφx(xt) +Bφu(ut). Unlike
networks with standard linear output layers, KIPPO enforces
linear dynamics across time steps as a soft constraint, applying
this only to policy-explored trajectories. This creates an induc-
tive bias on temporal transitions rather than static mappings,
promoting stable gradient flow while avoiding the computa-
tional burden of global linearization.

3.1 Architecture Design
Building upon these design principles, the core innovation of
KIPPO lies in learning a latent representation where complex,
non-linear environment dynamics can be effectively approxi-
mated by linear operations within regions of the state space
explored by the current policy.

While sharing similarities with representation learning and
data compression, KIPPO employs a higher-dimensional la-
tent space than the original state space. This design choice
follows from Koopman theory, which demonstrates that non-
linear dynamics can be linearized through appropriate lifting
to higher-dimensional spaces of observable functions [Budišić
et al., 2012].

As shown in Fig. 2, KIPPO comprises several intercon-
nected components:

• A state autoencoder consisting of an encoder φx : S →
Rm and decoder φx

−1 : Rm → S, which respectively
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Figure 2: The KIPPO framework architecture. The state autoencoder (encoder φx and decoder φx
−1) learns a compact latent representation

of environment states. The action encoder φu maps actions to this feature space. Within the latent space, dynamics are governed by the
linear state-transition matrix K and control matrix B. The policy optimization algorithm operates on the encoded states yt = φx(xt). This
architecture enables the reformulation of nonlinear environments into a structure aligned with Koopman control theory Eq. 1.

map states to latent representations and reconstruct origi-
nal states

• An action encoder φu : A → Rk that maps actions to
the latent space

• Linear system matrices K ∈ Rm×m and B ∈ Rm×k that
govern the dynamics within the latent space

The encoder and decoder networks use Multi-Layer Per-
ceptrons (MLPs) with hyperbolic tangent (tanh) activation
functions, chosen for their smooth gradients and bounded out-
put range. All trainable parameters employ Xavier uniform
initialization [Glorot and Bengio, 2010] to promote stable
learning in deep networks, except for K, which uses orthog-
onal initialization [Saxe et al., 2014] for stable gradient flow,
and B, which starts with zeros to allow gradual learning of
control effects. The number of layers and neurons per layer
remain consistent across the state encoder, decoder, and action
encoder networks, typically using 2–3 hidden layers with 64–
256 units each. This architectural consistency helps maintain
balanced representational capacity across components while
remaining computationally efficient.

The use of non-linear activation functions might appear
counterintuitive given our goal of linear dynamics. However,
these non-linearities are essential for learning effective Koop-
man observables, enabling the networks to discover appropri-
ate lifting functions that map the original system to a space
where linear approximations become effective along policy-
relevant trajectories. While the Koopman operator governing
the evolution of observables is inherently linear, the method
of obtaining these observables need not be linear. These non-
linearities enable the MLPs to act as universal function ap-
proximators, making them well-suited for approximating the
Koopman observables in the latent space.

The dimensions of the state-transition matrix K and control
matrix B correspond to the chosen latent space dimensionality.
This is typically set to 2–4 times the state dimension, providing
sufficient capacity to capture complex dynamics without ex-
cessive computational overhead. These matrices are learnable
parameters optimized alongside other components, enabling

the framework to learn environment-specific representations
directly from experience.

These components work together to approximate the Koop-
man operator’s action on observable functions, with the en-
coders serving as learnable observable functions and the linear
matrices capturing the evolution of these observables. This
connection to Koopman theory provides theoretical grounding
for our approach while remaining practically implementable
within the RL context.

3.2 Future State Prediction Process
The prediction process forecasts states over horizon H using
learned linear latent-space dynamics. For an initial state x0

and an action sequence u0:H , the process begins with the
initial encoding of the state into a latent representation, y0 =
ϕx(x0). This is followed by an iterative prediction using
learned dynamics, expressed as ŷh+1 = Kyh + Bφu(uh).
This process yields a sequence of predicted latent states, which
can be decoded back to the original state space using x̂h+1 =
φx

−1(ŷh+1).
The process implements the finite-dimensional approxima-

tion of the Koopman-based control formulation from Eq. 1,
where φx and φu represent g and f , respectively. This process
primarily constrains the learning of the latent representation to
reduce gradient variance, rather than for generating additional
training data or performing planning. Importantly, this serves
as a soft constraint; perfect linearity is not required, but the
representation is encouraged to be approximately linear along
policy trajectories to enable more stable policy optimization.

The multi-step prediction shapes representations by enforc-
ing temporal consistency only along current-policy trajectories,
avoiding unrealistic global linearity assumptions. This allows
KIPPO to benefit from structured representations without re-
quiring lookahead or model predictive control. Unlike model-
based planning methods, we never use the learned model for
planning; our method focuses solely on variance reduction
through temporal coherence. This novel application of pre-
dictive models specifically addresses the noisy updates that
challenge policy gradient methods.
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The prediction horizon H balances computational cost
against prediction depth. Empirically, horizons of 8–32 steps
are effective, with longer horizons benefiting environments
with significant temporal dependencies or sparse rewards. Our
analysis shows that longer horizons benefit moderately com-
plex environments but offer diminishing returns or instability
in very simple or highly complex ones. The supplementary
material includes both a detailed examination of prediction
horizon effects and implementation steps for the complete
prediction process.

3.3 Loss Formulation
Drawing inspiration from Koopman operator theory, KIPPO
employs three complementary loss components that shape
the latent space to achieve four key properties: 1) informa-
tiveness—preserving essential state information for accurate
decision-making; 2) simplification—enabling linear approxi-
mations specifically along policy trajectories; 3) predictabil-
ity—supporting accurate multi-step predictions for better tem-
poral coherence and reduced gradient variance; and 4) consis-
tency—ensuring alignment with true environment dynamics
for effective learning.

Reconstruction Loss
The reconstruction loss ensures the latent space retains suffi-
cient information for accurate state reconstruction:

Lrec(t) =
{
φx

−1(φx(xt))− xt

}2
(2)

This loss primarily addresses “informativeness” while align-
ing with Koopman theory principles, where observable func-
tions are typically assumed to be invertible. This formulation
allows a bijective mapping between the original state space
and latent space, maintaining a meaningful connection that
supports both representation learning and policy optimization.

Note that the action reconstruction loss is omitted since
the sole purpose of the action encoder is to influence state
transitions in the latent space, and the accuracy of action en-
coding is implicitly enforced through future state prediction
losses. Empirical studies also confirm that including action
reconstruction terms does not yield significant performance
improvements.

Latent-Space Prediction Loss
The latent-space prediction loss primarily targets “simplifica-
tion” and “predictability” within policy-relevant regions. It
encourages learning a representation where dynamics can be
effectively approximated by linear operations along policy-
explored trajectories:

Lpred-ls(t) =
1

H

H∑
h=1

mt,h

(
ŷt+h −φx(xt+h)

)2
(3)

where mt,h handles episode boundaries through a binary
mask:

mt,h =

{
1, if trajectory not ended by step (t+ h− 1),

0, otherwise.
(4)

The binary mask is essential for handling variable-length
trajectories, such that the prediction process is not penalized
for discontinuities introduced by environment resets at episode
boundaries.

The loss term facilitates the learning of representations
where dynamics can be effectively approximated by linear
operations, as ŷt+h is generated using linear matrices K and
B. It also enhances predictability by minimizing multi-step
prediction errors directly in the latent space, while supporting
simplification by encouraging the encoder to find representa-
tions where linear predictions maintain accuracy over multiple
timesteps.

This loss term is particularly important for maintaining
the framework’s Koopman-inspired aspects, as it drives the
learning of representations that align with Koopman theory’s
principle of lifting non-linear dynamics to spaces where linear
approximations become effective.

State-Space Prediction Loss
The state-space prediction loss primarily addresses “consis-
tency” and “predictability”, maintaining fidelity to true dy-
namics while ensuring meaningful state predictions:

Lpred-ss(t) =
1

H

H∑
h=1

mt,h

(
φx

−1(ŷt+h)− xt+h

)2
(5)

The loss helps prevent the latent space from diverging too far
from physically meaningful representations, which is essential
for learning effective control policies.

This dual-space prediction approach ensures the latent dy-
namics align with true environment behavior when mapped
back to state space. It also promotes learning of latent rep-
resentations that maintain predictive power across multiple
timesteps, indirectly reinforcing informativeness by requir-
ing accurate long-term state reconstruction. The improved
temporal consistency from these representations helps reduce
gradient variance in policy updates, though we never use these
predictions for planning.

Total Representation Loss
The total representation loss is a weighted sum of the three
components:

LKI =
1

T

T∑
t=0

(ω1Lrec(t) + ω2Lpred-ls(t) + ω3Lpred-ss(t))

(6)
where T represents the number of steps collected during roll-
outs. The weights ω1, ω2, and ω3 incorporate several factors,
including relative scales between latent and state space di-
mensionalities, task-specific requirements, and environment
characteristics. Sec. 4.3 investigates the impact of each loss
term on both the return and stability of learning.

3.4 Overview of Training Process
The training process in KIPPO alternates between rollout and
optimization phases until reaching a predetermined number of
environment steps. During rollouts, the agent collects states,
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actions, rewards, and additional sequences needed for repre-
sentation losses, storing them in separate buffers. Each rollout
phase collects 2,048 environment steps across multiple tra-
jectories, resetting the environment when necessary to ensure
diverse experiences.

Both KIPPO and PPO use identical on-policy rollouts and
operate with the same available information. KIPPO utilizes
future states solely as auxiliary loss targets (never as policy
inputs), which is consistent with standard auxiliary objective
practices in on-policy RL. During both training and inference,
both methods receive identical trajectories and current-state
information, with KIPPO applying state encoding while PPO
uses raw states.

The optimization phase processes the collected data to up-
date all components. The algorithm divides 2,048 steps into
32 mini-batches, computing the three key losses to update
representation learning components.

The total framework loss combines the weighted represen-
tation loss and standard PPO loss:

LKIPPO = LKI +LPPO (7)

Both components update their parameters using the Adam
optimizer. The optimization process runs for 10 epochs, allow-
ing refinement of both the latent representation and the policy.
After optimization, a new rollout phase begins, continuing this
cycle until reaching 1 million environment steps.

The latent representation is learned incrementally through-
out training, with parameters adapting gradually across rollout-
optimization cycles. We observe stability, with representations
evolving smoothly between updates, maintaining consistent
state encodings, and preventing disruptive changes that could
destabilize learning. This is particularly important for policy
gradient methods sensitive to sudden representation shifts.

A key feature is the complete decoupling of representa-
tion learning from policy optimization. The representation
learning components optimize independently from policy and
value networks, ensuring improvements stem directly from
the learned representation. We refer readers to the supple-
mentary materials for complete implementation details and
pseudocode.

4 Experiments and Results
We evaluate the effectiveness of KIPPO compared to baseline
PPO and RPO algorithms across diverse continuous control
tasks, measuring both performance improvements and reduced
variability.

4.1 Experimental Setup
Environments
We evaluate six continuous control environments from Gym-
nasium [Towers et al., 2023] using MuJoCo [Todorov et al.,
2012] and Box2D [Catto, 2007], forming a comprehensive
testbed with diverse complexity levels and control challenges.
The environments’ varying non-linearity and temporal depen-
dencies help evaluate the algorithm’s robustness and its ability
to learn effective representations in the Koopman observable
space. We chose these testbeds to systematically evaluate

how our approach reduces gradient variance across different
complexity levels while keeping the analysis tractable.

To facilitate discussion, we classify the six environments by
their complexity levels, defined using the dimensions of the
state space, |S|, and the action space, |A|. An environment
is considered to have “low” complexity if |S| + |A| < 10,
“medium” complexity if 10 ≤ |S| + |A| < 20, and “high”
complexity if |S|+ |A| ≥ 20. This is summarized in Table 1.
These environments include Inverted Pendulum, Lunar Lander,
Bipedal Walker, Hopper, Walker2d, and HalfCheetah, provid-
ing a diverse set of control challenges. Complete environment
specifications are available in the supplementary material.

Environment Complexity |S | |A|
InvertedPendulum-v4 Low 4 1
LunarLanderCont.-v2 Medium 8 2
Hopper-v4 Medium 11 3
BipedalWalker-v3 High 24 4
Walker2d-v4 High 17 6
HalfCheetah-v4 High 17 6

Table 1: Environments and their complexity levels based on the
dimensionality of their state and action spaces.

Training Configuration
For meaningful comparisons, we implement our benchmarks
using the PPO and RPO implementations from the CleanRL
library [Huang et al., 2022]. We maintain CleanRL’s default
hyperparameters for both algorithms.

Each experiment uses 4 random initialization seeds (1, 2, 3,
4) per environment. We selected 4 seeds as a balance between
the original PPO paper’s 3 seeds [Schulman et al., 2017b] and
CleanRL’s standard 5 seeds. These seeds determine both the
environment’s initial states and model parameter initialization.
To ensure fair comparison, we use identical random seeds
and initialization patterns across all methods. Each training
run consists of exactly 1 million environment steps. Hard-
ware specifications and reference runtime are provided in the
supplementary material.

Evaluation Metrics
Given the inherent stochasticity in both environment and learn-
ing processes, we employ the Exponentially Weighted Mov-
ing Average (EWMA) of episodic returns to capture learning
trends effectively:

EWMAt = α · EWMAt−1 + (1− α) ·Gt, (8)

where Gt is the expected (discounted) return, summing re-
wards weighted by γt at each time step; and empirically deter-
mined α = 0.05. α balances responsiveness to recent changes
with historical context, reducing noise by filtering short-term
fluctuations and ensuring robustness against outliers.

We also use the Cumulative Temporal Error (CTE) metric:

CTE =
1

H

H∑
h=1

1

h

h∑
k=1

|x̂k − xk| (9)
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where k indices the individual timestep. While EWMA evalu-
ates the overall agent performance, CTE specifically measures
the representation quality by comparing predicted states (x̂)
with actual states (x) across varying horizons.

For a comprehensive evaluation, we analyze both metrics
through their means and standard deviations (std.) across 4
independent training runs.

4.2 Comparison with Baselines
We conduct the first set of experiments by comparing KIPPO’s
performance with two baseline policy gradient methods, PPO
and RPO, selected due to either popularity or state-of-the-art
performance. The comparison is summarized in Table 2. Fig. 1
presents the percent difference in these metrics relative to the
PPO baseline.

From both Table 2 and Fig. 1, we observe that KIPPO
achieves overwhelmingly better mean performance in all envi-
ronments, with improvements ranging from 6.36% to 60.26%
for the PPO baseline and from 11.86% to 142.18% for the RPO
baseline. KIPPO also shows lower std. in most environments,
demonstrating enhanced consistency across seeds, reducing
variance by 26.89–91.43% versus PPO (one exception) and
58.94–90.21% versus RPO (two exceptions). We will further
discuss the exceptional cases in the ablation study.

This dual improvement in performance and stability high-
lights the fundamental advantage of incorporating Koopman-
inspired representation. Complete learning curves for all envi-
ronments are provided in the supplementary material.

4.3 Ablation Study of Loss Components
To understand the mechanisms underlying KIPPO’s perfor-
mance advantages, we conduct a systematic ablation study of
its core components. Table 3 shows the result of one environ-
ment. Results for the other five environments are available in
the supplementary material.

Several key findings emerge from Table 3. Note that the first
row per environment represents baseline PPO performance.
First, the reconstruction loss alone yields results comparable to
those of the baseline. Second, integrating all losses produces
the best mean EWMA and lowest standard deviation in most
cases. Third, the mean CTE decreases systematically with
the incorporation of additional loss components. And finally,
the latent-space prediction loss consistently reduces both CTE
mean and standard deviation.

While the ablation results in Table 3 highlight the contribu-
tions of each loss component, they also reveal that KIPPO’s
overall gains depend strongly on the level of non-linearity
(complexity) of each environment. We hypothesize a sublin-
ear (“logarithmic”) relationship between performance gain
and complexity, meaning that beyond a certain point, addi-
tional non-linearity or complexity diminishes marginal returns
and raises variance.

Fig. 3 shows our evaluation of KIPPO across varying envi-
ronment complexities. We analyze two key metrics compared
to the PPO baseline: relative improvement in average perfor-
mance (mean) and consistency of results (std.).

Overall, KIPPO scales effectively across a broad range
of non-linear control tasks but hits an upper limit as com-
plexity grows. In simpler domains, overemphasizing latent-
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Figure 3: The mean percent improvement of environments with
various levels of complexity in performance gain (left) and variance
reduction (right) of final returns by KIPPO compared to PPO.

space predictions can harm stability unless balanced by state-
space constraints. In extreme tasks, significant raw gains
come with heightened variance. Thus, KIPPO extends PPO’s
performance boundary significantly, but the underlying non-
linearities impose a logarithmic or sublinear bound on further
improvements.

4.4 Sensitivity Analysis and Limitations
In this set of experiments, we conduct extensive parameter sen-
sitivity studies, particularly focusing on the latent dimension
and prediction horizon to better understand KIPPO’s limi-
tations. We refer readers to the supplementary material for
comprehensive quantitative results examining effects of latent
dimension and prediction horizon.

We observe that performance gains diminish in environ-
ments with highly discontinuous transitions (e.g., collisions),
contact-rich interactions, or multi-modal behaviors, as the lin-
ear latent dynamics struggle with abrupt changes. Despite
enforcing approximate linearity only along policy trajecto-
ries as a soft constraint, environments with highly chaotic
dynamics remain challenging.

In environments with sparse rewards, the advantage over
baseline PPO is less pronounced, suggesting that reduced
gradient variance benefits are most impactful with frequent
feedback signals. We view Koopman-based dynamics as an
inductive bias particularly well-suited for certain control prob-
lems rather than as a universally valid model. These selected
environments provide a controlled setting to test our core
hypothesis: linearized latent dynamics can reduce gradient
variance in policy optimization.

Training KIPPO takes approximately 15% longer than PPO
(15 hours vs. 13 hours for 24 parallel models) due to (1)
construction of prediction sequences and (2) computation of
multi-step prediction losses. However, this computational
overhead exists only during training; at inference time, only
the encoder is used with negligible additional computational
cost.

To identify the most influential hyperparameters, we train a
random forest regressor to predict final returns from hyperpa-
rameter configurations. Fig. 4 shows that the latent-space pre-
diction loss weight (ω2) has the highest importance, followed
by the latent dimension and state-space prediction loss weight
(each 0.20). For return variability, the three loss weights (each
0.20) dominate, followed by the prediction horizon (0.15).
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Environment PPO RPO KIPPO
Mean Std. Mean Std. Mean Std.

InvertedPendulum-v4 897.57 41.61 892.33 36.46 998.18 3.57
Hopper-v4 2315.43 226.87 1970.75 390.81 2520.53 100.36
Walker2d-v4 3126.73 450.30 2451.58 168.85 3325.74 287.85
HalfCheetah-v4 1927.59 1030.66 1275.56 706.52 3089.20 1203.42
LunarLanderCont.-v2 208.38 11.59 150.26 20.14 280.81 8.27
BipedalWalker-v3 235.09 19.03 191.62 35.18 255.91 13.91

Table 2: Per-environment overview of the main results comparing KIPPO and the baseline PPO and RPO in terms of mean and std. of final
episodic returns EWMA across four trials. The bold font highlights the best performance.

Environment Lrec Lpred-ls Lpred-ss EWMA CTE
Mean Std. Mean Std.

InvertedPendulum-v4
— — — 897.57 41.61 — —
✓ — — 897.21 57.50 0.927 0.137
✓ ✓ — 911.27 93.60 0.015 0.003
✓ — ✓ 977.78 21.09 0.001 0.000
✓ ✓ ✓ 998.18 3.57 0.001 0.000

Table 3: Effect of the loss function components on final episodic returns (EWMA) values and prediction error (CTE). The baseline is shown as
the first row for each environment.
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Figure 4: Hyperparameter importance scores derived from a random
forest regressor.

5 Conclusions and Future Work
Koopman-Inspired Proximal Policy Optimization (KIPPO)
addresses key challenges in policy gradient methods through
stable policy optimization for complex non-linear control tasks.
Our experiments demonstrate the effectiveness of Koopman-
inspired representation learning in policy optimization as
showcased in PPO and RPO. This architecture naturally ex-
tends to other on-policy algorithms, including TRPO and A2C.

The effectiveness of KIPPO stems from a synergistic bidi-
rectional relationship: policy gradients generate exploratory
rollouts that guide which latent regions to linearize, while
the resulting representations reduce gradient variance in pre-
cisely those regions, creating a more effective feedback loop
than decoupled representation learning. This mechanism re-
tains gradient variance reduction benefits even when extended
beyond on-policy methods.

Future directions include extending to: 1) off-policy algo-
rithms like Deep Deterministic Policy Gradient (DDPG), Twin
Delayed DDPG (TD3), and Soft Actor-Critic (SAC); 2) value-
based methods for enhancing Q-function learning; and 3) dis-
crete domains through appropriate latent space formulations.
Further research opportunities involve handling discontinuous
dynamics and investigating representation robustness under
noise and distribution shifts.
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