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Abstract

Recently, optimal transport-based approaches have
gained attention for deriving counterfactuals, e.g.,
to quantify algorithmic discrimination. However,
in the general multivariate setting, these methods
are often opaque and difficult to interpret. To ad-
dress this, alternative methodologies have been pro-
posed, using causal graphs combined with iterative
quantile regressions or sequential transport to ex-
amine fairness at the individual level, often referred
to as “counterfactual fairness.” Despite these ad-
vancements, transporting categorical variables re-
mains a significant challenge in practical applica-
tions with real datasets. In this paper, we propose a
novel approach to address this issue. Our method
involves (1) converting categorical variables into
compositional data and (2) transporting these com-
positions within the probabilistic simplex of the Eu-
clidean space. We demonstrate the applicability
and effectiveness of this approach through an illus-
tration on real-world data, and discuss limitations.

1 Introduction

1.1 Counterfactuals

Counterfactual analysis, the third level in [Pearl, 2009]’s
causal hierarchy, is widely used in machine learning, pol-
icy evaluation, economics and causal inference. It involves
reasoning about “what could have happened” under alterna-
tive scenarios, providing insights into causality and decision-
making effectiveness. An example could be the concept
of counterfactual fairness, as introduced by [Kusner et al.,
2017], that ensures fairness by evaluating how decisions
would change under alternative, counterfactual conditions.
Counterfactual fairness focuses on mitigating bias by ensur-
ing that sensitive attributes, such as race, gender, or socioeco-
nomic status, do not unfairly influence outcomes.'

In the counterfactual problem, we consider data
{(si,xi),i = 1,--- ,n}, where s denotes a binary “treat-
ment” (taking values in {0,1}). With generic notations,
the counterfactual version of (0,x) can be constructed as
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(1,T*(x)), where T* is the optimal transport (OT) mapping
from X|S = 0 to X|S = 1, as discussed in [Black et al.,
2020], [Charpentier et al., 2023] and [De Lara et al., 2024].
Unfortunately, this multivariate mapping is usually both
complicated to estimate, and hard to interpret. If x is univari-
ate, it is simply a quantile interpretation: if x is associated
to rank probability u within group s = 0, then its coun-
terfactual version should be associated with the same rank
probability in group s = 1 (mathematically, T = F| Lo Fy,
where F; : R — [0,1],j = {0,1} denotes the cumulative
distribution in group j, and F ! is the generalized inverse,
i.e., the quantile function). In higher dimensions, one could
consider multivariate quantiles, as in [Hallin et al., 2021] or
[Hallin and Konen, 2024], but the heuristics is still hard to
interpret. While OT-based counterfactual methods have been
proposed to assess counterfactual fairness [Black er al., 2020;
De Lara et al., 2024], an alternative approach introduced
by [Ple¢ko and Meinshausen, 2020] is grounded in causal
graphs (DAGs). In this framework, the outcome y depends
on variables (s,x), where the sensitive attribute s “is a
source” (a vertex without parents) and y is a “sink” (a vertex
without outgoing edges). Recently, [Fernandes Machado et
al., 2025] unified these approaches by introducing sequential
transport aligned with the “topological ordering” of a DAG.

For example, to test whether a predictor m(x) is gender-
neutral; let the sensitive attribute s be gender (binary genders
for simplicity); compare its output on a woman’s features x
with that on her mutatis mutandis male counterpart. Unlike a
ceteris paribus change, which flips s while holding all other
features fixed, a mutatis mutandis intervention also adjusts
any x; causally influenced by s. Thus, if 2, is height, the
counterfactual of a 5’4” woman would not be a 5°4” man but,
say, a 5°10” man, via an OT map. While OT handles continu-
ous attributes naturally, categorical features (e.g. occupation
or neighbourhood) lack a canonical distance. As a result, gen-
erating counterfactuals (e.g. the male counterpart of a female
nurse, or where a Black resident of X would live if they were
White) becomes particularly challenging.

1.2 The Case of Categorical Variables

For absolutely continuous variables, the approaches of
[Ple¢ko and Meinshausen, 2020; Ple¢ko et al., 2024] on
the one hand (based on quantile regressions) and [Black er
al., 2020; Charpentier et al., 2023; De Lara et al., 2024;
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Fernandes Machado et al., 2025] (based on OT) are quite sim-
ilar.

If [Ple¢ko and Meinshausen, 2020] considered quantile re-
gressions for absolutely continuous variables, the case of or-
dered categorical variables is considered (at least with some
sort of meaningful ordering) in the section related to “Prac-
tical aspects and extensions.” Discrete optimal transport be-
tween two marginal multinomial distributions is considered,
but as discussed, it suffers multiple limitations. Here, we will
consider an alternative approach, based on the idea of trans-
forming categorical variables into continuous ones, coined
“compositional variables” in [Chayes, 1971], and then, using
“Dirichlet optimal transport,” on those compositions.

While motivated by counterfactual fairness, the primary
aim of this study is to present the core of a method for de-
riving counterfactuals for categorical data, applicable to any
context requiring counterfactual analysis. Here, for simplic-
ity, we have set aside considerations related to the assumption
of a known Structural Causal Model (SCM).2

1.3 Agenda

After recalling notations on OT in Section 2, we discuss how
to transform categorical variables with d categories into vari-
ables taking values in the simplex S; in RY, i.e., composi-
tional variables, in Section 3. In Section 4, we review the
topological and geometrical properties of the probability sim-
plex S C R?. In Section 35, we introduce the first method-
ology, which transports distributions within Sy via Gaussian
OT. This approach relies on an alternative representation of
probability vectors in the Euclidean space R%~! and assumes
approximate normality in the transformed space. In Sec-
tion 6, we present a second methodology, which operates
directly on Sy using a tailored cost function instead of the
standard quadratic cost. Theoretical aspects of this “Dirich-
let transport” framework are discussed in Section 6.1, while
empirical strategies for matching categorical observations are
developed in Section 6.2. Section 7 provides two empirical il-
lustrations using the German Credit and Adult datasets.
Our main contributions can be summarized as follows:

* We propose a novel method to handle categorical vari-
ables in counterfactual modeling by using optimal trans-
port directly on the simplex. This approach transforms
categorical variables into compositional data, enabling
the use of probabilistic representations that preserve the
geometric structure of the simplex.

* By integrating optimal transport techniques on this do-
main, the method ensures consistency with the proper-
ties of compositional data and offers a robust framework
for counterfactual analysis in real-world scenarios.

* Our approach does not require imposing an arbitrary or-
der on the labels of categorical variables.

2 Optimal Transport
Given two metric spaces Xy and A, consider a measurable
map T : Xy — A and a measure ug on Xy. The push-

?Details on how the method can be integrated within an SCM are
discussed in Appendix C of the extended version of the paper.

forward of po by T'is the measure j17 = T (1o on X defined
by Ty po(B) = po (T~ (B)), VB C X;. For all measurable
and bounded ¢ : & — R,

| e Tanoldx) = [ o(Txa))olaxo).

X1 Xo

For our applications, if we consider measures Xy = A}
as a compact subset of R, then there exists T such that
1 = Tyupo, when pg and py are two measures, and fi
is atomless, as shown in [Villani, 2003] and [Santambrogio,
2015]. Out of those mappings from pg to p1, we can be in-
terested in “optimal” mappings, satisfying Monge problem,
from [Monge, 1781], i.e., solutions of

inf / ¢(x0, T(x0)) po(dlxo), (1)
Tyro=p1 J x,

for some positive ground cost function ¢ : Xy x A3 — R,.
In general settings, however, such a deterministic mapping 7'
between probability distributions may not exist (in particu-
lar if pp and pp are not absolutely continuous, with respect
to Lebesgue measure). This limitation motivates the Kan-
torovich relaxation of Monge’s problem [Kantorovich, 1942],

in / e(xo, x1)m(dx0, dx1), ()
m€(po,m1) J xpx X3

with our cost function ¢, where IT(po, pt1) is the set of all
couplings of o and pq. This problem focuses on couplings
rather than deterministic mappings It always admits solutions
referred to as OT plans. Observe that 7™ is an “increasing
mapping,” in the sense of being the gradient of a convex func-
tion, from [Brenier, 1991]). Finally, one should have in mind
the the cost function c is related to the geometry of sets X.

3 From Categorical to Compositional Data

Using the notations of the introduction, consider a dataset
{s,x} where features x are either numerical (assumed to be
“continuous”), or categorical. In the latter case, suppose that
x; takes values in {x;1,---,;4,}, or more conveniently,
[d;] ={1,---,d;}, corresponding to the d; categories (as in
the standard “One Hot” encoding).

The aim is to transform a categorical variable x, which
takes values in [d], into a numerical one in the simplex S.
To achieve this, we suggest using a probabilistic classifier.
This classifier is based on the other features in x, denoted
by X_, .Mathematically, we consider a mapping from X_,, to
Sy (and not to [d] as in a standard multiclass classifier). The
most natural model for this transformation is the Multinomial
Logistic Regression (MLR), which is based on the “softmax”
loss function. To normalize the output of the classifier into
the simplex, we define the closure operator C : Ri — S, as

C[ ] Z1 x2 Zd
T1,T2y...,%d] = d ) d y Ty d )
Doie1 Ti iy Ti Die1 Ti
or shortly
X
o) =
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Algorithm 1 From categorical variables into compositions.

Input: training dataset D = {(s;,x;)}
Input: new observation (s,x), with x;’s either in R or [d,]
Output: (s,x), with X;’s either in R or Sy,
forj e {1,--- ,k} do
if X; € [[dj]] then
estimate a MLR to predict categorical x; using D

get estimates 3, -+, By,
x; + C(1, i B 7e"J’TBd)
else
ij < X
end if
end for
GAM-MLR (1) random forest
T Zc TE Zo Zc TE Zo
E| 1838% 61.56% 20.06% | | 23.68% 46.32% 30.00%
C|40.86% 42.38% 16.76% | | 34.68% 36.42% 28.90%
E| 1941% 70.82% 9.77% 16.87% 76.51% 6.63%
C|47.04% 2683% 26.13% | |53.16% 26.84% 20.00%
GAM-MLR (2) gradient boosting model
X f?c .fE i‘o fic :ﬁE i‘o
E| 922% 7592% 14.86% 11.25% 68.51% 20.24%
C|46.80% 24.06% 29.14% | |61.14% 13.10% 25.76%
E|11.23% 79.07% 9.71% 12.48% 75.58% 11.94%
C|50.74% 2698% 22.28% | |51.12% 25.17% 23.71%

Table 1: Mappings from the purpose categorical variable x to
the compositional one X, (in the german credit dataset), for
the first four individuals of the dataset. The first two models are
GAM-MLR (multinomial model with splines for continuous vari-
ables), then, a random forest, and a boosting algorithm.

where 1 is a vector Qf ones in RZ. Then, in the MLR model,
the transformation 7" : X, — Sy is given by

T(x) = C(1, < Pa ,exTﬁd) € Sq,

where ,@2, ..., B4 are the estimated coefficients for each cat-
egory, and the first category is taken as the reference. This
procedure is described in Algorithm 1.

As an illustration, consider the purpose variable from the
German dataset. For simplicity, this variable has been re-
duced to three categories: C,E, O (representing cars, equip-
ment, and other, respectively). More details on the dataset
are provided in Section 7.1. The purpose variable is con-
verted into a continuous variable using four models: (i) a
GAM-MLR with splines for three continuous variables, (ii)
a GAM-MLR incorporating these variables and seven cate-
gorical ones, (iii) a random forest, and (iv) a gradient boost-
ing model. Table 1 presents the observed values in the first
column for each model, along with the estimated scores for
each category in the three remaining columns, corresponding
to the transformed values 7™ (x).

Note that if we want to go back from compositions to cat-
egories, the standard approach is based on the majority (or
argmax) rule.

In the rest of the paper, given a dataset {s, x}, all categori-
cal variables are transformed into compositions, so that X is a
product space of sets that are either R for numerical variables
or Sy (type) for compositions (d will change according to the
number of categories).

In fact, for privacy issues, a classical strategy is to con-
sider aggregated data on small groups (usually on a geo-
graphic level, per block, or per zip code), even if there is an
ecological fallacy issue (that occurs when conclusions about
individual behaviour or characteristics are incorrectly drawn
based on aggregate data for a group, see [King er al., 2004]).
Hence, using “compositional data” is quite natural in many
cases, as unobserved categorical variables can often be rep-
resented as compositions predicted from observed variables
serving as proxies. For example, in U.S. datasets, racial
information about individuals may not always be available.
However, the proportions of groups such as “White and Eu-
ropean,” “Asian,” “Hispanic and Latino,” “Black or African
American,” etc., within a neighbourhood may be observed in-
stead (see, e.g., [Cheng et al., 2010], [Naeini ef al., 2015] and
[Zadrozny and Elkan, 2001] for more general discussions, or
[Imai er al., 2022] about the use of predicted probabilities
when categories are not observed).

4 Topology and Geometry of the Simplex

The standard simplex of R? is the regular polytope
Si={x¢€ R% ’le =1}, but for convenience, consider
the open version of that set,

Sa={xe (0,1 |x"1=1}.
Following [Aitchison, 1982], define the inner product

oyh=o> lg Mgl VayeSi O
i<y WY
and the simplex becomes a metric vector space if we consider
the associated “Aitchison distance,” as coined in [Pawlowsky-
Glahn and Egozcue, 2001]. Figure 1 shows n = 61 points in
Ss3. Each point x can be seen as a probability vector over
{A, B, C}, drown either from a distribution P, for red points
or Py for blue points.
If we define the binary operator ¢ on Sy,

xoy[ dfl’lyl . dwdyd ]7
22:1 TiYi Zi:1 iy
then (S4,©) is a commutative group, with identity element
d~11, and the inverse of x is

1= l /21 1/xq
25:1 1/xi’ 7 Z?:l 1/z;

5 Using an Alternative Representation of
Simplex Data

A first strategy to define a transport mapping could be to use
some isomorphism, i : S; — £ and then define the inverse
mapping h=! : £ — S,, where £ is some Euclidean space,
classically R9~!, where the standard quadratic cost can be
considered. This idea corresponds to the dual transport prob-
lem in [Pal and Wong, 2018].

} =C(1/x).
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Figure 1: n = 61 points in S3, with a toy dataset.

5.1 Classical Transformations

The additive log ratio (alr) transform is an isomorphism
where alr : Sg — R9™1, given by

Td—1
T4

alr(x) = |log %, -+, log
d

Its inverse is, for any z € R4
alr_l(z) = C(exp(z1),- -

Such a map, from S; to R%~1 is related to the so-called “ex-
ponential coordinate system” of the unit simplex, in [Pal,
2024]. The center log ratio (clr) transform is both an iso-
morphism and an isometry where clr : ¢ — R,

clr(x) = logg,"' ,log%) )
9 g

where X, denotes the geometric mean of x. Observe that the
inverse of this function is the softmax function, i.e.,

clr ™ (z) = C(exp(z1), - - -

Finally, the isometric log ratio (ilr) transform, defined in
[Egozcue et al., 2003], is both an isomorphism and an isom-
etry where ilr : Sy — R%7L,

ﬂI‘(X) = [<X7 €1>7 A <X7 é‘dflﬂ
for some orthonormal base {€},--- ,€4_1,¢;} of R One
can consider some matrix M, d x (d — 1) such that MM " =
Iy and M™M = I; + 14.4. Then
ilr(x) = clr(x)M = log(x)M,

and
ilr ' (z) = C((exp(zM ")), z € R,

,exp(za-1),1) = C(exp([z,0])).

,exp(zq)) = C(exp(z)), z € R4,

’ from 0 to 1 | | from 1 to 0
100 100
) 2
80
P

60 &
40
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«(0) 43.71% 18.57% 37.72%
«(1) 29.83% 48.60% 21.56%
T(s) 29.67% 48.83% 21.50%
T(s) 43.73% 18.55% 37.72%
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Figure 2: Counterfactuals using the ilr transformation, and Gaus-
sian optimal transports, po +— w1 on the left, and p1 — o on the
right. Below are the averages of x¢,;’s and x1,;’s, and of the trans-
ported points. The lines are geodesics in the dual spaces, mapped
in the simplex. Optimal transport in R2, on Zo,;’s and zy ;’s, can
be visualized at the bottom (with linear mapping since Gaussian as-
sumptions are made).

5.2 Gaussian Mapping in the Euclidean
Representation

Given a random vector X in S4, we say that x follows a “nor-
mal distribution on the simplex” if, for some isomorphism h,
the vector of orthonormal coordinates, Z = h(X) follows
a multivariate normal distribution on R%~1. If we suppose
that both X, and X3, taking values in Sy, follow “normal
distributions on the simplex,” then we can use standard Gaus-
sian optimal transport, between Zg and Z,. For convenience,
suppose that the same isomorphism is used for both distribu-
tions (but that assumption can easily be relaxed). Hence, if
Zo ~ N(pg, X0) and Z; ~ N(pq,X1), the optimal map-
ping is linear,

z1 = T"(zo) = py + A2 — 1o), )
where A is a symmetric positive matrix that satisfies
A3yA = 34, which has a unique solution given by A =
x, /2 (23/22123/2)1/2231/2, where M'/? is the square
root of the square (symmetric) positive matrix M based on

the Schur decomposition (M 2isa positive symmetric ma-
trix), as described in [Higham, 2008]. Interestingly, it is pos-
sible to derive McCann’s displacement interpolation, from
[McCann, 1997], to have some sort of continuous mapping
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Algorithm 2 Gaussian Based Transport of xg on Sy
Input: xq (€ Sy)
Parameter: {xXo1, - ,Xo.no} and {X11, -+ , X1, } in Sg;
isomorphic transformation h : Sy — R4~1
Output: x;
fori e {1,--- ,np} do
Z(,; < h(XO,i)
end for
fori e {1,--- ,n;} do
71, <— h(xl,i)

end for

my < average of {Zo 1, ,Z0,n, }

m, < average of {z11, -+, 21,

So < empirical variance matrix of {zo 1, - ,2Zon, }
S; < empirical variance matrix of {z1,1, - ,Z1,n, }

A 581/2(5(1)/2515(1)/2)1/2561/2
X1 < hil (m1 + A(h(Xo) — mo))

T} such that T} = T* and Ty = Id, and so that Z; = T (Z)
has distribution N (g, 3¢) where p, = (1 — )y + tpq and

1/2\ 2
3, =512 <(1—t)20+t(2(1)/2212(1)/2) ) »; 12,

Empirically, this can be performed using Algorithm 2, and
a simulation can be visualized in Figure 2, where h = clr. On
the left, we can visualize the mapping of red points to the blue
distribution, and on the right, the “inverse mapping” of blue
points to the red distribution. Transformed points z = h(x),
that are plotted at the bottom, are supposed to be normally
distributed, and a multivariable Gaussian Optmial Transport
mapping is used. Hence, T} is linear in R~ as given by ex-
pression 4, as well as displacement interpolation, correspond-
ing to red and blue segments. But, as we can see on top of
Figure 2, in the original space, t — x; := h~1(z;) will be
nonlinear. Tables are average values of the three components
of x’s and T*(x)’s.

6 Optimal Transport for Measures on S;

6.1 Theoretical Properties

A function ¢ : S; — R is exponentially concave if exp[¢)] :
Sq4 — Ry is concave. As a consequence, such a function
1 is differentiable almost everywhere. Let Vi and Vg
denote, respectively, its gradient, and its directional deriva-
tive. Following [Pal and Wong, 2016; Pal and Wong, 2018;
Pal and Wong, 20201, define an allocation map generated by
P, my + Sq — Sq defined as

Ty(x) = [21(1 4+ Vo, —x¥(x)), -+, 2q(1 + Va,—x¥(x))] |

where {€1, -, €4} is the standard orthonormal basis of R<.
Consider the optimal transport problem with the following
cost function, on S; X Sy, i.e., the L-divergence correspond-
ing to the cross-entropy,

d

1 7 1 d 7
)=o) 33 (1)
K3 i=1 3

=1

S & O O
A N

Figure 3: Densities of Dirchlet distributions in Ss fitted on observa-
tions of the toydataset of Figure 1.

called “Dirichlet transport” in [Baxendale and Wong, 2022].
See [Pistone and Shoaib, 2024] for a discussion about the
connections with the distance induced by Aitchsion’s inner
product of Equation (3). From Theorem 1 in [Pal and Wong,
20201, for this cost function, there exists an exponentially
concave function * : S; — R such that

T*(x) = xomys (x 1)
defines a push-forward from Py to P;, and the coupling
(x,T*(x)) is optimal for problem (1), and is unique if Pg
is absolutely continuous. Observe that if y = T7*(x),

y = C(my (z)l/zl7 e T (z)d/zd),

where z = x 1.

One can also consider an interpolation,
Ty (x) =xom(x")

where m; = (1 —t)d~'1 +tmy- (even if this approach differs
from McCann’s displacement interpolation).

Note that a classical distribution on S, is Dirichlet distri-
bution, with density

d
1
Flonzaa) = —— [[a0
B(@) -

for some @ = (a1,...,aq) € RY, and a normalizing con-
stant denoted B(«x). Level curves of the density of Dirichlet
distributions fitted on our toy dataset can be visualized in Fig-
ure 3. Unfortunately, unlike the multivariate Gaussian distri-
bution, there is no explicit expression for the optimal mapping
between Dirichlet distribution (regardless of the cost). There-
fore, to remain within S; and avoid the R4~! representation,
numerical techniques should be considered.

6.2 Matching

Consider two samples in the Sy simplex, {Xo 1, ,X0.n, }
and {x11, -+ ,X1,n, ;. The discrete version of the Kan-
torovich problem (corresponding to Equation 2) is

nog nNi
min P; :C; (6)
PeU(no,n1) ;; K’

where, as in [Brualdi, 20061, U (ng, n1) is the set of ng X n;
matrices corresponding to the convex transportation polytope

U(ng,n1) = {P :P1,, =1,,andP'1,, = Z(l)lnl} ,
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Algorithm 3 Coupling samples on Sy

| GAM-MLR(1) I

GAM-MLR(2)

Input: {x01, - ,X0.ne} and {X11,** , X1, } in Sg;
Output: weight matching matrix ng x ny P*
C «+ matrix ng x n1, C; ; = ¢(x;,x;) using (5)
P* + solution of Equation (6), using LP libraries

100 100
2 2
80 80
= =
v 9 60 O v 9 60 ©
./ . G/
< 40 < 40
(e} V. L
L T AR\ o 7 20
< AT Q <
<, <, ®
S P& LS S &S
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Figure 4: Getting empirical counterfactuals using matching tech-
niques, with x_; in red (on the top-left hand-side), and counterfac-
tuals x1,;’s in blue (bottom-right hand-side), with size proportional
to Pz* = [ 7?,17 e 7P',L:n1] S Sn1~

and where C denotes the ng X n; cost matrix, C; ;
c(x;, %), associated with cost from Equation (5).

In Algorithm 3, we recall how this procedure works, which
is the one explained in [Peyré et al., 20191, with a specific
cost function (from Equation (5)). In the toy dataset, this can
be visualized for two specific observations X ; in Figure 4
(big red dots). If ng # ng, it is not a one-to-one coupling,
and “the counterfactual” (blue square) is in fact a weighted
average of x; ;’s (blue dots), where weights are given in row
Py = [ ;,17"' P ] € Sn,.

7,1

7 Application on Sequential Transport for
Counterfactuals

Variables x; in tabular data are either continuous or cate-
gorical. If x; is continuous, since x; € R, transporting
from observed x;|s = 0 to counterfactual x;|s = 1 is per-
formed using standard (conditional) monotonic mapping, as
discussed in [Fernandes Machado et al., 2025], using classi-
cal Iy Lo Fy. If x; is categorical, with d categories, consider
some fitted model m(x;|x_,), using some multinomial loss,
and let X; = m(x;|x_;) denote the predicted scores, so that
X; € Sy. Then use Algorithm 2, with a Gaussian mapping in
an Euclidean representation space, to transport from observed
X;|s = 0 to counterfactual X;|s = 1, in Sg.

7.1 German Credit: Purpose

In the popular German Credit dataset, from [Hofmann,
1994], the variable Purpose described the reason an indi-
vidual took out a loan. This variable is an important predic-
tor for explaining potential defaults. The original variable is
based on ten categories, that are merged here into three main
classes, cars, equipment and other, in order to visualize the
transport in a ternary plot (or Gibbs triangle). The sensitive
variable s is here Sex.

We aim to construct a counterfactual value for the loan pur-
pose, assuming the individuals were of a different sex. To

80

% Q
</ R 3
SAVN60 6
N ®,
. . P

Equipment ~ Equipment
GAM-MLR(1) GAM-MLR(2)
cars eq. other cars eq. other

categ. * (M) 30.3% 53.2% 16.5% 30.3% 53.2% 16.5%
_categ. * (F)_35.2% 44.6% 20.1%_35.2% 44.6% 20.1%
comp. * (M) 31.1% 51.3% 17.6% 32.0% 50.5% 17.5%
comp.  (F) 34.9% 45.5% 19.6% 34.5% 45.8% 19.7%

T(s)  31.0% 51.4% 17.6% 31.9% 50.6% 17.6%
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100 - A100

Equipment

random forest boosting
cars eq. other cars eq. other
comp. * (M) 32.2% 49.9% 17.9% 31.5% 51.2% 17.4%
comp. * (F) 35.2% 45.2% 19.6% 34.5% 45.5% 20.0%
T(e) 32.3% 49.7% 18.0% 31.5% 51.1% 17.4%

Figure 5: Optimal transport using the clr transformation, and Gaus-
sian optimal transports, on the purpose scores in the German
Credit dataset, with two logistic GAM models to predict scores,
on top, and below a random forest (left) and a boosting model (right).
Points in red are compositions for women, while points in blue are
for men. Lines indicate the displacement interpolation when gener-
ating counterfactuals.

achieve this, we apply our suggested procedure from to rep-
resent the purpose categorical variable as a compositional
variable, using the same four models outlined in Section 3 and
then apply Gaussian mapping from Section 5.2. The results
provided by all of the models, shown in Figure 5, suggest
that, had the individuals been of a different sex, the purpose
of the loan would have changed. Specifically, if the average
scores in each group (cars, equipment, and other) were ap-
proximately [35%, 45%, 20%)] in the female population, after
transporting to obtain the counterfactuals, the average scores
become [31%, 51%, 18%)], which closely resemble the actual
frequencies of each category in the original male population.

One can also consider our second approach, using match-
ing in S3. Consider individual < among women, e.g., the left
of Figure 6, zo; = “other”” Using a MLR model, we ob-
tain composition xg ;, here [36.98%, 23.81%, 39.2%). Using

Algorithm 3, three points x; ;’s are matched, respectively
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A first woman ‘ | A second Woman ‘

| GAM-MLR(1) I

GAM-MLR(2)

100

S
S

Equipment

Figure 6: Empirical matching of two women, in red, from the
German Credit dataset, with 2 or 3 men, in blue. Size of blue
dots are proportional to the weights P7.

with weights [0.226,0.548,0.226]. For those three points,
the propensity for the purpose to be “cars’ is the highest
([39.9%, 36.3%, 42.3%)]). Therefore, the counterfactual ver-
sion of woman ¢ with an “other” credit is a man with the pur-

pose “cars”. In fact, using Gaussian transport (blue square),
we obtain T*(x¢ ;) = [38.47%, 29.05%, 32.49%).

7.2 Adult: Marital Status

Following the numerical applications in [Ple¢ko et al., 2024]
and [Fernandes Machado et al., 2025], we consider here the
Adult dataset, from [Becker and Kohavi, 1996]. We re-
grouped categories of the Marital Status variable to
create three generic ones (that can be visualized in a ternary
plot, as in Figure 7), namely Married (M), Never-married (N)
and Separated (S). This example is interesting because if we
compare status with respect to the Sex variable, proportions
are quite different. In the dataset, proportions for married,
never married, and separated are (roughly) [62%, 27%, 12%]
for men, [14%, 44%,41%)] for women (more precise values
are at the top of the table in Figure 7). Thus, the counterfac-
tual of a “separated” woman is more likely to be a “married”
man than a “separated” man. Four models are used to convert
the categorical variable Marital Status into a composi-
tion, as previously. The first MLR is based on three variables:
a categorical variable, occupation, and two continuous
ones, age, and hours_per_week, modeled nonlinearly us-
ing b-splines (hence, it is referred to as a logistic GAM). This
model is clearly underfitted. Therefore, observations x ;’s
for women and x; ;’s for men clearly are in the interior of Sg.
In contrast, the more complex MLR (which uses additional
features), as well as the random forest and boosting models,
can produce predictions near the simplex boundary, 0S,.
For the underfitted model (top left), transported scores have
a distribution very close to the ones in the population of men.
For the more accurate MLR model (top right), proportions
are very close to the actual proportions (which is not surpris-
ing since GLMs are usually well calibrated), but the trans-
ported scores are slightly different than the proportions of
categories (proportions were [62%, 27%, 12%)] while average
transported scores are [67%, 25%, 8%]). At least, we are dif-
ferent from the original ones, but the mapping is not as accu-
rate as it should be. This might come from the fact that when
the points x; are close to the border 08y, it is quite unlikely

100 _ AL00

GAM-MLR(1) GAM-MLR(2)
M N S M N S
categ. * (M) 61.8% 26.6% 11.6% 61.8% 26.6% 11.6%

“comp. + (M) 50.4% 31.0% 18.6% 59.6% 27.3% 13.1%
comp. « (F) 352% 39.7% 25.1% 13.3% 46.1% 40.6%
T(s)  49.1% 32.1% 18.8% 77.6% 7.8% 14.6%

| Random Forest

‘ | Gradient Boosting Model

Sl

N
N

Never-married

boosting
M N S

random forest
M N S

comp. * (M) 59.3% 27.7% 13.0% 59.5% 27.5% 13.0%
comp. ¢ (F) 13.2% 48.7% 38.1% 13.5% 46.0% 40.4%
T(e) 48.7% 33.4% 18.0% 51.7% 31.4% 17.0%

Figure 7: Optimal transport using the clr transformation, and Gaus-
sian optimal transports, on the Marital Status scores in the
Adult dataset, with two logistic GAM-MLR models to predict
scores, on top, and below a random forest (left) and a boosting model
(right). Points in red are compositions for women, while points in
blue are for men. Lines indicate the displacement interpolation when
generating counterfactuals.

that the sample z; is Gaussian.

8 Conclusion

In this article, we introduce a novel approach for construct-
ing counterfactuals for categorical data by transforming them
into compositional data using a probabilistic classifier. Our
approach avoids imposing arbitrary assumptions about label
ordering. However, our methodology is not without limi-
tations. OT computations, particularly on the simplex, can
be computationally intensive for large-scale datasets, posing
challenges in high-dimensional settings. Additionally, the re-
liance on a probabilistic classifier in the initial step introduces
potential vulnerabilities. Biases may arise from a poorly
calibrated or inaccurate classifier, impacting the quality of
the subsequent analysis—especially with scarce categories that
may need grouping to apply the proposed method.
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